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ABSTRACT 

For a system of n self-incompatibility alleles, neglecting mutation and 
random drift, it is shown that the completely symmetric equilibrium is locally 
stable, and any allelic frequency less than q = 1 + a  - dl + az, where 
a= [2(n - I)]-l, will increase. Far all n, q > (2n)-I, but if n >> 1, 
q z (2n)-1. 

I. INTRODUCTION 

ANY flowering plants possess a self-incompatibility locus such that pollen 
will not function on a style carrying the allele in the pollen grain. The pre- 

diction of the expected number of alleles present in terms of the population size 
and the mutation rate is an interesting and difficult problem involving frequency- 
dependent multiallelic selection and random drift. The system was first treated 
mathematically by WRIGHT (1939), and then by FISHER (1958) , whose approach 
differed from WRIGHT’S only in relatively minor details (WRIGHT 1960). For 
highly instructive discussions of various conceptual questions and further analy- 
sis, the reader may refer to MORAN (1962) , EWENS (1964, 1969), EWENS and 
EWENS (1 966), and WRIGHT (1 964, 1969). EWENS’ (1 969) derivation, employ- 
ing the mean time a new allele remains in the population before loss due to 
random drift, is particularly lucid. 

In  order to effect a calculation, EWENS (1969) , FISHER (1958), and WRIGHT 
(1969) focus attention on one of the alleles, and make various approximations 
which treat the others symmetrically. Thus, they obtain rather similar expres- 
sions for the expected value and variance of the change in the frequency of any 
one of the alleles. The approximations for the expected gene frequency change 
in one generation indicate that, as the self-incompatibility mechanism leads us 
to surmise, neglecting mutation and random drift, any allelic frequency less than 
some number equal or close to the reciprocal of the number of alleles should 
increase. If the mutation rates of self-incompatibility alleles are low, as they 
appear to be, then it is the selective advantage of rare alleles which allows a 
relatively large number of alleles to remain in fairly small populations in spite 
of random drift. Therefore, even if our main interest is in the maintenance of 
genetic variability in self-incompatibility populations, the theoretical justification 
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of the stochastic attack on this problem requires, as a prerequisite, the analysis of 
the deterministic behavior of the system. The remainder of this paper is devoted 
to that task. 

Intuition and the approximations discussed above suggest that the only equi- 
librium of the self-incompatibility system is the totally symmetric one, and that 
this equilibrium is globally stable. For the special case of three alleles (the 
smallest number possible), this is easily proved: the deviations of all genotypic 
and allelic frequencies from their values in this equilibrium are multiplied by 
-1/2 every generation (see, e.g., MORAN 1962). The results presented below will 
add to the plausibility of the general conjecture. For four alleles, the range of 
gene frequencies not covered by the analysis was exhaustively studied numeri- 
cally. The evaluation of the gene frequency change in more than 3000 genotypic 
configurations supports the hypothesis. In Section I1 we shall demonstrate that 
the symmetric equilibrium is locally stable, and display the rather striking 
dependence of the nature of the approach to equilibrium on the number of 
alleles. A sufficient condition for the increase of rare alleles will be derived in 
Section I11 by finding a lower bound on the strength of selection. 

11. LOCAL STABILITY 

We denote the frequencies of the n self-incompatibility alleles Si by pi, and 
those of the ordered genotypes SiSi by Pij (=Pii). Since Si and Si pollen will 
not fertilize an SiSj plant, there are no homozygotes: Pii = 0. The frequency of 
the unordered genotype SiSi is 2Pii. Employing a prime to signify the next 
generation, the recursion relations for the genotypic frequencies may be written 
for i # j  as (FISHER 1958) 

Summing ( 1 )  over i, we find (FISHER 1958) that the gene frequencies satisfy 

S f P i  . 2pi1=pi + & 
k#iy3 l--pk-p i 

It is trivial to verify that the symmetry point 

Pij = [n(n-  1 ) ] 4 ,  $i = l/n (3) 

is a stationary point of ( 1 )  (MORAN 1962). To examine the local stability of this 
equilibrium, we write 

A 

Pi! = Pij + E i j  , pi = 6% + v i ,  
with 

y i = o .  

(4) 

(5) 
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Substitution of (3) ,  (4), and (5) into (1) and linearization in E i j  and vi  yields 

where 
pn= l / ( n - 2 )  . 

vi’= h n ~ i  7 

Summing (6) over j ,  we obtain 

with the solution 

V i ( t )  = XL,i(O) 7 

where 

(7) 

Inserting (9) into (6) gives an elementary difference equation with the solution 

e i i ( t )  =pn[vi(O) + v j ( O ) I ~ t , +  ( E i j ( 0 )  - ~ n [ v i ( O )  + v j ( O ) l ) ( - ~ n ) ~ .  (11) 

Equation (1 1) is the complete solution for the genotypic frequencies for small 
initial deviations from equilibrium: leij(0) I << Pi,. As n increases from 3, An 

increases from -1/2, never quite reaching +l. If n = 3, ( 5 )  and (7) show that 
the brace in (11) is zero. As n increases from 4, pn decreases from 1/2, never 
quite reaching 0. Therefore, (11) proves that ~ ~ j ( t )  + 0 as t -+ CO, i.e., the equi- 
librium is locally stable. 

