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INTRODUCTION 

N an earlier paper (GEIRINGER 1948) the author has investigated the mathe- I matical genetics of autopolyploids if one locus is considered and chromo- 
some segregation is assumed. A paper on the linkage theory of autopolyploids 
(m loci), under the same assumption, is in press (GEIRINGER 1949). However, 
while chromosome segregation might be assumed as an approximation theory, 
the study of polyploids should actually be based on the consideration of 
chromatid segregation. In  the case of one locus this theory can be worked out 
and is presented in this paper as far as random mating is concerned. This 
study, for m = 1, as well as the approximation theory for general m, may serve 
as a necessary preparation for a general linkage theory of polyploids under 
chromatid segregation. 

A basic paper by J. B. S. HALDANE (1930) is mainly concerned with the 
chromosome segregation theory of polyploids; “random chromatid segrega- 
tion” of tetraploids is briefly discussed too and a limit formula (our formula 
(24)) follows. In a paper of a more recent date R. A. FISHER (1947) deals with 
the linkage theory of polyploids under chromatid segregation. The paper uses 
important earlier investigations by the same author (1941, 1944) as well as a 
paper by FISHER and MATHER (1943) and papers by MATHER (1935, 1936). 

As in previous papers it is our aim to consider a heredity problem like the 
one in question as a probability problem. From certain basic probability dis- 
tributions which must be known other genetical distributions are derived by 
means of probability calculus. The fate of these distributions, from generation 
to generation, is the main subject of the mathematical investigation. 

If we assume distinct, non overlapping generations, numbered 0, 1, 
. . we may denote by w ( ~ ) ( x ;  y) the distribution of genotypes in the 

nth generation. Here x denotes the genetic material the individual has received 
from its mother and y designates the paternal heritage. We assume that there 
is no genotypic difference between an individual of type (x; y) and one of type 
(y;  x); that is: (x; y )= (y ;  x). Accordingly wcn)(x; y)=w(”)(y; x);  and^,^, 
w ( ~ ) ( x ;  y) = 1. We may assume that a t  the beginning, for n =0,  the distributions 
of genotypes are the same for males and females; if they are not the same, that 
is, if w(O)(x; y) is the genotype for females and W(Q(x; y) the one for males, they 
will be the same after one generation of random breeding. 

In  the formation of a new individual a parent transmits to the offspring one 
set of genes, the other set coming from the other parent. The kinds of gametes 
which an organism may produce correspond to the possible combinations of the 
genetic material it  has inherited. This segregation takes place according to a 

* . n, 
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probability law which we call segregation distribution (s.d., see section 2).  It is 
one of the main tasks of biological theory to suggest, in accordance with ob- 
servations and other theoretical (for instance cytological) evidence, the s.d. 
which corresponds to a biological situation. If we assume random breeding, it 
is possible to derive from the distribution of genotypes (d.ge.) and the s.d. the 
third important distribution, the distribution of gametes (d.ga.), p(")(z). Finally, 
under random mating, w(~+')(x; y) follows from p(")(z) since a new genotype is 
formed by the fusion of two gametes. A complete cycle of inheritance is thus 
described. 

So far we have been faced with the following problems: a) Complete enumer- 
ation of the possible genotypes and gametes corresponding to a biological situa- 
tion; b) definition of the s.d.; c) derivation of the d.ga. from the d.ge. by means 
of the s.d. These problems are of course not new: for example, FISHER'S state- 
ment ((The laws of inheritance obtained by genetic studies are the rules where- 
by, given the constitution of an organism, the kinds of gametes it can produce 
and their relative frequencies can be predicted" (1947, p. 55) corresponds to 
our problems b) and c). While in all these instances the basic suggestions must 
come from the biologist-from his observations and their interpretation-the 
mathematician may be able to help in clarifying and simplifying the concepts. 

A few further problems are of a more theoretical nature: d) I t  is essential to 
derive direct recurrence relalions between subsequent distributions of gametes, 
that is, relations by means of which we know p("+')(z) if p(I1)(z), or perhaps 
several p("(z) where r $ n ,  are known. Such a recurrence formula will be 
simpler than the corresponding one for w("+l)(x; y). The recurrence problem 
constitutes the basic problem of the theory. e) It is desired to integrate these 
recurrence relations, that is, to determine p(n)(z) in terms of p(O)(z), of ('n,'' and 
of the parameters introduced. f) We want to know whether, and if so, under 
what conditions an equilibrium status is reached for p(")(z), and, consequently, 
for w(~)(x ;  y). I n  connection with this question we must study the l imit  distribu- 
tion of p(")(z) and of wcn)(x; y) as n-w. 

Those last problems seem to be of a rather theoretical character. They are, 
however, of practical value as well, since they allow qualitative and quantita- 
tive predictions which, in turn, may be checked by means of observations. I n  
particular, the equilibrium distribution is of interest, since we may often be 
entitled to assume that a population has actually reached the equilibrium 
status. 

I n  the present paper all these problems have been studied for autopolyploids 
with one locus, for an arbitrary number of alleles, r ,  assuming chromatid segrega- 
tion. The result is that we find an entirely new type of recurrence relations as 
compared with those in GEIRINGER (1944, 1948) which are characteristic for 
chromosome segregation; we likewise arrive a t  a new type of l imit  distribution 
(see sections 3 and 5). The case of tetraploids and hexaploids has been in- 
vestigated completely and octoploids have been considered in some detail. Let 
us now, briefly, describe the approach. 

