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ABSTRACT 

The probability of fixation of an overdominant mutation in a finite popu- 
lation depends on the equilibrium gene frequency in an infinite population 
(m) and the product ( A )  of population size and selection intensity. If m < 0.5 
(disadvantageous overdominant genes), the probability is generally much 
lower than that of neutral genes; but if m is close to 0.5 and A is relatively 
small, it becomes higher. If m > 0.5 (advantageous overdominant genes), 
the probability is largely determined by the fitness of heterozygotes rather 
than that of mutant homDzygotes. Thus, overdominance enhances the prob- 
ability of fixation of advantageous mutations. The average number of gen- 
erations until fixation of an overdominant mutation also depends on m and A.  
This average time is long when m is close to 0.5 but short when m is close to 0 
or 1. This dependence on m and A is similar to that of ROBERTSON'S retardation 
factor. 

BECAUSE of its evolutionary importance, the probability of fixation of a new 
mutant gene in a population has been studied by many authors (HALDINE 

1927; FISHER 1930; WRIGHT 1942; KIMURA 1957; and others). These authors 
have worked out rather simple formulae for the probability of fixation of a domi- 
nant, semidominant o'r recessive gene. Very little attention, however, has been 
paid to an overdominant mutation, perhaps because this type of mutation creates 
a stable polymorphism in a large population. In nature, however, the effective 
size of populations is sometimes quite small, so that even overdominant genes 
may be fixed or lost from the population by chance. This is true also in laboratory 
experiments such as those conducted by TRACEY (1972). In  a study of steady 
decay of genetic variability, ROBERTSON (1962) showed that in a finite popula- 
tion overdominance may accelerate rather than retard fixation of genes, if the 
equilibrium gene frequency in an infinite population is outside the range of 
approximately 0.2 to 0.8. EWENS and THOMSON (1970) and CARR and NASSAR 
(1970b) obtained a similar result from a study of the average time to fixation or 
loss. These results suggest that the probability of fixation of an overdominant 
gene is rather complicated, depending on the relative values of selection coeffi- 
cients for homozygotes. 

* Part of this work was done while the authors were tenured at the Division of Biological and Medical Sciences, Brown 
University, Providence, R. 1. 
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Theoretically, a general formula for the probability of fixation of a gene was 
derived by KIMURA ( 195 7, 1962). In the case of overdominant genes, however, 
numerical integration is required, though in very special cases simplified form- 
ulae can be obtained. CARR and NASSAR (1970a) numerically studied the rela- 
tion between the probability of fixation of overdominant genes and the initial 
gene frequency. This study appears to be important in relation to animal and 
plant breeding but apparently is not for evolutionary studies. 

In the study of evolution it is also important to know the mean fixation time 
for an overdominant gene. KIMURA and OHTA (1969) studied this problem for 
the special case of the equilibrium gene frequency equal to 0.5 and showed that 
overdominance prolongs the fixation time compared with that of neutral genes. 
EWENS and THOMSON (1970) and CARR and NASSAR (1970b) studied the ex- 
pected time until fixation or loss, without separating the events of fixation and 
loss. 

In the present paper we shall study the probability of fixation of a single over- 
dominant mutation that appears in a population of size N .  Thus, the initial gene 
frequency is always 1 / (2N). We will also investigate the average number of gen- 
erations until fixation, excluding the event of loss. 

PROBABILITY OF FIXATION OF A M U T A N T  G E N E  

Consider a randomly mating diploid population of size N ,  in which an over- 
dominant gene a and its allelic gene A are segregating. Let x be the gene fre- 
quency of a. We designate the fitnesses of genotypes AA, Aa, and aa by WAA = 
1 - sl, WA, = I, and Wa, = 1 - s,, respectively. Then, the mean ( M a x )  and 
variance (V,,) of the change of gene frequency per generation are given by 

( 1 )  
Vaz=x( l  -x)/(2N) (2) 

M6z= - (sl+ s,) ( X  - m ) x ( l  - S) 

where m = s l /  (sl -I- s,) is the equilibrium gene frequency in an infinitely large 
population. Putting these quantities into KIMURA'S (1962) general formula, the 
ultimate probability of fixation of gene a becomes 

(3) 

where p is the initial gene frequency of a and A = 2N(s1 -I- sz) . In the present 
paper p is I/ ( 2 N ) ,  unless it is mentioned otherwise. When A is small compared 
with unity, the above formula can be simplified by expanding the integrand 
(ROBERTSON 1962). Also, formula (3) can be written as 

U h b )  = y.4 (X-112)' dz/  J: &(z-m)' dx 

where p i m and F ( x )  = e-x' 1 et' dt is Dawson's integral. If p > m, then the 
second term in the numerator has a positive sign. The value of F (x) has been 
tabulated by ABRAMOWITZ and STEGUN (1 964) for x = 0.00 - 2.00. In general, 
however, ufi ( p )  has to be evaluated by numerical methods. We, therefore, used 
GAUSS'S method of numerical integration, except for  some special cases. Formula 
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Equilibrium Gene Frequency 
FIGURE 1.-Probability of €ixation of an overdominant mutation relative to that of a neutral 

mutation. 

