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ABSTRACT 

The variation in gene frequency among populations or between generations 
within a population is a result of breeding structure and selection. But breeding 
structure should affect all loci and alleles in the same way. If there is signifi- 
cant heterogeneity between loci in their apparent inbreeding coefficients 
P =sp2/p (1 -p), this heterogeneity may be taken as evidence for selection. We 
have given the statistical properties of F and shown how tests of heterogeneity 
can be made. Using data from human populations we have shown highly 
significant heterogeneity in F values for human polymorphic genes over the 
world, thus demonstrating that a significant fraction of human polymorphisms 
owe their current gene frequencies to the action of natural selection. We have 
also applied the method to temporal variation within a population for  data on  
Dacus oleae and have found no significant evidence of selection. 

HE discovery of vast amounts of polymorphism in sexually reproducing ani- 
Tmals and plants since the first reports by HARRIS, by HUBBY and LEWONTIN 
and by JOHNSON et al. in 1966, has given a considerable impetus to the problem 
of distinguishing between natural selection and essentially non-selective proc- 
esses, such as restriction of population size, recurrent mutation and migration, 
on the determination of genetic variation. A synthetic view does not allow an 
“either-or” approach to this problem, but admits that gene frequency distribu- 
tions are the result of the interaction of selective and non-selective forces. Yet 
even in such a view there exists the strong possibility that selection coefficients 
are of such a magnitude for most genes that variations in time and space and 
between loci in the array of allele frequencies can be explained in large part 
without reference to variation in selection coefficients. That is, in the sense of 
the analysis of variance, the main effect of selection in determining gene fre- 
quencies is small. 

One of the main problems of assessing the role of natural selection lies in the 
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probable size of selection coefficients. Even the most sanguine “selectionist” will 
not claim that selection coefficients in excess of a few percent are the rule. But the 
power to detect selection of this magnitude by observing changes in gene fre- 
quency, or differences in components of fitness between genotypes, is very low 
for sample sizes within the range of practicality (see WILSON 1970, for a gen- 
eral theoretical treatment of the estimation problem, and YAMAZAKI 1971, for a 
specific example in an experimental context). The alternative is then to use in- 
formation about the spatio-temporal distribution of allelic frequencies on the 
assumption that these frequencies are in a steady-state distribution resulting from 
the interaction of the various forces, and so attempt, from the distribution, to 
estimate the forces. The difficulty with this procedure is that various parameters 
enter in a confounded way into the determination of the observations. For exam- 
ple, the steady-state distribution of allelic frequencies over populations depends 
critically on terms such as Ns and N ( p + n )  where s is the intensity of selection, 
p the mutation rate to one of the alleles, m the migration rate from neighboring 
populations (in the extremely simplified model of island populations) and N ,  the 
effective population size, a number only loosely related to census size. Not only 
is selection confounded with the other parameters, but those parameters are ex- 
tremely difficult to measure in practice. Measurements of either migration rates 
or effective population sizes are, both practical and conceptual reasons, virtually 
impossible-especially if populations do not conform to simple “island” struc- 
ture, and intuitive notions about whether N is Very large” or m is “small enough 
to be ignored” are useless, especially in view of the fact that these two parameters 
appear as their product, Nm,  in the theory! So, any observed distribution of gene 
frequencies over space or time, if considered to be in a steady state can be ex- 
plained by a suitable choice of N ,  m and p ,  with s being made arbitrarily small, 
the more so because the number of populations or time points observed is never 
really very large and the distribution is poorly known. As an example, PRAKASH, 
LEWONTIN and HUBBY (1969) showed that the allelic frequencies at 24 loci, 11 of 
which were polymorphic, were very similar in three widely separated popula- 
tions of Drosophila pseudoobscura, and recent, as yet unpublished, work from 
the same laboratory extends these similarities to a half dozen more such popula- 
tions. One explanation of the striking similarity of allelic frequencies among 
populations 2000 miles apart, even for loci with five to eight alleles segregating, 
is that these frequencies are in stable equilibrium held by common selective 
forces in all populations. An equally good fit to the data, however, can be made 
by the hypothesis that there is no selection and that effective migration over the 
range of the species is of the order of one individual per generation between 
neighboring populations (WRIGHT 1951). It is impossible to rule out, by direct 
evidence, migration rates of that order. (Even allelism of lethals between popula- 
tions is totally insensitive to small migration rates). 

What is required is some method of detecting selection which will cancel out 
the effects of the breeding structure. In principle, such a method is possible be- 
cause there is one feature of migration, genetic drift and inbreeding that is quite 
different from selection. While natural selection will operate differently for each 
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locus and each aZleZe at a locus, the effect of breeding structure is uniform over 
all loci and all alleles. Inbreeding affects all genes simultaneously and to the same 
average degree, as does sampling variation and migration. In the absence of selec- 
tion, the steady-state variation in frequency of an allele at a locus from popula- 
tion to  population, or from time to time, is entirely a reflection of the breeding 
structure of the species and, in fact, the variation of frequency can be used to esti- 
mate a parameter Fe, the “effective inbreeding coefficient” for the collection of 
populations. The effective inbreeding coefficient is a kind of fictitious equivalent 
to the inbreeding coefficient that would arise after some fixed number of genera- 
tions in a model of totally isolated populations with no migration between them, 
perfect panmixia within them, each of a constant size N ,  that would produce the 
amount of genetic variation observed among the real populations. The fact that 
the real populations do exchange genes, do fluctuate in size and are not perfectly 
panmictic is irrelevant, because these actual conditions are summarized in the 
“effective” parameter Fe,  which has no interest in itself. The estimate is simply 

where E ,  = estimate of effective inbreeding, 
sZp = variance in the frequency of one of two alternate alleles from 

p = mean frequency of the allele over the ensemble of populations. 
population to population, and 