The main characteristic of a polyploid organism is that (with respect to one 
locus) a gamete consists not of one but of s >  1 genes. An orthopolyploid has 2s 
genes, or 2s chromosomes. More specifically, the organism possesses two sets 
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of s chromosomes each, each chromosome being represented by one of the 
numbers al, 9 ., a,, the r alleles, where r may be less than, greater than, or 
equal to s. Accordingly, the d.ge. and the d.ga. are discrete probability dis- 
tributions in 2s and s variables respectively. I n  the formation of a new in- 
dividual each parent transmits to the offspring one set of s genes. The selection 
of those transmitted genes happens according to the s.d. Of this s.d. we assume: 
1) that it is the same for males and females, 2) that it does not depend on “n” 
and hence remains the same throughout the generations, 3) that it does not 
depend on the specific genotype of the parent. 

There are 4s chromatids (2s chromosomes) and out of these 4s chromatids, 

(4s) ! 

s = C ) = =  
sets of s can be selected. For s=2,3,4, S =28,220,1820. (See page 671 for com- 
parison with chromosome segregation theory.) A set of s selected genes may be 
derived from (s-p) different chromosomes where p may take on the values 
0, 1, . . -, p if s = 2p or 2p+1 respectively; such a set contains p pairs of sister 
chromatids. Hence there are from this point of view (p f l )  different modes of 
segregation. A gamete may be called “normal” for the moment if it is derived 
from s chromosomes ( p = O )  and hence does not contain any pair of sister 

chromatids. There exist obviously SI = Z 8 .  (:) “normal” gametes and S - SI 

gametes which contain a t  least one pair of sister chromatids (due to “double 
reduction”). If the consequences of occasional double reduction are neg- 
lected, that is, if in the definition of the s.d. all probabilities of non-normal 
gametes are assumed to be zero, then chromatid s.d. and chromosome s.d. 
amount to the same. Such an assumption may be regarded as an approxima- 
tion to reality. According to the ( p +  1) values of p, FISHER and MATHER intro- 
duce (p-kl) parameters in the s.d. (section 2) .  

The present author considers a more general s.d. Besides the above explained 
differentiation, which refers to the values of p, we take into account the propor- 
tion of paternal and of maternal genes in a gamete. This idea has been used to 
great advantage in the author’s previous papers (1944,1948,1949). I n  fact, this 
more differentiated segregation distribution is needed in order to  establish the 
recurrence relations and to understand their structure. I n  these recurrence 
formulas which form the main aim of the mathematical theory and which 
express biological facts, the values of the s.d. act as separators between mean- 
ingful groups of probabilities. This fact suggests that these parameters may 
have a biological meaning; this, of course, can be checked by counting the 
results of observations and evaluating the resulting figures in the usual statisti- 
cal way. On the other hand, it is very easy to forget about those parameters 
after having established the recurrence relations. If, for example, we accept 
FISHER and MATHER’S segregation theory we merely have to put all our seg- 
regation probabilities which correspond to the same p equal to each other, 
reducing thus the number of parameters to (p+l).  Other s.d.’s contained as 
particular cases in our s.d. represent the general chromosome s.d. of the author’s 
earlier paper (1948), random chromatid segregation (HALDANE 1930), etc. 
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In  section 2 of this paper the three basic distributions, the distributions of 
genotypes and of gametes, and the segregation distribution are defined. In  
section 3 we derive the recurrence relations (problem (d)) for s=2,  3, 4. They 
differ in an essential way from the recurrence relations under chromosome 
segregation. Section 4 contains, by way of illustration, a simple numerical 
example. Finally, in section 5 corresponding to problems e) and f), the recur- 
rence relations are integrated and the equilibrium status is determined. 

THE DISTRIBUTION OF GAMETES, THE DISTRIBUTION OF GENOTYPES, 
AND THE SEGREGATION DISTRIBUTION 

The enumeration of the possible types of gametes and of genotypes is simple. 

t+:- '> I n  the case of m = 1 locus there exist, for a 2s-ploid and r alleles, R = 

possible gametes; that is, if s = 2, r = 3: R = 6 and the gametes are a12, a 2 , a ~ ~ ,  
ala2, &zag, a3al; or if s=4, r=5 :  R=70 possible gametes: a14, * ab4, 
a13a2, * . , a2a3a4a6. If one wants to enumerate the possible types 
of gametes, the number of partitions is to be considered as R. A. FISHER re- 
marks. Denote by 7rp(s),  ( p I 1 )  the number of different ways in which the 
integer s can be resolved into the sum of p positive integers; clearly r p ( s )  =0,  
if p>s.  Next put P,(s) = ~rp,17rp(s). There are obviously P,(s) different types 
of gametes for a 2s-ploid and r alleles. Consider for instance s=2,  r = 3  
7r1(2)=1, (2=2), 7rz(2)=1, (2=1+1), 7rp(2)=0, p I 3 ;  P3(2)=1+1+0=2 and 
the two types are, in fact: a12 and ala2. Or if s=4, r = 3 :  m(4)=1, (4=4), 

rp(4)=0, p 2 5 ;  and P3(4)=1+2+1=4. In  fact the types are: aa4, alaa2, 
a? a2, a12a2a3. 

Similar remarks hold for the genotypes. If (like most authors) one does 
not distinguish between maternal and paternal heritage there are 

- , a43 ab, . 

m(4) = 2, (4=3+ 1 = 2+2),  ~3(4)  = 1, (4=2+ 1 + l), 7r4(4) = 1, (4= 1 + 1 + 1 + 1)' 

r+2s- 1 possible genotypes. If, however, this distinction i s  made, R f = (  2s ) 
(as we do), then, with R= ( r+i- ') there are R(R+ 1)/2 possible genotypes. 