The nature of the approach to equilibrium is rather interesting. If n = 3, (1)  
reduces to a simple linear system. Hence, the linearized solution q j  ( t )  = e i j  (0) 
(-1/2)t, derived at once from (11) by recalling ( 5 ) ,  (7), and (IO), must be 
exact, as is readily verified (see, e.g., MORAN 1962). Thus, for three alleles, the 
genotypic and allelic frequencies tend to equilibrium in an oscillatory manner, 
the deviations being multiplied by -l/2 every generation. For four alleles, 
p4 = 1/2 and h, = 1/3. Therefore, (9) shows that the gene frequencies approach 
equilibrium without oscillation at the rate (1/3) t ,  while from (1 1) we conclude 
that (since p4 > A,) eventually the genotypic frequencies approach the stationary 
point, oscillating every generation according to (-1/2) t .  For n 2 5,  An > pn, SO 

that all deviations ultimately tend to zero at the rate A i  without oscillation. In 
the biologically important case of many alleles, n >> 1, h, =: I - n-l, and the 
rate of approach to equilibrium is given by hf &In, which is slower the larger 
the number of alleles. 

111. T H E  INCREASE OF RARE ALLELES 

We seek a lower bound on the strength of selection favoring rare alleles. Let 
us rearrange (2) to read 

Api = p i x i  (12) 
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where 

Now, 

and, since the two terms in the sum in (14) contribute equally to (13), substi- 
tuting (14) into (13) yields 

c.7 

2 X i > 1 +  B B , Pkj(1+2 m=1 s p ? ) .  7 (15) 
k # i  k # i , 3  

We sum over k, 

and use the obvious inequality Pij I pi when inserting (16) into the last term 
of (1 5 )  to obtain 

00 

2Xi > - 1 ,+ [pj - Pij + 2(pj - pi) (pj + z p?)]  . (17) 
3 # %  nz=2 3 

Since the linear terms are easily summed over j ,  and the sum over m is trivial, 
after minor simplification we find 

xi > -ppi(2-ppi) + (1 - p i ) Y i  , 

Yi = ,E, p2(1 -pi)-' . 

(18) 

(19) 

We desire to find the minimum value of Yi for fixed pc and 0 < pk I 1/2 for 
k = 1,2, . . . , n. (The maximum gene frequency is 1/2 and not 1 due to the 
absence of homozygotes.) Employing Lagrange multipliers, one can readily 
prove that Yi has one and only one internal minimum, and that this minimum 
is at the point pj = (1 - p i )  ( n  - l)-', for all j # i, where 

where 

72% 1 

Y i =  (1 -ppi)2(n-2+pi)-1 . (20) 

If any one of the gene frequencies approaches zero, we must replace n by n - 1 
in (20), SEI that the minimum value of Yi is increased. If one of them is 1/2, 
recalling (19), and replacing n by n - 1 and pi by pi + (1/2) in (20), we 
deduce the local minimum 

Yi=(1/2) '+ [(1/2)-ppiI2[n-(5/2) +pi]-'. (21 1 
Routine algebra shows that (20) is less than (21) for n 2 3,O < p i  5 1/2. Conse- 
quently, (20) is a global minimum of Yi, and, dropping the subscript i, we may 
rewrite (18) as 

where 
x > f ( p )  7 (22) 

(23) f ( p )  = - p ( 2  - p )  + (1 - p ) 3 ( ( n  - 2 + p)-' . 
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With moderate effort, it has not been possible to significantly improve the 
lower bound (23). From (23), we see directly that f (0)  > 0 and f(l /2) < 0. 
Hence, f ( p )  = 0 will have at least one real root in the interval (0,1/2), and 
f ( p )  > 0 for 0 5 p < q, where Q is the smallest root in (0,1/2). Setting (23) 
equal to zero, we obtain 

g = 1  f a - d l  +a2 , (24) 

a =  [2(n - 1)]4 . (25 1 
Recalling (12), we conclude that any allelic frequency less than Q will increase. 
For any n, it follows from (24) and (25) that q > but in the biologically 
important case n >> 1, q z (2n)-l. For n = 3,4,5, the respective values of q are 
0.219, 0.153, 0.11 7. The nature of our derivation makes it clear that the condition 
p < q is sufficient for the increase of an allele, but by no means necessary. For 
four alleles, for example, the computer calculations referred to in Section I indi- 
cate that gene frequencies increase as long as they are less than 0.23. The naive 
expectation that allelic frequencies increase if they are less than l / n  and decrease 
otherwise, however, is false. With highly asymmetric genotypic configurations, 
in the four-allele case, examples were found in which a gene frequency decreased 
from 0.24 and increased from 0.26. This does not contradict the nonoscillating 
approach to equilibrium of the gene frequencies for four alleles deduced in 
Section I1 by linear local analysis because the latter was based on the assumption 
that the genotypic frequencies were close to equilibrium. 

Our results enable us to comment on the approximations of WRIGHT (1964), 
FISHER (1958), and EWENS (1969). The expected number of alleles maintained 
in a finite population for a given mutation rate depends most strongly on the 
strength of selection for very small ( p  << l /n) gene frequencies. Restricting 
ourselves to the most common situation in which there are many alleles, we can 
easily convince ourselves that the above authors' approximations reduce roughly 
to Ap z p / n  for p < < 1 /n. From ( 12), (22), and (23), we infer that this approxi- 
mation is rigorously valid as a lower bound. Therefore, assuming diffusion 
approximations hold, the number of alleles maintained in a population for fixed 
mutation rate and population size should be at least as high as estimated by 
EWENS, by FISHER, and by WRIGHT. This is indeed fortunate, since, to the extent 
there are discrepancies between theory and observation (EWENS 1969; WRIGHT 
1969), the number of alleles predicted appears to be too low. 

where 
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