Now suppose we carry out the estimate in using a number of different loci, each 
of which will have its own values of szp and p .  If all these loci are selectively 
neutral, they will all estimate the same Fe since the estimations apply to all genes 
in the ensemble of populations. Then the collection of E ,  values actually calcu- 
lated will be an estimation of a true Fe and there should be no significant hetero- 
geneity among them. On the other hand, if some or all of the loci are under se- 
lection, the various Fe’s will not be estimates of the same Fe because they will be 
distorted by selection. For the selection loci the .Pp values and therefore the esti- 
mated E ,  will be too large if selection is different in different populations, while 
if there is a selection in common, the variance among populations will be too 
small. Even if all the loci are under some selection, the P ,  will not be drawn from 
the same distribution unless selection is acting identically over all alleles. This 
idea was first used, as far as we know, by CAVALLI-SFORZA (1966), who calcu- 
lated E ,  values over a wide range of human groups encompassing the diversity of 
the species, for  fifteen different gene frequencies, representing nine loci. The 
values of E ,  from CAVALLI-SFORZA are reproduced as Table 1 of this paper. The 
considerable variation in E ,  values from .029 for the Kell blood group locus, to 
.382 for the R, allele of the Rh locus seemed to CAVALLI-SFORZA as too great to ex- 
plain from sampling error alone, but that impression could not be tested in the 
absence of any sampling theory. We shall return to the data of Table 1 later. 

In principle, then, a test of the homogeneity of E ,  estimates derived from dif- 
ferent loci in steady state will be a test of the homogeneity of selection coefficients 
across loci-which, in effect, is a test for selection. In practice, the problem is to 
derive the distribution of Be under the assumption of all being drawn from the 
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TABLE 1 

I? values for world wide distribution of h u m  polymorphisms. n is the number 
of groups sampled. Data from CAVALLI-SFORZA (1966) 

system Allele n L s 2 / - -  P P9 

AB0 

MN 

Rhesus 

Duffy 
Diego 
Kell 
Haptoglobin 
Gm 
Gc 

125 
125 
125 
45 
45 
75 
75 
75 
75 
62 
64 
64 
60 
25 
42 

.070 

.055 

.081 
,071 
.094 
.382 
,297 
,141 
,172 
.358 
.093 
.a29 
.096 
,226 
.051 

F= ,148 
sZF = ,00741 

same universe and then to use this sampling distribution to test the significance 
of the difference between two or  more 13, values from different loci. 

TWO MODELS 

1. Variation in space: Let us postulate a locus with two alleles. A and a segregat- 
ing (or fixed) in a large number of populations. The populations are defined 
simply as sampling units and we know nothing about their actual breeding struc- 
ture or their degree of isolation from each other. Let pi be the frequency of allele 
A in the itn population. Let us suppose we choose a random subset of n popula- 
tions from the entire ensemble and determine the gene frequency pi in each. We 
will further suppose that the determination of p i  in each population is based upon 
sufficient sample size so that the within-population sampling variance is negli- 
gible compared with variance among populations. That is, we know each pi to a 
first approximation. If we then take the sample variances among the n values of 
pi ,  and the mean, p ,  we can calculate one estimate 

From another subset of n randomly-chosen populations we can calculate another 
value of P ,  and so on. Then the values of P ,  will have a distribution that depends 
upon the true variance of the pi, uZp and the true mean, b. Unfortunately it 
depends upon not just these two first moments, but also on the entire distribution 
of pi .  This distribution may be of any of a number of shapes: unimodal falling 



TEST O F  SELECTIVE NEUTRALITY THEORY 179 

off on both sides, J-shaped, U-shaped or rectangular, depending upon the under- 
lying parameters N ,  my s, etc. which are unknown. Nor can we estimate the form 
of the distribution directly since we usually cannot sample enough populations 
to get a picture of it. In practice, of course, the sampling distribution of B might 
be rather insensitive to different shapes and, in the best of all possible worlds 
might depend only on the ratio ~ ~ ~ / p ~  ( 1 -&) , i.e., on the true value of F .  As we 
will show, for a given general functional form of the parent distribution of p i ,  
the sampling distribution of B does depend only on the ratio d / p P  ( l-pp) , that is, 
on the true value of F; but when we change the form of the parent distribution, 
the sampling distribution changes non-trivially. This latter, unfortunate fact, 
leads us to consider an alternate procedure, origmally conceived of by C. KRIM- 
BAS and actually utilized by KRIMBAS and TSAKAS (1971). 
2. Variation in time: If we observe the frequency of an allele in two successive 
generations in a population, and if that gene is not subject to natural selection, 
there will still be a change in the gene frequency, ~ p ,  because of the finite size of 
the population. If there were a very large number of identical populations all 
starting with the same gene frequency, there would be a variation in gene fre- 
quency among the populations after one generation which would be related to 
an  effective inbreeding coefficient by equation 1. We will denote the inbreeding 
coefficient that arises after a single generation of such drift by f to distinguish it 
from the result of many generations of the process, Fe.  The change, Ap,  within 
any single population can be used to estimate the variance among the populations 
and in fact 

is an estimate of the variance with one degree of freedom. Then an estimate of f  
is, from (1) and (2) 

s2 = ( A p )  (2) 

where p o  is the gene frequency in the initial generation. If this is done for many 
different genes in the same population, then each such estimate, under the hy- 
pothesis of no selection, estimates the same true f, and we may apply the same 
reasoning as for F.  The advantage of f over E ,  however, is that we know the un- 
derlying distribution of the pi. It must be binomial3 with mean po and variance 

p o ( l - p O ) ,  because it is a one-stage sample of size 2Ne from a population with 2No 
value po. We are not, in this case, plagued with the problem of the unknown un- 
derlying gene frequency distribution that affects the sampling distribution of P .  
As we shall see, this is a particularly felicitous choice of an underlying distribu- 
tion. 

