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ABSTRACT 

This paper studies the properties of a new class of demographic parameters 
for age-structured populations and analyzes the effect d natural selection on 
these parameters. Two new demographic variables are introduced: the entropy 
of a population and the reproductive potential. The entropy of a population 
measures the variability of the contribution of the different age classes to the 
stationary population. The reproductive potential measures the mean of the 
contribution of the different age classes to the Malthusian parameter. The 
Malthusian parameter is precisely the difference between the entropy and the 
reproductive potential. The effect of these demographic variables 011 changes 
in gene frequency is discussed. The concept ob entropy of a genotype is intro- 
duced and it is shown that in a random mating population in Hardy-Weinberg 
equilibrium and under slow selection, the rate of change of entropy is equal 
to the genetic variance in entropy minus the covariance in entropy and repre. 
ductive potential. This result is an information thwretic analog of Fisher's 
fundamental theorem of natural selection. 

HE Malthusian parameter concept occupies a central place in evolutionary 
'theory. This parameter describes one aspect of population growth, namely 
the long-run behavior of a population in a density-independent phase. In density- 
dependent phases, the theory centers on the carrying capacity of the organism. 
This factor represents the maximum density at which a population may be main- 
tained in a constant environment. These parameters are not valid guides to the 
results of competition between species. The work of PARK (1955) on the Tri- 
bolium model shows that a species with a high carrying capacity may be sup- 
pressed in competition by one with a lower density. The experiments of CLAT- 
WORTHY and HARPER (1962) on the Lemma model indicate that neither the 
intrinsic growth rate nor the carrying capacity predicts the outcome of two 
species in competition. 

Selective forces act on the life-history components of a population, namely 
the developmental period and spacing between births. It is well known that these 
factors have different effects on the growth rate and carrying capacity of a popu- 
lation. In the case of invading plants, for example, colonizing success is critically 
determined by the germination phase (HARPER 1965). The work of EHREN- 
DORFER (1965) on the colonizing ability of annuals and perennials underlines 
the importance of the effects of life history on evolutionary success. On the 
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theoretical side, HOLGATE (1967) , building on the work of COLE (1954), has 
shown that biennials have less chance of random extinction than annuals, given 
that both populations have the same growth rate. 

A general principal emerges from these facts: populations with the same 
Malthusian parameter may have different colonizing success depending on 
whether they are semelparous or iteroparous. This suggests that any study of the 
effects of ecological factors on genetic theory should involve a parameter that 
distinguishes between populations with the same Malthusian parameter but 
different life histories. This paper introduces the concept of entropy as a method 
of dealing with age-structured populations. 

We derive an expression for the entropy of a population. The entropy measures 
the variability of the contribution of the different age classes to the stationary 
population. We also introduce a second demographic parameter, the reproductive 
potential. This parameter measures the mean of the contribution of the different 
age classes to the growth rate of the population. The Malthusian parameter or 
intrinsic rate of increase is precisely the difference between the entropy and the 
reproductive potential. We use this fact to show that in a random mating popu- 
lation in Hardy-Weinberg equilibrium and under slow selection, the rate of 
change of entropy is equal to the genetic variance in entropy minus the covari- 
ance in entropy and reproductive potential. This result is an analog of the funda- 
mental theorem of natural selection. When the reproductive potential of each 
genotype is zero, entropy is equal to the Malthusian parameter and our theorem 
reduces to Fisher’s theorem (FISHER 1930). 

The relation between age structure and gene-frequency change has recently 
been given considerable attention (CHARLESWORTH 1970, 1972; POLLAK and 
KEMPTHORNE 1970, 1971). These authors focus on the Malthusian parameter 
and their refinements and amendments of Fisher’s theorem are in that context. 
Our aim is to show the limitations of the Malthusian parameter in understanding 
the relation between demographic variables and evolutionary theory and to pro- 
pose entropy as a complementary concept. 

This paper is an application of some recent ideas in ergodic theory to popula- 
tion models. Our sources are BILLINGSLEY (1965) for ergodic theory, JSEYFITZ 
(1968) for demographic models and CROW and KIMURA (1970) for population 
genetics. The paper is organized as follows. Section 1 deals with a single popu- 
lation in terms of the Leslie model. The main idea is to represent population 
models as invertible measure-preserving transformations and to apply the 
Kolmogorov-Sinai theory of entropy to these models. In this section we derive an 
expression for the entropy of a population. We also introduce the concept of 
reproductive potential and we state the relation between entropy, reproductive 
potential and the Malthusian parameter or growth rate of a population. 