(4) was used to check the numerical computations. Numerical results were also 
checked by evaluating the Taylor expansions of formula (3). 
In Figure 1 the value of Uh ( p )  relative to the probability of fixation of a neutral 

gene ( 1 / 2 N ) ,  i.e. the value of 2Nuh ( p )  is given on the assumption that N is 
large and s1 is small compared with unity. In this case I,, exp A (x - m) dx is 

P 
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(exp Am2)/  (2N)  approximately, so that the relative fixation probability is 

2NUh ( p )  1 dmz/ /:d(x-m)z dx 
approximately. Thus, it depends only on A and m. It is seen that the relative fixa- 
tion probability is lower than 1 if m sl/(sl+ s,) is much smaller than 0.5. This 
is expected because in this case the fitness ( 1  - s,) of mutant homozygote aa is 
lower than that ( 1  - sl) of wild-type homozygote AA. The relative fixation 
probability increases as m increases, and the rate of increase is higher when 
N ( s ,  + s,) is large. Here, an interesting property emerges; the relative fixation 
probability becomes higher than 1 when m is close to but still smaller than 0.5. 
Namely, uh ( p )  is higher than the probability of fixation of a neutral gene even 
if aa is less fit than AA. This may be explained by the initial advantage of the a 
gene. When the frequency of the a gene is small, it is mostly in the heterozygous 
condition, so that it has a selective advantage over the wild-type allele. If m is 
larger than 0.5, uh ( p )  is always larger than that of neutral gene. 

I t  is known that for an advantageous mutation to be fixed in the population the 
fitness of heterozygotes plays an important role. Thus, the probability of fixation 
of a completely dominant gene ( W A A  = 1 - si, WA, = 1, W,, = 1) is almost the 
same as that of a semidominant gene (W,,, = 1 - sl, WA, = 1, W,, = 14- sJ. 
Thus, it is interesting to compare uh ( p )  with the probability of fixation of a semi- 
dominant gene. The probability of fixation of a semidominant gene is given by 

us ( p )  = 4Ns,p/(l - e-4Ns1) 
approximately, when s1 is small compared with unity. Then, the ratio 
uh ( p >  / U 8  ( p )  is 

(1 - C Z A m )  eA”’ 

2Am J ; e ~ ( z - m ) ’  dx 
approximately. Note that 4Ns, is equal to 2Am. This value is again dependent 
only on A and m. This ratio is given in Figure 2. Clearly, this value is smaller 
than 1 when the fitness of aa is lower than that of AA ( m  < 0.5). That is, in this 
case the probability of fixation of an overdominant gene is affected by the fitness 
of aa as well as by the fitness of Aa. However, if the fitness of aa is higher than 
that of AA, uh(p) is largely determined by the fitness of heterozygotes. If 
m > 0.5 and N ( s ,  -k sz) > 16, uh ( p )  is ahnost the same as us ( p ) .  

_-_____. 

M E A N  FIXATION TIME 

KIMURA and OHTA (1969) derived a general formula for the average number 
of generations until fixation of a mutant gene in the population. It is given by 

where 

in which 
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Equilibrium Gene Frequency 
FIGURE 2.-Probability of fixation of an overdominant mutation relative to that of a semi- 

dominant mutation. 

G(z) = exp { - -2S(M, , /V, , )d4  f 

Therefore, using the expressions for M,, and V ,  given in (1) and (e), we can 
derive the following formula. 

where K =j: exp A (x-m) 2dx and K‘ = 1: exp A (x-m) 2dx. 
Analytical solution of ( 5 )  is not easy, so that we used GAUSS’S method of 

numerical integration. The results obtained are given in Figure 3. In this figure 
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FIGURE 3.-Mean fixation time of an overdominant mutation relative to that of a neutral 
mutation. 