THE SAMPLING DISTRIBUTION O F  

We wish to find the distribution of the statistic 

Strictly speaking, only if the variance in offspring number is Poisson, but close enough in any case. 
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TABLE 2 

Statistical of the empirical distributions of $ for different underlying distributions of p. n is the 

variance and k = (n-I) $/F* 
sample size on which each I? value is calculated, the mean, s2F the 

Distribution n 3 ."I? k = (n-1) 52/F 

Binomial: 
(.5 '+ .5) 2 1  

Binomial: 
(.5 + .5) 41 

Binomial: 
( A ' +  .9)39 

20 
100 
500 
20 

100 
500 
20 

100 
500 

.048 
,048 
.048 
.024 
.025 
.U24 
.025 
.025 
,026 

2.3 x 1W 

8.9 x 10-6 
4.4 x 10-5 

6.2 x 1 0 - 5  
1.2 x 1e5  
2.5 x 10-6 
3.12 x 1 ~ 5  
6.25 x 1 0 - 6  

2.5 x 10-6 
k 

1.9965 
1.9097 
1.9306 
2.1 528 
1.9200 
2.1 739 
2.083 
1.9200 
1.8519 

= 1.9932 

Uniform 20 .34 5.2 x 10-3 3990 
20 .34 4.9 x 113-3 A378 

100 .34 .96 x 10-3 .83W 
100 .33 1.0 x 10-3 .9183 
500 .33 2.2 x 10-4 1.0092 
500 .33 2.1 x 10-4 .9633 

k= .9113 

U-shaped 20 ,536 7.0 X 1 0 - 3  .4875 
p-1 ( 1 -p) -1 20 .534 6.7 x 10-3 ,4698 

100 .525 1.2 x le3 .4348 
to 2 decimal places la0 .527 1.2 x 10-3 .4317 

500 ,523 2.5 x 1w .4570 
501) .524 2.5 x 10-4 .4554 

x= .%60 

U-shaped 20 ,595 1.77 X .4068 
to 5 decimal places 100 ,587 3.39 x 10-3 .3540 

500 .578 6.68 X l e 4  .*2 
t?= .3883 

given that p has some specified distribution among populations and that s2p and j j  
have been calculated from a sample of n populations. If the p i  were very close to 
being normally distributed, and if n were large enough s3 that jj were very close 
to the true mean of p ,  then (n- - l )P/F would be very close to a chi-square distri- 
bution with n-1 degrees of freedom. In actual fact, however, will vary around 
the true mean and the distribution of p i  will never really be normal, so we do not 
know, a priori, how useful the chi-square distribution may be. The problems of 
finding the distribution of P analytically seem to us formidable, in general, and 
even if found would certainly require numerical tabulation; so we have used 
Monte Carlo simulation to produce the sampling distribution for a number of 
cases. A hypothetical distribution of p is specified in the form of a table of p values 
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and the cumulative probabilities of observing a p less than or equal to that value. 
A random number from a uniform distribution on the interval [0, I], is then 
generated and used to pick out a p value. This technique will choose p values in 
proportion to the probabilities given by the postulated distribution. A sample of 
n such p values is chosen and from this sample a single value of E is calculated 
according to formula 1. The sampling cycle is repeated 5000 times to produce 
5000 P values which then represent an empirically derived sample distribution 
of E,  given the hypothetical underlying distribution of p .  

Table 2 shows the results of the simulations for underlying distribution of p 
that are binomial, flat, or U-shaped, corresponding to common distributions ex- 
pected for steady state gene frequency distributions without selection. Both a 
symmetrical and an asymmetrical binomial distribution and two different vari- 
ances ( N  = 21 and N = 41) were tested. Two replicates for each of the uniform 
and U-shaped distributions are given, to show the reliability of the empirical 
statistics. 

For the binomial distributions we see that the mean value of E is unaffected by 
the asymmetry so that the normalizing effect of dividing the variance in gene 
frequency by p(1-p) does indeed work. Moreover, the mean P turns out to be 
very close to 1/21 = .0476 and 1/41 = .0244, that is to 1/N, which is exactly 
what the expected value would be if the denominator of F,jj(I-jj), had no sam- 
pling variance. In fact s turns out to be slightly greater than 1/N as a result of 
the small sampling variance of the denominator, The mean value for the uni- 
form distribution also turns out to be very close to the expected value of 4/12, 
which would be the case if the denominator had no variance. For the U-shaped 
distribution it is more difficult to compare the observed mean with the ideal since 
the expectation depends critically on what convention is made concerning the 
terminal classes. Obviously p=O and p=l must be excluded or the mean will be 
infinite. The more finely-divided the underlying discrete distribution is, the 
smaller the value of p in the subterminal classes and so the larger the value of F 
since p appears in the denominator. Table 2 shows that an increase of the fineness 
of subdivision from 2 to 5 decimal places of the U-shaped distribution classes in- 
creases the value of P by about 15%. 