Section 2 deals with a random mating population. Using the expression derived 
for the entropy of a population obtained in Section 1, we define the concept of 
entropy of a genotype, and we prove the analog of Fisher’s theorem. 

1.  We begin with the Leslie model. Consider a population divided into n age 
classes. Let mi denote the number of individuals born in the next unit of time 
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to each parent of age i. Let bi be the proportion of individuals of age i surviving 
to age i + 1. The change in age structure between time t and time t + 1 is given 
by the equation 

Z ( t  -I- 1) = AE(t) 
where A = (aij) 2 0, 

c mi for i = l  

0 otherwise 
aii = 1 bj for i = j +  1 

and mj 2 0, 0 < bi I 1, m, > 0. Let S = {1,2, . . . , n}, and let X = II S,, where 
S, = S.  X is the set of doubly infinite sequences composed with the elements of S. 
Let 

m 

- m  

n = { (Xi) EX : azi,"i+l > o} . 
We now give an interpretation of the set a. We first note that the population 
matrix A is irreducible; that is, for each aii there exists an n(i.i) such that 
a!'?) > 0. Let G ( A )  be the graph associated with the matrix A. This graph is 
obtained by joining nodes i to i if aij > 0. The irreducibility of A implies that 
the graph G ( A )  is connected; that is, given any two nodes, there is a directed 
path joining them. The set d represents the set of all paths in the graph G ( A ) .  

r3 

Let T denote the shift transformation 
T : ~ - + Q  
T : {xn>-"m + {x'n>-m* 

where x', = x , + ~ .  
We shall call (n,T) the symbolic dynamical system associated with the 

matrix A.  
Since A is irreducible, by the Perron-Frobenius theorem: (1) A has simple 

positive real dominant eigenvalue A, (2) there exist unique eigenvectors ii and 5 
with all components positive such that 

AU = Ad 
CA = A 5  

(U,V) = 1 , 
where U = (U;) corresponds to the stationary age distribution, i, = (vi) corre- 
sponds to the reproductive value, and log,A = Malthusian parameter or intrinsic 
rate of natural increase of the population. 

Let 
for j = 1 

Then 
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where 
1 k =  

j=1 Z i m m  
We transform A into a probability matrix P = (pij) 2 0. Let 

Then clearly 
pij  (u j /Xui)ai j .  (1.3) 

n 

4 Pir = 1 7 0 5 p i 5 5 1 .  
3-1 

The probability matrix P can be written 

PI pz . . * Pn 
1 0 0 ... 0 

P =  I 
[ i  
' 0 1 0 . . .  

0 0 . . .  1 0 

p i=  ljmj/A.j . 
where 

2 j  represents the proportion of individuals surviving to age i. The row vector 
of stationary states z = (zi) is given by 

* = z ,  
z . = u .  . z %U, - 

We now use the Markov matrix P to introduce a probability measure p on the 
space of sequences Cl. Since ZP = Z, the shift T acting on i2 is measure-preserving 
and the dynamical system associated with the population matrix A is a Markov 
shift. For any Markov shift T with transition matrix P = ( p i j )  and stationary 
distribution z = (zi) , the entropy H ( T )  is given by 

H ( T )  = - 3 8 zipij 1% pir * (1.5) 

Using (1.4), we obtain an expression for the entropy of the Markov shift associ- 
ated with the population model A .  From (1.4) and (1.5), the entropy H is 
given by 

$ 3  

n 
H = - z 1  I: prlogpr 

T T = l  

n 

where p. = lTmr/hr and zl = I /  2 r p.. We have 
+=1 

n 

2 PTlOgpT 
.=1 

n (1.6) H = -  
Z r p T  

r=1 

The expression H measures the variability of the contribution of the different 
age classes to the stationary population. 

We note also that the expression T = x",~ r pT is the generation time. 
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The reproductive potential ip is defined to be 

539 

a=-- 
n (1.7) 
z r p r  

r=1 

This expression measures the mean of the contribution of the different age classes 
to the growth rate of the population. 