For example for 2s = 4, r =4 these two numbers are 35 and 55 respectively with 
5 or 7 different types respectively. These are in the first conception: a14, 
a13a2, aI2a2, a12a2a3, alaaa3a4, and in the second: (a12; aI2), (a12; alaz), ("I2; a2), 
(alaz; a 1 4 ,  (a?; a~ag), (ala2; 81831, (ala2; asad. 

Let us review a few of the definitions given in the author's previous paper 
(1948), particularly those dealing with the distribution of gametes and the margi- 
nal distributions derived from it. For s = 2  the d.ga. is given by p(z1, ZZ), (we 
may omit the upper script) where each of the two zi may take on each of the 
r values ai, - . , a=. We assume that there is no difference between the gametes 
(aiak) and (akai) and consequently, p(aiak) =p(akai). Hence there is one value 
p(ai2) but two values p(aiak), (ai # ak) and 
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i k  

From p(z1zz) we derive the marginal distributions of order one: 

8 7. 

It follows from p(aiak) =p(akai) that pl(aj) =p2(aj) =p(aj) ; these are the margi- 
nal distributions of order one and 

i 

If s=3 the d.ga. is p(zlz2z3) where each zi equals 81, or a2, 
derive from it 

* . , or ar and we 

I I 

and pzrr(aiak). Again plz(aiak) = p13(aiak) = pza(aiak) = p(aiak). This marginal dis- 
tribution of order two denotes the probability that of the existing three genes 
two (specific) genes have the values ai and ak. In  the same way pi(ai) =pz(ai) 
=p3(ai) =p(ai) is derived from p(zl, ZZ, z3) and 

For any s (see GEIRINGER 1948, 271ff) the d.ga. may be denoted either by 
p(z1 - zs), (zi=al . . , a,, i = l ,  2, . - , s), or by p(alrbZx~ - arXr), 
(xj=O, 1, 2, - - e - +x,=s) and marginal distributions of orders, 
1, 2, 

; xl+xz+ 
* - , s - 1  may be derived; for instance with 

s = 7, r = 5 ,  p(a12 a2) = C C C C p(alala2zlz2z3~4) 

(the summations are from a1 to a6), and there are (:>. (;> = 105 such prob- 

abilities; here p(al2a2) denotes the probability that of the existing 7 genes, 3 
specified ones have the values a1, a1, 82. 

All this is independent of the distinction between chromosome and chroma- 
tid segregation. 

Let us now consider the s.d. In  a 2s-ploid of one locus, there are 2s chromo- 
somes and 4s chromatids; in a diploid organism there are 2 chromosomes and 
4 chromatids. For the diploid with any number of loci, chromatid segregation and 
chromosome segregation amounts to the same. In  fact denote a diploid with m loci 
by (x; y) =(XI * * ym) where xi, (yi) constitutes the maternal (pa- 
ternal) heritage with respect to the ith character. Consider chromosome segre- 
gation. There are 2" possible gametes. We denote (GEIRINCER 1944) for 
instance by l(11000 * - xm-l, ym) be 
transmitted-with certain symmetry relations for these l(qg . - em). Next 

)1 8 ;  e3 24 

* x,; yl - 

10) the probability that (XlxZy8y4y6 . 
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consider chromatid segregation and denote by xi, xi’ or by yi, yi‘ corresponding 
sister chromatids. There are now 2m. 2’” = 22m possible gametes. Denote by 
Zml’(ll ’ 1) the probability that the gamete contains x-values only (for ex- 
ample, (XIXZ * * * xm), or (XI’XZ . * - xm), etc.) by 2m1’(11000 - . . 10) the proba- 
bility that the first, second - and (m- l)8t value is an x, the third, fourth, 
fifth * e,), 
(Ei=O, 1;  i =  1, 2, , m) we obtain again the same s.d. as before. The reason 
is of course that, if s=1,  with respect to each character, one gene only is 
transmitted, hence xi, xi’ can not be found in the same gamete. In  particular, 
there is no dijerencc between “random chromosome segregation” (“independent 
assortment”) and “random chromatid segregation.” The former amounts to 

and last a y-value, etc. Then, with 2ml’(~1~2 - - . e,) =1(ele2 * 

* 

for all E-combinations, the second to 

l’(E1ez 

and 

1 

22m 
e ) = - -  m 

This is quite different if s > l .  Assume m = l  (one locus), and denote an 
ye) where each xi and each yi may be equal to 

, a,. If we want a notation to show the 4s chromatids 
organism by (XI 
one of the r alleles a1, 
we write: 

* . x,; yl * 

. 

or rather: 

Denote by pu the probability that a specified set of (Y maternal and a specified set 
of (s-  a) paternal genes be transmitted, but such that the resulting gamete does not 
contain a single pair of sister chromatids. There are, corresponding to  each a, 

2* (1). 28-8 ( ) = 201 [ ( :)Iz such probabilities and we assume that they be 
S - a  

all equal to each other; moreover we assume 

Next denole by pa’ (by put‘ ,  by pu”‘, . ,) the probability that a specified set 
of a maternal and (s-a) paternal genes be transmitted such that the resulting 
gamete contains exactly one pair (exactly two pairs, exactly three pairs, ) of 
corresponding sister chromatids. In  other words: The gamete is derived from 
s-p different chromosomes where p = l ,  2, . . , p, if s-2p or 2p+1 respec- 
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tively. Assume that all pa‘ for the same a, equal each other; all p$ for the 
same a, equal each other; etc. and 

(3) 

With these notations we have for s=2, 3, 4: 

I’ 
pa‘ = pL-a, pa‘’ = psWa, etc. 