If the distribution of F is in some sense invariant under changes in the pa- 
rameters of the underlying distribution, there should be a relation between r;; and 
sZF. In any case, s2F shoud be inversely proportional to (n-I), the degrees of 
freedom of 8, and in addition if the distribution of P is invariant, we might guess 
that the variance of E will be proportional to fi. That is 

In the last column of Table 2 we have calculated k = (n-1) s 2 / p  fo r  each run. 
We see that for each form of distribution there is a characteristic k, and that for 
the binomial distributions, k=2, irrespective of the parameters of the binomial. 
This value for k is not coincidental. We remarked before that we expected that F 
might have a distribution related to x2 when the underlying distribution of p is 
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roughly normal. If p is binomial, then as noted by WORKMAN and NISWANDER 
(1970) ,  the weighted sum of squares of the p i  divided by jj (1 - j j )  is algebraically 
identical to the usual homogeneity statistic calculated from 2 x n tables. In par- 
ticular xz is distributed with mean n-1 and variance 2(n-1) where n-1 is the 

( n - l ) P  

F 
number of degrees of freedom. Now P has a mean E so will also have 

a mean of (n-1 ) . What will its variance be? It will be 

- (n-1)Z S2F 

22 
But we have shown in Table 2 that 

(n-1 ) szF 
P 

_ _ ~ -  - 2  

(n-1)P 
F 

so the variance of -__ will be 2 (n-I) , the same as the chi-square distribu- 

(n-1)P tim. It  would appear likely then that is distributed as x 2  with n-1 de- 
F 

grees of freedom. To make a closer check, the empirical cumulative distribution 
of P is plotted in Figure 1 for several of the cases given in Table 2. The coordi- 
nates of the abscissa are so arranged that a normally distributed variable will ap- 
pear as a straight line with a slope equal to its standard deviation. Plotted on this 
graph are the P distributions based on underlying binomial, uniform and 

(n-l)P U-shaped distributions. In each case the ordinate is in units of - . For the 
F 

(n-1)F 
are very F 

U-shaped and flat underlying distributions, the distribution of .- 
close to normal with mean n-1 and standard deviation .\/k(n-1) were k is given 
in Table 2. On the other hand, the P distribution based on the binomial distribu- 
tion deviates significantly from the normal, being concave upwards. This con- 
cavity means that the distribution is skewed to the left, in excellent agreement 
with the xZl9 distribution shown by the curved line. I t  should be noted that this 
curve is in no way “fitted” to the data. It is simply the chi-square distribution 
with 19 degrees of freedom. 

We may summarize the results of these empirical distribution studies as fol- 
lows. If the underlying distribution of gene frequencies across populations is 

binomial or normal, then is distributed as x2 with n-1 degrees of free- 

dom were n is the number of populations sampled. If the underlying distribution 

of gene frequencies is much more dispersed than the binomial, then ___- is 

normally distributed with mean (n-1) and a variance between a quarter and a 
half of that for the binomial case. This latter point-that greater dispersion of 
the underlying gene frequencies reduces the variance of P-will be extremely 
important for testing hypotheses about the homogeneity of F values. 

(n-1)P 
- 
F 

(n-1)P 
F 
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FIGURE 1 .-Empirical cumulative distributions of P given various underlying distributions 
of p.  Abscissa is in units of probability on a scale arranged to produce a straight line if the distri- 
bution is normal. Ordinate in units of (n - I )  k/g Crosses: binomial; solid circles: uniform; 
open circles: U-shaped. 

APPLICATION TO SPATIAL VARIATION 

In 1966 ARENDS et al. published the distribution of 22 allelic frequencies be- 
longing to 15 different loci, distributed over 10 villages of the Yanomama tribe 
of Indians in the Orinoco Basin. These villages are partially isolated, but do ex- 
change genes, and some villages have been formed from others by a process of 
budding. Figure 2 shows the distribution of allelic frequencies among the villages 
for the alleles investigated. 

Table 3 gives the P value for each allele together with the number of villages 
over which it has been estimated. The P values seem to fall in two groups, nine 
of them being .036 or less and eleven being greater than .072, with only two be- 
ing in between these groups. We wish to test the hypothesis that this apparent 
heterogeneity of P values is real. The P values observed do not need to be cor- 
rected for sampling error within villages since, although the numbers in each vil- 
lage are small, they are nearly complete censuses rather than samples. 

Based on our Monte Carlo results we could take two approaches. One would be 
to test the goodness of fit of the observed distribution of P values t o  one of the 
sampling distributions. Figure 2 shows that the underlying distribution of p f o r  
all the loci are much less disperse than uniform and so fall in the category of the 
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FIGURE 2.-Distribution of allelic frequencies for  genetic systems of Table 3. Data from 

ARENDS et al. (1966). 

unimodal binomial distribution. We might then test the goodness of fit of the 
observed distribution of E values to a x2 distribution with nine degrees of freedom 
(ten villages). Table 4 shows a comparison between the observed distribution of 
the 22 P values in Table 3 and a x2 distribution with nine degrees of freedom 
(corrected for the observed mean F )  . Classes were constructed to be a half stand- 
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TABLE 3 

185 

k values for diflerent allelic distributions among ten villages of Y a n o m m  Indians n is the 
number of villages for each 6. Calculated from data of ARENDS et al. (1966) 

Locus Allele n 9 
Rh 

MNS 

Duffy 
P 
Kidd 
Phosphoglucomutase 
Acid phosphatase 
Group component 

LP 
Ag 
Lewis 

Transferrin 
ABH-secretor 
Haptoglobins 
6-phosphogluconic dehydrogenase 

10 .(I3329 
10 .03002 
10 ,04967 
10 .03069 
10 .077M 
10 .08750 
10 .03620 
10 .03235 
10 .a7593 
9 .02067 