- 
tl ( p )  is given relative to the fixation time of a neutral mutation, i.e. LEN ( KIMURA 
and OHTA 1969). Figure 3 shows that the relative mean fixation time depends 
markedly on the equilibrium gene frequency, m. As expected, if m is close to 0.5, 
the fixation time is much longer than that for neutral genes when N ( s l  3- s2) is 
large. However, if m is outside the range of approximately 0.2 to 0.8, the fixation 
time of overdominant mutations is shorter than that of neutral mutations, 
depending on the value of N ( s l  + s,). A continued increase in this quantity 
gradually widens the range of m for prolonged mean fixation time. It is seen that 
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the relative fixation time is virtually symmetric around m = 0.5. The relation 
between the relative mean fixation time and m is superficially similar to that 
between ROBERTSON’S (1962) retardation factor and n, though the absolute 
values are considerably different. For example, when N(sl f s,) = 16 and m 
0.5, the relative fixation time is 68.3, while the retardation factor is slightly more 
than 100. 

Although the relative fixation time and retardation factor are superficially 
similar, the explanations must be entirely different. The retardation factor is the 
rate of decay of gene frequency distribution at steady state relative to that of 

neutral genes. Mathematically, the rate of decay is given by h = - - 

, in which + ( x ; t )  is the gene frequency distribution at steady state. On 

1 
#J ( x ; t >  

?+(x; t )  --- 
at 

the other hand, the average fixation time is defined as 

where u(p,t) is the probability that a gene whose initial frequency is p is fixed in 
the population by generation t (KIMURA and OHTA 1969). 

From the above definitions it is clear that the retardation factor 2Nh (the rate 
of decay for neutral genes = 1/(2N)) is symmetric around m = 0.5, since both 
the loss and fixation of genes are taken into account. The reason for the symmetry 
of il ( p )  is less obvious, but it is provided by studying the conditional sojourn time 
(MARUYAMA and KIMURA 1971; EWENS 1972). These authors have shown that 
the mean time the frequency of mutant gene a spends in the interval (5, x -I- dx) , 
given that eventually a is fixed, is t i  (5 )  dx, where 

t * ( x )  =2{1 -u(p)}u(x) { u ( p ) ~ ~ ~ ( x ) } - l ~ ~ ( y ) d y .  o 5 x I p 

In the present case p = 1/(2N) is very close to 0 when N is large, so that we can 
neglect the range 0 I x 5 p.  Then, the conditional sojourn time, t* (x), is 

where 

K = J: exp A (y-m) *dY. 

It is now clear that t i  (x,m) is equal to t* (1--z, l-m) . Therefore, the average 
fixation time, which may be obtained by J,’ t* (x,m)d-z, becomes symmetric 
around m=0.5 when p-+ 0. Note that the first term in ( 5 )  is the same as 
,fi ti  (z,m) dx. The second term of this equation appears because actually p is not 
0, but this term, which causes a slight asymmetry of tl(p), is negligibly small 
compared with the first term. 

In order to check our results, which were obtained by the diffusion method, we 
made a computer simulation by using the method of Markov chains. In this simu- 
lation N = 10 and s1 14- s2 = 0.4 were used, and the average number of generations 
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TABLE 1 
Average numbers of generations uniil fixation and loss of an overdominant 

gene with N = 10 and sI + sg = 0.4. 
These results were obtained by the Markov chain method 

Probability Fixation time Loss time 
m of fixation (eenerations) leenerations) 

0.1 .WO55 29.98 6.51 
0.2 .00272 37.29 8.38 
0.8 .4894 37.31 3.51 
0.9 .5621 29.99 2.70 

until fixation and loss were separately recorded. Some of the results obtained are 
given in Table 1. It is clear that even in a population of size 10 the symmetry 
about fixation time is observed. On the other hand, there is no such symmetry 
about the average loss time. We also studied the probability distribution of fixa- 
tion time, i.e. A u ( p , t ) / u ( p ) ,  where Au(p , t )  is the absolute probability of fixation 
at generation t .  The values for selected generations are given in Table 2. It is seen 
that the probability distributions of fixation times for mutant genes with m and 
with 1 - m are virtually the same except for the first generation, of which the 
values are extremely small. While we have not fully understood why the two 
probability distributions should be virtually the same, this provides another 
explanation for  the symmetry of average fixation time around m = 0.5. In this 
connection, it is worthwhile to note that in the four cases given in Table 2 the 
steady state distribution of gene frequencies (with the accuracy of the second 
significant value) was attained approximately at the 50th generation, by which 
time the mutant gene had been lost or fixed with probability 0.90 - .99. 

One of the interesting conclusions which can be made from this study is that 

TABLE 2 

Probabilities of fixation of an overdominant gene at selected generations 
(Au(p,t)/u(p)) with N =10 and s1 + s, = 0.4. 