(4) s = 2:  PO + 4 ~ 1 +  1.4 + 2(p0’ + M’) = 1 

or, using (2), ( 3 )  : 

(4’) S 2: 4,2(po + 2/11> + 4po’ = 1 

( 5 )  s = 3: 8.2(p0 + 9p1) + 2(12plO + 18p1‘) = 1 

(6) s = 4: 16.2(pn + 16111 + 18~2) + 2(48po‘ + 192pi’ + 96pz’j 

+ 2(6p0” + 8p2”) = 1. 

We see that for s=2,  3 , 4  we have respectively 2, 3, and 7 parameters. Accord- 
ing to FISHER and MATHER (1943) we would put for each s, all p equal to each 
other, all p’ equal to each other, etc. and this would amount to: 

(4”) s = 2: 24p + 4p’ = 1, 4p’ = a 

(5”) s = 3 :  160p + 60p‘ = 1, 60p’ = p 
(6”) s = 4: 1120p + 672p’ + 28p“ = 1, 28p’ = y ,  28p“ = 6. 

If the s.d. is known, the “gametic output” that corresponds to any particular 
genotype follows very easily. As an example consider the genotype 

) b ama2 a1ala3 

ala2a2 alala3 
(ala22; a12a3) or 

where the following ten gametes and their corresponding probabilities may 
originate: 
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To illustrate the computation of each of these ten probabilities consider for 
instance a12a2: Firstly, three maternal values may be transmitted, namely the 
two al-values and one of the four az-values; that can happen in 1 . 4 = 4  ways 
and since in such a gamete one pair of sister chromatids occurs the probability 
is 4~3’. Next, two maternal values and one paternal value may be used; there 
are to the left of the semicolon two al-chromatids and four az-chromatids, 
hence ala2 may be selected in eight ways while the last al-value may be se- 
lected from the four values to the right in four ways, hence the term 32pz. Next 
one maternal value is used; since a2 occurs to the left only this value must be 
az, which can be selected in four ways; it is combined with a pair out of the 
four al-values to the right. Among the six possible pairs of such values two 
correspond to sister-chromatids while four pairs are “normal” ; hence the two 
terms 4X4p1+4X2p1’. I n  the same way all other gametes and their probabili- 
ties may be discussed. 

If the genotype in question is considered as: (a13az2a3) and accordingly all 
p-values are equal to each other and all p’-values equal to each other, the 
probability of the gamete a12a2 becomes 

18 - 68 
48p + 12p’ + ___ 

60 

which appears in FISHER, 1947, p. 58, second table, second line, third column. 
(Our al, az, a3 are denoted by Fisher by a, A’, A). 

Consider on the other hand the genotype (alazaa; alza2) which, in my con- 
ception is different from (alazZ; alza3). The probability that the organism 
(alazas; a? az) transmits the gamete a12az is: 2p3’+16pz+2p2’+ 16p3+8p1+4p1’ 
+8p0+4~{ and this is quite different from the previously found value 4p3’ 
+32pz+ 16p1+8plt which corresponds to the same gamete (a12a2) derived from 
(alaz2; alza3). If however, p3=p2=p1=pO1 pclgt=p~’=p1’=pot the preceding prob- 
ability reduces again to 48p+12p’, as before. These examples should suffice. 
(See also beginning of sec. 4.) 

As stated before, our s.d. reduces to FISHER and MATHER’S assumption by 
equating all to each other, all p’ to each other, all p’’ to each other, etc. It 
reduces to the general chromosome segregation distribution introduced in GEI- 
RINGER (1948) if all p‘,  all p”, . . are equal to zero. I n  particular, random chro- 
mosome segregation follows if, in addition all pa are equal to each other. We 
have random chromatid segregation if all parameters, that is all pi, pj ‘, pk”, * , 
are equal to each other. 

RECURRENCE FORMULAS IN CASE OF S = 2 ,  3, 4 
An important formal justification for the introduction of our more compli- 

cated s.d. may be found in the role which this s.d. plays in the recurrence 
formulas which, in the author’s opinion, constitute the main result of the 
mathematical theory. These recurrence formulas, based on the consideration 
of chromatid segregation, are essentially different from the ones that hold for 
polyploids with one or several loci if chromosome segregation is assumed. The 
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new recurrence formulas are no longer homogeneous, in a sense we shall explain 
presently. Nevertheless they are still quite clear-cut and understandable. 

. - are equal to zero, chromatid segregation 
reduces to chromosome segregation. Hence in this case the new recurrence 
formulas must reduce to the known recurrence formulas for chromosome segre- 
gation (GEIRINGER 1948). Hence we actually knowthese new formulas as far as 
the coefficients of the pi are concerned and we are interested in the other terms 
only. 