10 .(I7398 
10 .I4594 
10 .03626 
10 ,07496 
10 .a7326 
10 .OQ414 
10 .06719 
5 ,08371 

10 .a1821 
5 .1G417 

10 .08226 
10 .03058 

= .MI75 
s z p  = .001052 

TABLE 4 

Comparison of the distribution of fi values of Table 3 and the theoretical x2 distribution 
~ 

R 
~ 

Observed Expected 

.01372-,02744 

.02745-.04116 
,041 17-.a5488 
.05489-.06860 
.06861-,08238 
.08233-.09574 

> .I0947 
Total 

.09575-,10946 

2 
7 
1 
1 
6 
3 

22 

1.98 
3.73 
4.62 
3.95 
3.01 
1.97 

;::;I 
22.00 

.oo 
2.84 
3.62 
2.280 
2.97 
1.58 
.20 

13.41 
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ard deviation of the x2 distribution wide, centering on the observed mean F of 
.06175. The test for goodness of a fit between the observed distribution and the 
theoretical gave a x2 = 13.41 with five degrees of freedom corresponding to 
P = .02, so we judge the observed distribution of P to be significantly different 
from the theoretical sampling distribution. This difference results from the 
greater heterogeneity of the observed P ,  as evidenced in the two modes and is 
taken as evidence for selection on some of the genes. Of course we cannot tell 
whether the lower mode is the non-selected group, with diversifying selection 
accounting for the upper mode, or whether the lower mode is evidence for  a com- 
mon heterotic selection acting over all villages. 

A second test of heterogeneity would be the comparison of the observed vari- 
ance of P with the theoretical variance. As we have seen, the theoretical variance 
of P is given by 

with k=2 when the underlying distribution of p is binomial. Applying this rule 
to the data of Table 3 we have 

We can test whether the observed variance szp = .001052 is significantly larger 
by the ratio szF/uZ = 1.380 which will be distributed as x2/d.f. In  the analysis, 
there is a problem of what to do with the two multiple allelic systems, Rh and 
MNS. The variations in the various alleles at one locus are obviously correlated 
positively. That is, if one allele is very uniform over villages, other alleles must 
also tend to be uniform. To choose only one of the alleles arbitrarily, say the one 
closest to a frequency of .5, or  to average F values over alleles at one locus would 
be to sacrifice information. The effect of using this correlated information will 
be to overestimate the power of any test because of spurious degrees of freedom. 
We will compensate for this by removing one degree of freedom for each multi- 
ple allelic locus. This would be exactly correct in the case where both alleles at a 
di-allelic locus were used, and must be nearly so here, since each degree of free- 
dom corresponds to an added linear restriction on the ensemble of P values. In 
this particular case, the number of degrees of freedom is then 22 - 3 = 19 and 
the probability of the ratio is P = .12, so the difference is not significant. The 
ratio of variances has then failed to detect the excess heterogeneity of P values 
shown from the goodness of fit test, which itself was significant only at the .02 
level. Clearly the conclusions about heterogeneity of the P values is doubtful. 

A fortunate circumstance makes it possible to perform a second test of this case. 
After these calculations were made, the Michigan group published more com- 
plete data on the Yanomama for 16 of the original 22 allelic frequencies pIus a 
new system, Diego. The 10 original villages plus 27 new ones are included in this 
new study, and the authors have also calculated P values for  the different systems 
(GERSHOWITZ et al. 1972; WEITKAMP et al. 1972; NEEL, WARD and MACCLUER 
1972). This new study shows that the P values for  the Yanomama are indeed 
homogeneous since: 

u2 = .0007624 . 

1 ) The F values based on all 37 villages show no trace of bimodality. 
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2) There is no correlation between E values on the ten villages and E values 
from the larger sample. 

3) The ratio of observed variance of P to expected variance in the larger study 
is .00413/.000216 = 1.55, which is referred t o  the x2/d.f. distribution with 
17 - 3 = 14 degrees of freedom and has a P = .IO.  

Apparently, then, if selection is operating on the genes in the study, the villages 
are insufficiently isolated or too recent historically, to make detection possible. 

What of the data in Table 1 for the worldwide distribution of gene frequencies? 
Here the underlying distribution of various gene frequencies is more problematic, 
since some are close enough to binomial, but others with very high F values are 
much closer to uniform or even U-shaped distributions on a world-wide basis. 
However, since the expected variance of P is smaller (k is smaller) for these un- 
derlying distributions than for the binomial, we can perform a conservative test 
by using k = 2.0. The number of racial groups vanes in Table 1 from 25 to 125, 
SO we have used the harmonic mean, 60, for n. The theoretical variance of the P 
for this case is then 

= .000742 
2.0 (.148)z 

59 
u2 

while the observed variance is .007416, so we have s 2 / d  = 10. 
Again subtracting a degree of freedom for each multiple allelic loci, we com- 

pare this ratio with the distribution of x2/d.f. for  11 degrees of freedom and obtain 
a P < .001. Thus CAVALLI-SFORZA’S suggestion that the values are much too 
heterogeneous to be explained without selection is amply justified. In  this case 
there is even some suggestion of which sort of selection has operated. On a world- 
wide basis, the most deviant allelic frequencies are generally found in groups 
that have small populations and are isolated culturally and genetically from 
other human groups. These include Eskimos, American Indians, Basques and 
Australian Aborigines, among others. There is no reason to suppose that natural 
selection will vary more between, say, American Indians and Australian Abo- 
rigines, both Stone Age peoples up until recently, than between, say, Europeans 
and Africans. Thus it is probably their isolation and small population size that 
has caused the divergence of these isolated groups. Then it is among the gene 
frequencies that have not diverged, those associated with small F values, that we 
should look for selection. In particular we should look for heterotic selection tend- 
ing to retard divergence among the isolated groups with respect to these loci. 