These results were obtained by the Markov chain method 

Generation m = 0.1 m = 0.2 m = 0.8 m = 0.9 
1 
2 
3 
4 
5 

10 
20 
30 
40 
50 
100 
150 

U(P) 

.258 x 10-22 
,448 x 
.I81 x 
.I18 x 10-4 

.01224 

.03525 

.02412 
,01331 
. 00 705 

.ia x 10-3 

.279 x 10-3 
,110 x 10-4 
.OW55 

.116 X 10-*2 
,208 x 16-10 
,889 x 10-7 
.mi x 10-5 
.750 x 10-4 
.00742 
.a71 1 
.(I2293 
.a1540 
.(10986 
.995 x 10-3 
.io0 x 10-3 
.W272 

.I65 x 10-22 

.203 x 10-10 
,871 x 10-6 
.594 x 10-5 
.744 x 10-4 
.00741 
.(M.711 
.a294 
.01541 
.0987 
.996 x 10-3 
.loo x 10-3 
.a94 

.423 x 1 0 - 2 2  

.434 x 10-10 

.176 x 10-6 

. i f6  x 1 0 - 4  

.14o x 10-3 

.01222 

.a3526 
02413 
.01331 
.00705 
.279 x 10-3 
,110 x 10-4 
.5621 
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the fixation time of a completely dominant mutation (sz = 0) is the same as that 
of a completely recessive mutation (sl = 0) when N ( s l  4- s p )  is the same for the 
two cases. 

DISCUSSION 

We have seen that disadvantageous overdominant genes (WAA > W,,) are 
fixed in a population generally with a low probability. However, if m is close to 
0.5, the probability of fixation is higher than that for neutral genes in relatively 
small populations. If such a gene is fixed, the fitness of the population is expected 
to decline by the amount WA, - W,,, compared with the fitness before the 
mutant gene is introduced. On the other hand, advantageous overdominant genes 
( W A A  < W,,) always have a higher probability of fixation than neutral genes. 
In this case overdominance enhances the probability of fixation considerably. In 
large populations the probability is determined not by W ,  - W A A  but by WA, - 
WAA. If LENS, >> 1, it is roughly 2s, = 2( WAa - W,,). This has an evolutionary 
implication. If an advantageous mutation has a slight overdominant effect in the 
heterozygous condition, it has a higher probability of fixation than a completely 
dominant mutation when W,, - WAa remains the same. 

One of the interesting results in this study is that the mean fixation time of a 
mutant gene is highly dependent on the value of m. If m is within the range of 
approximately 0.2 to 0.8, the fixation time is longer than that of neutral genes in 
relatively small populations, while if m is outside the range, it is shorter. This 
suggests that the contribution of the first group of genes (0.2 < m < 0.8) to the 
genetic variability of a population is much larger than that of the second group of 
genes ( m  < 0.2 or m > 0.8). Thus, it is likely that the majority of overdominant 
genes found in natural populations is of the first group. A similar conclusion has 
been derived by ROBERTSON (1962) in his study on the rate of decay of genetic 
variability at steady state. 

The mean fixation times of a mutant gene with m < 0.2 and of a gene with 
m > 0.8 are both shorter than that of neutral genes in relatively small popula- 
tions. However, the former is fixed in the population with a very small proba- 
bility, so that it is unimportant in practice. On the other hand, the probability of 
fixation of advantageous genes with m > 0.8 is enhanced by overdominance, as 
mentioned above. It is interesting to note that the fixation of such genes is not 
retarded but accelerated by overdominance. 

EWENS and THOMSON (1970) studied the mean time to loss or fixation of an 
overdominant allele in finite populations. This mean time (t( p )  ) is related to the 
mean fixation time ( & ( p ) )  by t ( p )  = uh(p)il(p) -t (1 - uh(p)}to(p), where 
& ( p )  is the mean loss time (KIMURA 1971). When p = m, they found that the 
dependence of t ( m )  on m and N ( s1 84- s2) is very similar to that of ROBERTSON’S 
retardation factor. This similarity. however, can be easily explained, since the 
phenomena studied by ROBERTSON (1962) and EWENS and THOMSON (1970) are 
essentially the same. The dependence of our mean fixation time (tl(p)) on M 
and N (sl + s: ) is also similar to that of retardation factor; but, as we have already 
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discussed, the explanation seems to be quite different from that of retardation 
factor. 

This study was supported by NSF grant GB-21224, PHS grants GM-17719 and GM-20293. 
We thank DR. MOTOO KIMURA for his valuable comments. 
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