Let us start with s=  2. Use v(x; y) = w(x; y)+w(y; x) = 2w (x; y) ,  (x#y), 
v(x; x )=w(x ,  x). I n  terms of these v we have v(a12; a12)+2v(a12; alaz) 
+v(a12; aZ2)$-4v(alaz; alaz)+2v(ala2; aZ2)+v(aZ2; az2)+ . . = 1. Here the 
points a t  the end of the left side indicate terms corresponding to other alleles. 
[{'e write p(n) =p, v(n) =v ,  p(n+l) =PI, v(n+O =v'. We assume now two alleles 
and compute in the same way as in the example page 671, the probability of 
the gamete (a12) as derived from various genotypes: 

We know that if all pi', pk", 

p(a12) = v(aI2; aI2). 1 + 2v(a12; alad(p2' + 8p1 + 4pa + 2p0') 

(7 )  + v(a12; 

+ 2v(alaz; a 2 2 ) ~ ~ ' .  
 PO + 2 ~ 0 ' )  + 4v(ala2; alaz) (p2' + 4p1 + PO') 

Next we write the same formula (7) for the (n+l)st generation and consider: 

w(n+l)(X. ) - (8) > Y - P'n'(x)P'n'(Y) 

we get, using (2) and (3): 

p'(a12) = p(a12)2 + p(a1~)p(ala2)(12~0' + 16p0 + 3 2 ~ )  

11(ai~)p(a2~)(8/~0 + 4~0 ' )  + p(alad2(16p1 + Spa') 

+ p(ala~)p(a2~) 4po' 

= 8 ~ 0 .  [p(a1212 + 2~(a1~)p(ala2) + p(a12)p(a22)] 

+ + 2~(a1~)p(ala2) + p(alaz)2] 

+ 4 ~ 0 '  [p (a2 l2  + 3~(a1~)p(ala2) + p(a12)p(a22) 

+ 2p(a1ad2 + p(a l ad~(a2~)  1. 
The expressions in brackets are respectively: 

~ ( a 1 ~ ) .  [p(a12) + Wala2) + p(a22)3 = p(a12). 1 = P("12) 

[p(aI2) + p(ala2)I2 = [p(ad12 

[p(ai2) + 2p(ala2) + da22)1. [p(aI2) + p(ala2)I = 1 .p(al) = p(al). 

Thus we get: 

(9) p("+l)(al ) - - 8pop(n)(a12) + 1 6 ~ [ p ( ~ ) ( a 1 ) ] ~  + 4 ~ 0 ' p ( ~ ) ( a l ) .  

We find the same formula (9) without any change if we assume, more generally, 
r >  2 alleles. 

This formula (9) reduces to my formula for chromosome segregation if 
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po1=0, ~ P O = X O ,  4~1=X1. If, however, po’#O, (9) is a non-homogeneous recur- 
rence formula in contrast to all recurrence formulas established (in GEIRINGER 
1944, 1948) under the assumption of chromosome segregation. I n  fact 
p(n+1)(a12), p(”)(a12), and [p(n)(a1)]2 are “of second degree” while ph p(n)(a$ is 
“of first degree.” The occurrence of such a term in the recurrence formula can 
easily be interpreted. This will be done later, together with the consideration of 
the cases s = 3, and s = 4. 

(9’) 

Next we compute p(n+l)(ala2) and find: 

p(“+’)(ala2) = 8pop(n)(alaz) + 16plp(”)(al)p(”)(a~). 

Upon addition of (9) and (93 we obtain: 

p(”+’)(al) = 8pop(”)(al) + l6plpcn)(a1) + 4po’p(n)(a~) = p(”)(al). 

Hence, just as in case of chromosome segregation: 
( n =  1 , 2 , . . . )  

r) 

The frequency of each allele remains constant throughout the generations. None of 
these results changes in case of any number r of alleles. Thus the recurrence 
formulas for s= 2 become (with p“)(ai) Ep(ai)) : 

(9’’) p(n+l) ( a i 4  = 8pop(”’(aiak) + 16plp(a.) I P  (ak) 

For random chromatid segregation p1 = po = pol = - these become: 

p(n+’)(a?) = - p(n’(ai2) + - [p(ai)]2 + 1 p(ai) 

(10) p(n+l)(ai) = p(n)(ai) = p(0)(ai) 

(i = 1, 2, - 

p‘”+”(ai2) = 8pop(n)(ai2) + 1 6 ~ 1  [p(ai)12 + 4po’p(ai) 

(i, k = 1, 2, - , r). 
1 

28 
2 4 1 
7 7 

2 4 

7 7 

(,I1’) 

p(”+I)(aiak) = - p(”)(aiak) + - p(ai)p(ak) 

To “complete equational separation” (MATHER 1936) PO = p1 =*, PO’=* 
correspond the formulas : 

Under FISHER-MATHER’S theory where 24p+4pCc’=24p+a = 1 we find 
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Next consider the case s=3. Computing in the same way as before we find 

the result: 

p("+l)(al3) = 16pop(")(a13) + 144p1p(")(al2)p(a1) 

+ 2 4 ~ 0 ' p ( ~ ) ( a 1 ~ )  + 36~1'[p(ad 1'. (12) 

We shall now interpret formula (12) and similar formulas. First let us con- 
sider the analogous formula for chromosome segregation ( GEIRINGER 1948, 
p. 259): 

p("+l)(A3) = Xop'"'(A3) + 9X1p(A)p'"'(A2) 

+ 9Xzp("'(A2)p(A) + X3p'")(A3). 
(12') 

We want to analyze it in some detail and consider, for example, the term 
9X2p(")(A2)p(A), assuming, for the sake of simplicity, two alleles A and a. Here 
p(")(A2) = p ~ z ( ~ ) ( A ~ )  =p(")(A3)+p(")(A2a) is the probability of a gamete for 
which the first two of the three genes equal A. I n  the same way pl(A) =p(A) 
=pcn)(A3) +p(")(AAa) +p(")(AaA) +p(") (Aaa) is the probability of a gamete 
for which the first of the three genes equals A. We know that pI2(")(A2) 
=p13(")(A2) =p23(")(A2)=p(")(A2) and pl(")(A)=p2("(A)=pr(")(A) =p(")(A) 
= p (A). Next consider : 

p(")(A2)p(A) L- [p(")(A3) + p(")(A2a)]. [p(")(A3) + 2p(")(A2a) + ~ ( " ) ( A a ) ~ ) l  
:= p(nI(A3) .p(n)(A3) + p(n)(A2a)p(")(A3) + . . . 
= ~("+1)(A3; A3) + w(n+l)(AZa; A3) + . . . + w(n+l)(A2a; Aa2) 