Both sets of human data differ in a significant way from the Monte Carlo 
sampling scheme on which the distribution of E is based. For the Yanomama and 
the worldwide distribution of gene frequencies, the same populations were char- 
acterized for all the loci, while in the Monte Carlo scheme, a new random sample 
of populations was chosen at each sampling. I am indebted to PROF. C. A. B. 
SMITH for pointing out this discrepancy to me. The repeated sampling of the 
same populations would be of no significance if there were no genetic correlations 
between populations, since each locus would be an independent random sample 
even though the populations were repeated. However, human populations are 
hierarchically-related with local populations within races being more closely 
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related than between races, Even the Yanomama villages are hierarchically re- 
lated because some have budded off from others in recent times. To see the effect 
of repeated sampling in a hierarchically-arranged set of populations, we consider 
the most extreme possible case of two genetically differentiated races, but with 
all local populations within races identical. If we sample, say ten populations in 
each race and calculate P for many loci, we have really sampled only two dif- 
ferent populations, since there is no component of variation within races. Then 
the appropriate value of n-I in the denominator of the theoretical variance of F 
is only one instead of nineteen. However, compensating for this inflation of uz 
by the reduction of n is a reduction in the theoretical variance because of the re- 
peated samples from the same of set of populations. The underlying distribution 
of allele frequencies in this extreme case is bimodal, with half the populations 
having one allele frequency and the other half having a different frequency. But 
we are always choosing one “population” from each mode, whereas in a random 
sampling scheme we would by chance choose both populations from the same 
mode half the time. Thus, there are two opposite tendencies acting on the theo- 
retical variance of I3 when repeated samples are taken from the same set of hier- 
archically-related populations, and we do not know the exact effect of these 
tendencies since we have not simulated this sampling scheme. For the Yanomama 
Indians, where the heterogeneity of E is on  the borderline of significance, we will 
be made even more cautious. The observed variance for the world E values is, 
however, so much greater than the theoretical variance that it is most unlikely 
that the altered sampling scheme has much effect. 

THE SAMPLING DISTRIBUTION O F  f 

Because the use of the temporal inbreeding, 1, will often involve multiple al- 
lelic loci, we have simulated temporal sampling at a three-allele locus to deter- 
mine the effect of the correlation between allelic frequencies. Three initial fre- 
quencies at the locus were specified and a random sample of N genes were taken 
to form a new population. The changes in allele frequency, Apl, Ap,,  and A p s ,  
were then used to calculate j from the relation 

This calculation was replicated 5000 times for each original distribution of p i  
and for each population size N .  For each replicate, the simulation was pushed 
further. Because in nature it is often impossible to get gene frequency data every 
generation, the sampling scheme was carried out for four generations to check 
that f^ after four generations is essentially four times f after a single generation, 
as it should be for low levels of inbreeding. Table 5 gives the statistics of these 
runs in the same form as for Table 2. I t  should be remembered that for all these 
runs, n = 3 since there are only three Ap’s that enter into each f calculation. 

We see from Table 5 that each of the fl values is almost precisely 1/N and that 
the average f4/ f2 = 3.94, which is exactly that predicted from the theoretical 
relation 
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TABLE 5 

Statistics for the empirical distribution of f^ for different initial gene frequency distributions. N is 
the number o f  genes in the brccding population (=2N,), f, is the single generution f 

value, fi is the four generution value 
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* 

Allele distribution N 

.333, .333, .333 50 

100 

500 

.0625, .3125, .6%0 100 

.0625, .4375, .4375 100 

.0625, .0625, .8750 100 

Average 

- 
f 

,19787 X I t 1  

.75214 x I t 1  

3.80 

.97641 X 10-2 

.38872 X 10-1 

3.98 

,20107 x 10-2 

.81169 x 10-2 

4.04 

.98860 x 10-2 

.39282 x 10-1 

3.97 

.IO087 x 10-1 

.38961 x 10-1 

3.86 

.99167 x 10-2 

,39162 x 10-1 

3.99 

= 3.94 

.38487 x I t 3  

,48783 x le2 

.89969 X 10-4 

.I4765 X le2 

,38835 x I W  

.66818 x 10-4 

.IO154 X IW3 

.I9256 X le2 

.lo145 X 10-3 

,15854 x 10-2 

. i m 2  x l o r 3  

.24201 X IOW 

1.966 

1.724 

1.887 

1.954 

1.921 

2.028 

2.078 

2.431 

1.994 

2.089 

2.254 

3.156 

- 
k = 2.1w 

fn = 1 - ( 1  - fl)",  

which for fl  = .01 givesf, = .0394. Thus, the average f^ over the three alleles at a 
tri-allelic locus is behaving exactly according to the theory for a single allele, as it 
should. The average IC value is 2.123 and given the large variation from run to 
run and the lack of pattern of these variations, the agreement with a value of 2.0 
for the x2 distribution is good, Indeed, nearly the whole excess over 2.0 is a result 
of the very extreme value in the last run in the table. Figure 3 shows the cumu- 
lative frequency distribution for several cases as compared with a x2 distribution 
(corrected for the mean f )  with two degrees of freedom. There is a definite bias 
in the left half of the distribution with the empirical distribution rising somewhat 
faster than the x2. The right half, however, is in excellent agreement and thus is 
the part of the distribution that will be used for testing heterogeneity. 
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FIGURE 3.-Comparison between empirical cumulative f distributions and the x 2  distribution 
with two degrees of freedom. 