From ( 1.6) and (1.7), we have the identity 

logex= H - Q  (1.8) 

It is important to note that the expression for the entropy H and the repro- 
ductive potential @ can be independently derived using certain ideas from ergodic 
theory and statistical mechanics. This point 08 view is developed in DEMETRIUS 
(1974). In the statistical mechanics context, the Malthusian parameter loge h 
is analogous to the Gibbs free energy, the generation time T = 2",=1 r pr is 
analogous to the inverse of the temperature and the reproductive potential @, 

the mean energy. In effect, ip can be written in the form 
+ = J q d p  

where ,p is the probability measure induced by the population matrix and * is a 
real-valued potential function on a. 

We now give a continuous-time version of (1.6). The Malthusian parameter 
r is defined to be the real root of the equation 

a 

m 

J e-r" Z(x) m ( x )  dx = 1 . 
0 

Let 

The entropy H is defined to be 

H = -  
f x p b )  dx 

The reproductive potential ip is defined to be 

Clearly r = H - a. 

We now give some interpretations of (1.6). 

(1.10) 
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A. Let U ,  = Zrmr. The function U ,  characterizes the reproductive schedule of 
the population. In terms of U,, 

; (U&') log U ,  

: (rU,/Ar> 

Hence, if U ,  assumes only values of 0 and 1, a = 0 and the entropy is equal to 
the intrinsic rate of increase. 

r=1 
a=-  - 

,=I 

B. Consider 
n 

prlogpT 
r=1 

H = -  
n 

Clearly 

H = 0 if and only if pn = 1 and pr  = 0 for r < n. In this case, mn = An/ln. This 
means that semelparous strategies correspond to zero entropy and iteroparous 
organisms have positive entropy. Semelparity and iteroparity are life-history 
properties of a population and depend on the age structure and reproductive 
schedule. 

It is well known (COLE 1954; LEWONTIN 1965; DEMETRIUS 1969) that differ- 
ent life-history features may have different adaptive values. However, the Mal- 
thusian parameter does not distinguish between semelparity and iteroparity, 
whereas entropy does. Since entropy reflects both the Malthusian parameter and 
the reproductive schedule of a population, it seems a more appropriate measure of 
the fitness of an age-structured population. This point is argued in DEMETRIUS 
( 1975), where the precise reproductive schedule that corresponds to maximum 
entropy is given. 

1. In this section we derive an information-theoretic analog of the funda- 
mental theorem of natural selection. We shall consider a random mating popu- 
lation and we shall assume an arbitrary number m of alleles at a single locus. 
Let l i j  (z) be the probability of survival of an AiAi individual from birth to age 
x, and mij (x) be the rate at which a member of the genotype A,A,, aged x, pro- 
duces offspring. Let rzi denote the real root of the equation 

m 

J exp ( -r ,+)  Zij(x) mi, (x) dx = 1 
0 

We define rij to be the Malthusian parameter of the genotype AiAj. 
The offspring produced by A,Aj individuals are not necessarily of the type 

AiAi; hence, as pointed out by MORAN (1962, p. 66), the Malthusian parameter 
of a genotype is not necessarily the intrinsic rate of increase of the genotype. 
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The entropy Hij  of the genotype is defined as in (1.9) by 
m 

1 pij (x) log pii ( x )  d x  
H . . - - -  

3 3  - m 

1 xpij(x) d x  

541 

where 

These definitions are meaningful only fo r  populations in a density-independent 
phase and growing in a constant environment. The reproductive potential @ij 
is given by 

m 

J- P i j ( Z >  1% Cli i (X> mij(X>l dx 
a..=-- 

$ 3  f 5 pij (x> ax 
Hi! = rij + @ij . 

Let r denote the mean Malthusian parameter: 
r ( t )  = T :  x ri jxi j ( t )  . 

where x , j  ( t )  is the frequency of the genotype AiAj. 
Let xi denote the frequency of the allele Ai and define 

$ 9  

Z rijxij 
1 

l i  = xi 
2 +iixij 

a. =-- 
X i  

Z H i j ~ i j  

Under slow selection, the rate of chang? of gme frequency is given by KIMURA 
(1958) 

Let H denote the mean entropy and @ the mean reproductive potential. If the 
population is in Hardy-Weinberg equilibrium, then xij ( t )  = xi ( t ) q  ( t ) ,  and 

dxi/dt  = xi (ri-r)  . (2.2) 
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where V H  is the genetic variance in entropy and CH,% is the genetic covariance 
of entropy and reproductive potential. 

We now have an analog of Fisher’s fundamental theorem. 
Theorem I:  In  a random mating population in Hardy-Weinberg equilibrium 

under slow selection the rate of increase of entropy is equal to the genetic 
variance in entropy minus the covariance of entropy and reproductive potential. 