= w("+l)(AAx; Ayz). 
X Y Z  

Consider any of the six w("+l)-terms. For example 9X2wcn+')(A3; A3) is the 
probability that, in the (n+l)st generation a genotype be of type (A3; A3) and 
transmits two of its three maternal A-alleles (can happen in three ways) and 
one of its three paternal alleles (in three ways). In  the same way: 

9X2w("+I)(A2a;A3) 

= 3X2[w("f1)(AAa; A3) + w("+l)(AaA; A3) + w(n+')(aAA; A3)]. 

Here 3X2w("+')(AAa; A3) is the probability of this genotype times the proba- 
bility that it transmits its two maternal A-genes and (in three ways) one of its 
three paternal A-genes. Hence, on the whole, 9X2p(")(A)p(")(A) i s  the proba- 
bility of a zygote in the (n+ l)st generation, which possesses at least two maternal 
and, at least, one paternal A-alleles and which transmits a gamete consisting of 
two maternal and one paternal A-alleles. It is clear from this analysis that the 
sum of the four terms to the right of (12') gives the probability of a gamete of 
type (A3) in the (n+l)Bt generation. 

I n  case of chromatid segregation the discussion of the terms to the right of 
(12) which contain p~g or p1 is exactly the same. Of course 72p1 plays the role of 
9X1, etc. 

Next consider the "non-homogeneous" terms in (12) namely 
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36p1'p(A)~ i- 24po'p(")(A2) = 12p3'p("'(A2) + l 8 ~ ~ ' p ( A ) ~  

4- l 8 ~ ~ ' p ( A ) ~  + 12po'p(")(A2). 

Such terms are due to a double-counting pair of sister chromatids. Consider 
for instance, 18pi[p(A)]2. Here, as before [p(A)I2= Xw(n+l)(A ; A . ), 
where the summation is four-fold, the empty places being filled with all combi- 
nations of A and a. Consider, as before, one of these terms, for example 

18p~'w("+')(AAA; Aaa) = 6pz'[~(~+l)(AAA; Aaa) 

+ w("+')(AAA; aAa) + w(n+l)(AAA; aaA)]. 

Here 6~.lz'w("+~)(A~; Aaa) is the probability of a zygote of type (A3; Aaa) times 
the probability that this zygote transmits one maternal pair of sister chroma- 
tids A (in three ways), and one paternal A-chromatid (in two ways). Hence, 
on the whole l 8 ~ ~ ' p ( A ) ~  i s  the probability of a zygote of the (n+l)st generation 
which possesses at least one maternal and at least one paternal A-chromosome and 
transmits one pair of maternal sister chromatids, A, A, and one paternal A- 
chromatid. 

. ) where the empty 
places are to be filled with the 16 possible combinations of A and a. Consider 
such a term, as for instance 12p3 '~(~+l ) (A~a;  Aa2) =4p3'[w("f1)(AAa; a2A) 
+ w("+')(AaA; a2A) +. 1. Out of the four maternal A-chromatids a triple (con- 
taining necessarily a pair of sister chromatids) can be chosen in 4 ways; hence 
w("+')(AAa; a2A) .4p3' is the probability of this genotype, times the prob- 
ability that it transmits (in four ways) a maternal triple of A-chromatids. 
Thus it is seen that the sum of all these "non-homogeneous" terms plus the 
homogeneous terms to the right of (12) gives just the probability of the 
gamete (A3) in the (n+l)st generation (if A stands for al). 

I n  an analogous way pCn)(A2) X 1 = C W ( ~ + ~ ) ( A A .  ; 

Analogous considerations hold, of course, for (9). 
I n  addition to (12) we may for s = 3  derive a recurrence formula for 

p(n+I)(al2a2) and p(n+1)(alaza3) : 

p(n+l) ( ai3) = 1 6p0p(") (ai3) + l44p1p(") ( aiz) p (ai) + 24p0 'p(") (ai') 

+ 36p1'[p(ai)12 

( 13) p(n+') (ai" j )  = 16pOp(") (ai'aj) + 48plp(") (ai')p(a,) + 96plp(") (aiaj) p( ai) 

+ 8pa'p(")(aiaj) + 12pi'p(ai)p(aj) 
p'"")(aiajak) = 16{pop(")(aiajak) + 3pl[p(ai)p(")(ajak) 4- . + . ] 1 .  

For the interpretation of the terms to the right of (13) similar considerations 
hold as before. 

Upon addition of p(n+l)(a13)+p(n+1)(a12az)+ . . . in (13) we get a recurrence 
formula for p(n+1)(a12), and, in a similar way, one for p("+')(a,a'). The result is: 

p("+')(ai') = ( 1 6 ~ ~  + 48p1 + l6po')p(")(aiZ) 

+ (96~1  + 24pi ' )~(a i )~  + (8p0' + 12pi')p(ai) 
p("+l)(aiaj) = (16p0 + 48pl + 16po')p(")(aiaj) (14) 

+ (96~1  + 24pi')p(ai)p(aj). 
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Addition of these two formulas shows, as in (10) as anticipated in our notation: 

( n =  1 , 2 , - . . ; i =  1 , 2 , . . . , r ) .  