APPLICATION TO TEMPORAL VARIATION 

KRIMBAS and TSAKAS (1971) studied two polymorphic loci controlling the 
synthesis of esterase enzymes in a natural population of the olive fruit fly, Dams 
oleae. They took samples in three successive years, 1966, 1967 and 1968, and 
found eighteen alleles at the A locus and thirteen alleles at the B locus in this 
population. The alleles changed frequency during the course of the successive 
samples and they wished to test the hypothesis that the changes were a result of 
genetic drift. One way to do this would be to estimate f, the single-generation 
drift inbreeding, for each locus and then ask whether there was a significant 
difference between the two loci. This would have to be done separately for each 
pair of successive years since there is no reason to suppose that the effective popu- 
lation size will be the same over two full seasonal cycles. If the f value calculated 
from gene A and from gene B do not differ significantly, and if this is true both 
for the 1966-67 and 1967-68 comparisons, there is then strong evidence that 
selection is not involved. 

KRIMBAS and TSAKAS estimated the average f for each locus by a three-step 
process. Using the relation given as our equation 3, they estimated the gross f 
over the n alleles at a locus as 

* 1 T2 (npi)z 
f -- z 

pi (1 -pi> - i=1 
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TABLE 6 

Calculation of f for genes A and B in two successive year comparisons, and the equivalent effective 
population sizes. fg is the “gross” f, n is the number of alleles in each comparison, 

f^ the final estimate of f and fie the estimated effective population size. 
Adapted from KRIMEAS and TSAKAS (1971) 
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n i Ne 
Sampling 
correction fo Source 

Gene A 1967-68 18 .0116938 .0028526 .OM2103 +- .(EO0758 226 2 77.5 
GeneB 1967-68 12 .0117140 .0013(4019 .0021924 ir ,000935 228 & 97.2 
GeneA 196667 17 BO62634 .Om6574 .OW015 & .0010319 1009 t 356.8 
Gene B 1966-67 13 .0056023 BO28455 .a006892 & .000281 1451 k 592.3 

This gross f was then corrected to take account of the fact that some of the ap- 
parent Api was their own sampling error. Letting M I  and M ,  be their sample sizes 
in the two successive years, they calculated a net f 

f n = f * -  (%+ 1 1 

Finally they noted that Dacus oleae has four generations a year rather than one. 
At the very low rate of drift actually observed, the variance accumulated after 
four generations will be almost exactly four times that in one generation, so the 
final estimate of f ,  j = fn/4. 

Table 6 shows the appropriate statistics for each gene in each year comparison. 
In addition to f, the estimate of effective population size I$, is given, calculated 
from the reciprocal relation f^ = 1 / ( 2 N e ) .  The standard errors of 3 and f i e  are 
obtained from our previous results. The underlying distribution of Ap is binomial 
as we have pointed out. Therefore the variance of f, which is the average of n 

individual f values, each with one degree of freedom would be u2? = 232/n. 
However, since the n values are not independent of each other because they are 
the n alleles at one locus, we reduce the degrees of freedom by one, giving the 

standard error of 3 as with n alleles at a multiple allelic locus, from our Monte 
Carlo studies off,  

S.E.]=jV-. 2 
n-1 (4) 

Obviously genes A and B give the same value in 1967-68 and the difference 
between A and B in 1966-67, although larger, is not significantly so. For signifi- 
cance at the 5% level, the larger f value would need to be about four times the 

1 smaller. Since N e  = -, then in large samples 
2f 

U2f 1 - 2N2 
e -  4f4 2f2(n-l) n-I 

-- N -_ = 

so the standard error of N is of identical form to the standard error off .  - 
S.E. N e  = N ;  d L  

n-1 ( 5 )  
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SENSITIVITY O F  THE METHOD AS A TEST O F  SELECTION 

In general the use of variation in gene frequencies as a test of selection seems 
a reasonably powerful one. I t  was more than adequate to show that some kind 
of selective phenomena must have operated in the past for the world distribution 
of human polymorphism. It was marginally powerful enough to give evidence of 
selection among the Yanomana tribes where much less differentiation has occur- 
red. 

For temporal variation we can determine about what level of selection could be 
detected by this method. We have shown that the standard error of f is very 
close to 

2 
n-I S.E. 3 = f i- . 

Suppose we have two estimates off, a larger, fL,  and a smaller, f., each based upon 
m = 12-1 degrees of freedom, say .n alleles at each locus, or m populations for 
each locus. If the larger is R times the smaller, then the standard error of the 
difference between them is 

2 ( R2+l ) S.E. ( f L - f s )  = fs  d y -  e 

To be significantly different for a reasonable value of m, the difference fL-fs 

must be twice its standard error. Then 
2 ( R 2 f l )  

f'5-f. = fs(R-l) = 2f. q-- m 
and solving for R gives 

(7) 

I -- 
m 

Note that the number of independent observations for each f must be greater than 
8, or no difference will be significant. For a case like the KRIMBAS and TSAKAS 
work, we may let m = 16 and we find that 

R 3.7 
so that the larger f (or the larger effective population size N e )  must be between 
three and four times greater than the smaller one fo r  a significant difference. This 
may seem a great deal, but what does this amount to in terms of selection? The 
larger f will be the sum of a contribution from selection and from drift. That is 

(9) 
fs  A 

fdrift 
1 

is, for a semidominant gene, approximately ~ ( p q ) ~ ,  and f a r i f t  = -- 2 N , '  But ( A p )  

Substituting in (9) and solving, we get 
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For the numerical case we are considering R r 3.7 and p for the most favorable 
case would be .5. This gives 

s = 2.3/vz 
as the level of selection that could be detected for  a gene at intermediate fre- 
quency. For a population of about 500 this would mean a selection coefficient of 
.lo. Note that the detectable s goes down only as the square root of R-1 so that 
R-I would need to be 100 times smaller to detect s of .01. Clearly such one- 
generation tests off are not adequate when selection coefficients are small. In such 
cases the tests need to be on P,  which is an equilibrium value, representing the 
accumulation of a large number of generations of random drift and selection. 