If the reproductive potential of each genotype is zero, then entropy is equal to 
the Malthusian parameter. Fisher’s theorem is now a special case of Theorem I. 

Theorem I1 (Fisher): In a random mating population in Hardy-Weinberg 
equilibrium, under slow selection, the rate of increase of fitness is equal to the 
genetic variance in fitness. 

Fitness in Fisher’s theorem is measured in terms of the Malthusian parameter. 
Remark: In  Theorem I it is assumed that the entropy Hij is time-independent. 

In  Fisher’s theorem it is assumed that the Malthusian parameter rij is time-inde- 
pendent. CHARLESWORTH [ 19701 has observed that constant Mathusian param- 
eters and Hardy-Weinberg proportions are biologically stringent conditions. 
These conditions hold only when selection is weak. Under strong selection, 
Theorem I1 must be refined to include terms representing the variation in 
Malthusian parameter with time and departures from Hardy-Weinberg propar- 
tions. The appropriate form of Theorem I1 to include these factors is due to 
KIMURA [ 19581 and is given by the expression 

where V is the additive genetic variance in Malthusian parameter, dij the 
dominance deviation from linearity and oij = xij/xixj, expressing the departure 
from Hardy-Weinberg proportions. 

Entropy analogs of (2.5) can be obtained in the same way as we derived 
Theorem I. 

DISCUSSION 

1. Information theory has previously been applied in various areas of biology, 
notably neurobiology ( GRIFFITH 1970) and ecology ( PIELOU 1969). GRIFFITH’S 
approach is motivated by certain analogies between the firing of nerve cells and 
the transmission of information through a communication channel. PIELOU’S 
work is based on a formal similarity between the expression for the diversity of 
an ecological community and Shannon’s measure of information. 

The entropy concept we have applied is of a different character. A model of a 
population is obtained by splitting the population into an arbitrary number of 
age groups. Consider two models A,  and A,  of the same population. A,  is, say, 
an  n X n array of birth and death schedules and A, an m X m array. Since these 
models are derived from the same population, they must be similar or “iso- 
morphic” in some sense. We seek a measure which reflects the intrinsic structure 
of the model; that is, a measure which is invariant under isomorphism of the 
models. Entropy, as defined in the Kolmogorov-Sinai theory, achieves this. In 
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this theory, if two invertible measure-preserving transformations are isomorphic 
then they have the same entropy. Markov shifts are a special class of invertible 
measure-preserving transformations. A recent result of FRIEDMAN and ORNSTEIN 
(1970) asserts that if two mixing Markov shifts have the same entropy, then 
they are isomorphic. By representing population models as Markov shifts we 
observe that entropy is an isomorphism invariant for population models. One 
interpretation of this fact is that entropy gives another description of the life- 
history features of a population. The Malthusian parameter incompletely 
specifies the life history, and describes only the long-run behavior of the 
population. 

2. The concept of fitness is central in evolutionary theory and has been given 
several interpretations. THODAY [ 19531 defines fitness as the probability of 
random extinction. SLOBODKIN [ 19671 suggests that adaptedness should be 
measured as the “probability of occurrence of particular environmental states 
and the probability of a population surviving each such state.” 

Any useful definition of fitness should involve a parameter that is measurable 
in terms of the life-history components and predicts states such as persistence, a 
property we would expect well-adapted populations to possess. The Malthusian 
parameter r and the carrying capacity K are good candidates. However, density 
does not necessarily confer a competitive advantage, and rarity does not imply 
extinction. Moreover, as the work of Holgate shows, in the case of populations 
with the same intrinsic growth rate, random extinction is determined by the 
spacing between births. These facts limit the relevance of the r and K selection 
theory proposed by MACARTHUR and WILSON (1967) : 

The entropy measure complements the Malthusian parameter. Semelparity 
and iteroparity represent two different life histories of a population with different 
adaptive values. The Malthusian parameter does not always distinguish between 
these two strategies. We have shown, however, that semelparous organisms have 
zero entropy and iteroparous organisms have positive entropy. Thus entropy 
should reflect the chance of random extinction o r  persistence of a population, and 
should be a suitable measure of colonizing success. 

I wish to thank JOEL COHEN, WARREN EWENS and JONATHAN ROUGHGARDEN for the criticisms 
of preliminary drafts of this manuscript. 
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