Again, we may consider particular cases of these formulas by specifying the 

Random chromatid segregation correspond to po = p1= PO' =p1' =&. We have 

p'")(ai) = p(O)(ai) 

s.d. : 

in this case 

For FISHER-MATHER'S theory with po =pl = p ,  po '=p l '=p ' ,  60p'=P: 

\\'e shall now finish this section with the recurrence formulae for s=4 .  We 
find: 

p(n+l)  (ai.') = 16[2pOp(")(ai4) + 2 16p1p("'(ai3)p(ai) + 36pzp(ai)'] 

+ 96 [po'p(")(ai3) + 4pi'p(")(ai2)p(ai) 

+ 2p2'p(")(ai2)p(ai)] + 4 [3po''p(n)(ai2) + 4~z' 'p(ai)~]. 
(17) 

To understand the non-homogeneous terms we need (6). Consider for example, 
48p4'p(")(ai3) or, (with two alleles to fix the ideas) 48p4'p(")(A3). 1 
= ~ ~ ~ ~ ' E W ( " ~ - ~ ) ( A A A . ,  . . ). Now four A-chromatids belonging to three 
chromosomes can be selected from eight A-chromatids in 4.12=48 ways. 
Next the term 192p3'p(")(AZ)p(A) corresponds to combining three maternal 
chromatids from two maternal chromosomes with one paternal chromatid. 
This can happen in (4.6) .8=  192 ways. The term 96p2'p(")(A2)p(A) 
= (28-4) .4pz'p(")(A2)p(A) corresponds to the combination of two maternal 
chromatids (from two chromosomes) with two paternal sister-chromatids 
(from one chromosome), or vice versa; etc. etc. 

I n  a similar way we may derive and interpret the formula 

p("+l)(ai3aj) = 16 { 2pop(")(ai3aj) + 8p1 [p(")(ai3)p(aj) + 3p'")(aiZaj)p(ai)] 

(18) + 36pzp(")(aiz)p(")(aiaj) 1 
+ 48 { po'p(")(ai2aj) + 2pi'p(")(ai2)p(aj) 

+ (2~1'  + 2~2')p'"'(aiaj)p(ai) } . 
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AN EXAMPLE 

We shall illustrate the recurrence formulas by an example where s = 3. I n  
order to be able to apply our recurrence formulas we must first derive p(O)(z) 
from w(O)(x; y) the way it was done in (7) for s=2. The formula corresponding 
to (7), if s=3, is: 

p(A3) = v(A3; A3). 1 + 3v(A3; A2a) [Spa + 72p1 + 16p0’ + 24~1’1 

+ 3v(A3; Aa2) [8po + 2 4 ~ 1  + 1 2 ~ 0 ’  + 12~1’1  

+ v(A3; a2)(8p0 + 1 2 ~ 0 ’ )  + 9v(A2a; A2a)(16p1 + 4po’ + 8p1’) 
+ 9v(A2a; Aa2)(8p1 + 4p0’ + 8p1’) + 3v(A2a; a3) ,4p0’ 

+ 9v(Aa2; Aa2) .4pl’ 

(19) 

and similar formulas for p(A a), etc. I n  most applications in the given distribu- 
tion the probabilities of a few types only will be different from zero so that for 
the derivation of p(O)(z) a general formula like (19) is not needed. 

Now consider the following simple example: A female organism of type 
(A3; A3) is mated to (a3; a3). Assuming continued random mating we should 
like to know the distribution of genotypes in the third filial generation if 
FISHER’S theory of four strand segregation is considered. According to the data 
we have 

__ do)(A3; A3) = 1 (females), 

p(’3)(A3) = 1, all others zero, 

0 ( a 3 ;  a3) = 1 (males) 

p(l)(a3) = 1 (all others zero). 

I n  the next generation, for males and for females: d1)(A3; a3)=1, all others 
zero. 

It follows that 

p(’)(A3) = v(’)(A3; a3)(8p0 + 1 2 ~ 0 ’ )  = 8p0 + 1 2 ~ 0 ’  

3p(l)(A2a) = v(I)(A3; a3)(72pz + 18pz’) = 72p1 + 18p1’ 

3p(’)(Aa2) = vc1)(A3; a3)(72p1 + 1 8 ~ ~ ’ )  = 72p1 + 18~1’ 

p(’)(Aa3) = v(’)(A3; a3)(8po + 12p0P’) = 8p0 + 1 2 ~ 0 ’ .  

Now with FISHER-MATHER’S assumptions: 

3 - 0  
p(’)(Aa) = - 

10 
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Xext we use the recurrence formulas and find: 

2 + P  1 4 P 2 - I - P  6P 1 + -.- - __- + - ( l - P ) - . -  +-- 
10 20 10 10 2 10 10 10 4 

1 - - p  1 f 3 P  9 

19 + 390 - 4P2 

200 
- - - = p(2)(a3), 

Also : 

81 - 39P + 4P2 
p(2)(Aa) = - 

300 

I n  order to estimate the order of magnitude of the various terms introduce 
p=0.117 (FISHER and MATHER 1943, p. 17). We find: 

81 - 396 + 4p2 -_ - 19 + 39p - 4/32 
= .118 - .382 -__ 

200 200 

and finally by (8) for the third generation: 

~(3)(A3; A3) = ,(a)(a3; a3) = 3 ~ ( 3 ) ( A 3 ;  a3) = ,014 

3v(A3; A2a) = 3v(A3; Aa2) = 3v(a3; A2a) 

= 3v(a3; Aa2) = .090 

9v(A2a; A2a) = 9v(Aa2; Aa2) = $.9v(A2a; Aa2) = .146 

and 

4.(.014 + .090 + .146) = 1.000. 