What factors bias the test? Linkage disequilibrium (or any other form of his- 
torical correlation) between genes will do so, reducing the variance among the P 
values by roughly the amount of the squared correlation between the loci. Thus 
if two loci were completely correlated, irrespective of whether in coupling or 
repulsion, they would give identical values of P .  If a distribution of P values were 
found to be significantly too homogeneous, this would presumably be the expla- 
nation. Biases in the direction of increasing the heterogeneity of P without selec- 
tion are difficult to conceive of. One obvious source, preferential migration accord- 
ing to genotype, must be considered as selection in the general sense of the neu- 
trality hypothesis. That is, if different genotypes have different dispositions to 
migrate, then the genotypes are certainly not physiologically equivalent and, in 
addition, it is difficult to see how differential migration would not ipso facto result 
in differential fertility and viability patterns. 

HOW IMPORTANT IS HISTORY? 

A heterogeneous assemblage of F values can, in general, have another source 
besides selection. Suppose that a species has a number of ancient polymorphisms 
where F values reflect the accumulated history of the species’ breeding structure. 
Suppose now that a new polymorphism arises as a new allele in some population 
fairly well isolated from the rest of the species. This allele may rise in frequency 
and even become fixed in its population by random drift before it has spread 
effectively to other parts of the species if the local population is small enough and 
isolated enough. So long as the allele is more or  less confined to a single popu- 
lation among many, it will not give a high F value, but should the population 
proliferate into many new subpopulations and thus become the progenitor of a 
significant fraction of the species populations, an entire section of the species 
distribution will have a high frequency of an allele that is absent or  virtually so, 
everywhere else until migration swamps the difference. Thus there will be a high 
F value for this newly-polymorphic locus, as compared with the more ancient 
polymorphisms. A high value from such a cause will be distinguishable by the 
fact that a number of related populations of the species have a high frequency 
of an allele that is absent or virtually absent elsewhere. 

There will also be second mark of such an historical event. On the average it 
requires 4N generations for a new neutral mutant to go to fixation (or a high 
frequency) in a population of size N (KIMURA and OHTA 1969). But it requires 
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TABLE 7 

Allele frequencies at the Fy and Rh loci for a cross-section of human populations. Averages over 
many populations and sludies are given simply as indications of frequency 

Genes 
Populations FY“ Eo RI 4 1 

Africans 
Europeans 
Basques 
Lapps 
Hindi speakers 

.04 .60 .I4 .07 .15 
.41 .07 .42 .I6 .38 
- .OB .39 .Q6 .46 
.82 - 
.73 .05 .64 .Ql .28 

- - - 

- - - - South Asian aborigines .71 
Chinese .90 0 .72 .19 .06 
Japanese 3 6  
Malaysians - 0 .92 -07 0 
Amerinds ,75 0 .52 .48 0 
Esquimo 1 .oo 
Australian aborigines 1.00 .08 .56 .20 0 

- - - - 

- - - - 

only between .06N and 2.8N generations on the average, for a polymorphism 
whose more common allele has a frequency between .99 and .5, respectively, to 
be fixed by drift (EWENS 1963). So, while the newly-arisen allele goes to high 
frequency in its original population, all the old polymorphisms in that population 
will be lost! Thus we should be able to detect high F values that are indicative of 
“new” polymorphisms rather than selection by first asking whether the F value 
results from some related populations’ having a high frequency of an allele that 
is rare elsewhere in the species. If that is so, we could then ask whether those 
populations with the unusual allele are monomorphic for the polymorphisms 
that are common to the rest of the species. 

Let us apply these criteria to the world distribution of F values in man. Table 1 
shows six high F values corresponding to the Duffy blood group (.358), the four 
Rh alleles (.382, .297, .172, and .14l) and the a specificity of Gm (.226). Table 7 
shows sample gene frequencies for the Duffy and the Rh alleles. For Duffy, we 
see immediately that the frequencies of the Fy“ allele form a spectrum from .04 
for black Africans to 1.00 for Australian aborigines, with Caucasians falling in 
the middle. There is certainly no pattern of a unique allele in related populations. 
The situation is more complex fo r  the R alleles, but here again no case can be 
made for a group of related populations sharing an unusual allele as the cause of 
the high F values. On the other hand the Gm (a) locus does fit such a pattern, 
since all populations are fixed at 100% Gma except Caucasians who have more 
than 50% of the alternate allele, absent everywhere else. But this one does not 
fit our second criterion since Caucasians are highly polymorphic, and tend in fact 
to have intermediate frequencies of alleles at nearly every human polymorphic 
locus. Thus, there is no evidence that the heterogeneity in F values is the result 
of an “ancient” low F set of polymorphisms, and a “recent” high F group. It 
would seem that only selection can explain the heterogeneity. 
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