680 HILDA GEIRINGER 

INTEGRATION OF THE RECURRENCE FORMULAS AND LIMIT THEOREMS 

We start integrating the formulas for s=2.  We find immediately: 

p(n) (a?) = (8~0)  "p(O) (a i2) 

or, in FISHER'S theory: 

We see from these formula that the rate of approach to equilibrium is (8~0)"  
or (1-a/3)" respectively, it is (9)" f o r  random chromatid segregation, (&), f o r  
complete equational and ($), f o r  chromosome segregation. These figures differ but 
little from each other. 

From (20) we find, if 8p0 < 1, the l imit  formulas: 

4 ~ 1  
lim p(,)(aiak) = P (ai) p (ad  
n+- 4 ~ 1  + PO' 

If, however, 8po= 1, that is, P ~ = P ~ ' = O ,  we see that (see Geiringer 1948, p. 277) 

(22') p(n)(ai2) = p(O)(aiz), p(n)(aiak) = p(0)(aiak), ( n  = 1, 2 ,  . . . ). 

Under FISHER'S assumptions we get the limit formula: 
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and for random chromatid segregation 

The results (24), for s=2,  have been given by HALDANE (1930, p. 370). The 
recurrence formulas (9"), the explicit solutions (20), (21) as well as the limit 
results (22), (23) are new. All results are new in the case s=3 ,  which wenow 
shall consider. 

We have already found the recurrence formulas (13) and (14). Here (13) can 
be integrated too. First we find the explicit result for p(")(ai2) which corre- 
sponds to (14) and is of form (20). Introducing this into the right side of the 
first formula (13) this right side becomes a known function, f,, of n. Denoting 
p(")(ai3) by xn and l6p0=a, we have the equation xn+l-axn=fn which has the 
solution 

n- 1 

Y=O 

This can be computed for every given s.d. 
Let us consider the limit of the p(,) as n-w. Assume 16p0< 1. It then follows 

that in (14), 16p0+48p1+l6pO'<l. If this would not be so we could conclude 
that p1=p<=p;=O hence 16p0=1. We get from (14) 

(24~1 + 6~1')p(ai)' + ( 2 ~ 0 '  + 3pi')p(ai) 

2 4 ~ 1  + 9pi' + 2po' 
lim p(n'(ai2) = 
n-+ m 

(25) 

Hence in (13) which is of the form ~ ,+~-ax ,=f ,  we know the lim ,+- f ,=f.  
It follows from a lemma (GEIRINGER 1948, p. 262) that, if 

f 
1 - a  

I a /  < I, lim x, = - ~ .  

In  our case we have: 

( 2 4 ~  + 6p1')p(ai)~ + ( 2 ~ 0 '  + 3 ~ ' ) p ( a i )  
f = [144pip(ai) + 24po'I. 

2414 + 9 ~ '  + 2p0' 
+ 36pi'p(ai)'. 

Our result is, if 

1 6 ~ 0  < 1 and ( 1 2 ~ 1  + 3p1' + 2p0')(24pl + 9pl' + 2~~') = M: 
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If 16p0= 1: 
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p(n)(ai3) = (0) . 3  P (a, ). 

I n  case of ralzdom chromatid segregation (26) gives: 

We may derive similar results for p(").(ai2ak). First we have a second for- 
mula (25): 

Now we proceed with the second formula (13) exactly as with the first. I n  fact, 
if we substitute on the right side of this formula the values (14) for p(n)(aiz) 
and p(n)(aiak) this right side becomes a known function of n, say zn, such that 
lim zn=z  exists and 

Z 
lim p(n)(ai2ak) = -___ . 
n-, m 1 - 16p0 

The result is: 

1 
lim p'"'(aiajak) = - 12pi(24pi d- 6pi')p(ai)p(aj)p(ak). 
n+ m M 

For random chromatid segregation this becomes: 

lim p("'(aiajak) = - p(ai)p(aj)p(ak). 
n+ w 7.17 

Finally, with FISHER'S and MATHER'S assumption; where 

160p + 60p' = 160p + p = 1: 
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The rate of approach to  equilibrium is (16pc(0+48p1+16p0’)” This is __ 

under FISHER’S assumption, and (A)” for random chromatid segregation, 

(“rj””)” 

compared to (;>” for random chromosome segregation. 

In  order to compute the limit status for the example in the preceding section 

Similar results may be established for s=4, using (17) and (18). 
We see that the limit results under the assumption of chromatid segregation 

are essentially different from the ones for chromosome segregation where, in the 
limit, the alleles were independently distributed. By multiplication of the limit 
expressions (26) or (25) or (28) we get the respective limit-distributions of 
genotypes. 

we merely have to put in (28): p(al)=p(az)=+, /3=.1176. 

SUMMARY 

The mathematical genetics of autopolyploids under chromatid segregation, 
is dealt with, in particular for tetraploids, hexaploids, and octoploids. The 
segregation-distribution introduced by R. A. FISHER and K. MATHER [ 19431 
has been generalized so as to contain as particular cases this segregation dis- 
tribution as well as HALDANE’S “random chromatid segregation” [1930] and the 
author’s [ 19481 general chromosome segregation distribution. The possible kinds 
of gametes and of genotypes are enumerated, recurrence relations for their 
distributions are established and “integrated,” and limit results as, n, the num- 
ber of discrete non-overlapping generations tends to infinity, are investigated. 
The recurrence relations as well as the limit theorems are essentially different 
from the analogous results under chromosome segregation and seem to present 
a new type of statistical-biological law. 
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