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ABSTRACT 

In the classical model of genetic drift in population genetics theory, use is 
made of a hypothetical "infinite-gametic pool". If, instead, the gametic pool is 
determined by the random number of offspring per individual, a new form of 
natural selection acting on the variance in offspring number occurs. A diffusion 
model of this selection process is derived and some of its properties are explored. 
It is shown that, independent of the sampling scheme used, the diffusion 
equation has the drift coefficient M ( p )  = p ( 1 - p )  ( f i I - f i 2  4- u2 -U2 ) and 

the diffusion coefficient v ( p )  = p ( l - p )  [po2 + (I-p)$]. It is also pointed 

out that the Direct Product Branching process model of genetic drift introduces 
a non-biological interaction between individuals and is thus inappropriate for 
modeling natural selection. 

e2 e1 

e2 e1 

N a recent paper (GILLESPIE 1974) it was shown that natural selection can I change the within-generation variance in offspring number in a natural popu- 
lation. The main properties of this form of selection are: (1) selection favors 
genotypes with smaller variances in offspring numbers and ( 2 )  the strength of 
selection is inversely proportional to population size. The importance of selection 
for variances was recently noted by SLATKIN (1974). 

The model given in GILLESPIE (1974) was a continuous approximation to a 
two-dimensional branching process introduced by FELLER (1951). In order to 
arrive at the results, it was necessary to artificially hold one of the dimensions 
of the process constant (the population size) while allowing the other dimension 
(the allele frequency) to move at random, thus arriving at  a one-dimensional 
diffusion process with drift coefficient 

( 1 4  

(Ib) 

and diffusion coefficient 

V(P)  = p(1-p)n-l b;p+u;(1-p)1 . 
While the behavior of this model is of obvious biological importance, several 
people, particularly DRS. JAMES F. CROW and MONTE SLATKIN, have insisted 
that the method used to arrive at the final diffusion process was not sufficiently 
justified on mathematical and biological grounds. The former complaint, involv- 
ing the reduction of the two-dimensional diffusion equation to a one-dimensional 
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one, is easily handled and is given in APPENDIX I. The second has stimulated the 
present paper. I will attempt to generalize the clas liodel for selection in a 
finite population to include the effects of variances LI udspring numbers. The 
essential point of the generalization is to drop the assumption of an “infinite 
gametic pool” (CROW and KIMURA 1970, p. 327) and to substitute the more 
realistic assumption of a finite, random, gametic pool from which the succeeding 
generation is sampled. This  removes, of course, the binomial nature of the sto- 
chastic element. This is foreshadowed in the diffusion coefficient (Ib) . 

KARLIN and MCGREGOR (1964) have attempted a similar generalization by 
introducing a model, the direct produce branching process (DPBP) model, which 
allows each individual to have a variable number of offspring, but conditions this 
number on the total number from all individuals being a fixed constant. Although 
this model reduces to the bionomial sampling model when the off spring numbers 
are Poisson-distributed, it turns out that the conditioning causes the model to 
behave in a very non-biological manner when offspring numbers are not 
Poisson-distributed. This point will be illustrated after the development of the 
new model. 

F I N I T E  GAMETIC-POOL MODELS 

In this section a new model for selection in finite populations will be 
described which generalizes in a meaningful direction the classical model of 
Wright. Only a theory for selection in haploid species with non-overlapping 
generations will be presented. The extension to diploidy is straightforward but 
very cumbersome and will be reserved for a separate paper. I t  will be useful if 
the life cycle of the haploid is first described verbally in order to give names to 
the various segments. The allele frequencies will always be tabulated in a group 
called young adults. These are individuals which have just been culled from 
juveniles due to a density-regulating process which works independently of the 
genotypes of the individuals (this is the binomial sampling step in the classical 
model). The young adults will die, or live to reproduce according to specified 
probabilities. If they do reproduce they will produce a random number of juve- 
niles. Some of these juveniles will die due to density-independent factors before 
they are culled as above. Thus from one tabulation of the allele frequency to the 
next, the time span of one generation, the population moves from being composed 
of young adults to mature adults to juveniles back to young adults, with no over- 
lapping in these categories. The juveniles will make up the “gametic pool”. This 
loose usage will allow a certain continuity of description between diploid and 
haploid models. 

Let the haploid population be composed of two genotypes, A,  and A,. The size 
of the young adult population will be held constant at n individuals of which 
i are A ,  and n--i are A ,  in a designated generation. To form the next generation, 
we require random variables to represent the number of offspring from each 
individual of the two genotypes. Let Xk be the number of offspring from the kth 
A ,  individual and Yk the equivalent random variable for the kth A, individual. 
The Xk and Yk are all integer-valued, non-negative, and mutually independent. 
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In addition, the x k  are all identically distributed, as are all the Y k .  Biologically, 
x k  and Yh represent a compounding of three events. They incorporate the ability 
of a young adult surviving to reproduce, the number of offspring it has if it does 
reproduce, and the density-independent deaths that the off spring experience 
before being culled for the next generation. The example in the next section will 
illustrate each of these components. 

The total number of A ,  offspring ready for culling will be represented by 

x = x ,  + x,  + . . . +xi  

Y = Y ,  + Y ,  +.  . . + Y,-i . 
Thus X + Y  is the total number of juveniles on which the culling process will 
operate. The quantity X S Y  will be loosely called the size of the gametic pool. 

The culling process can be any of a number of sampling schemes. We will 
consider three. Let J be a random variable representing the number of A,  indi- 
viduals among the n young adults culled from ( X ,  Y ) ,  and let P(Jlz,y) be the 
probability that J=j  given that X = x  and Y=y. The probability that J = j  in the 
new young adults, given that there was i A, individuals in the previous genera- 
tion is 

and the total number for A, by 

pij = zz P r [ X = x ] P r [ Y = y l P [ j l x , y ]  . (3)  
3% 

The matrix [ p + j ]  defines a finite state Markov chain with absorbing barriers at 
0 and n. We can write 

EJ = E,,E[JIX,Y] ( 4 4  

V A R  J = Em V A R [ J I X , Y ]  + VAR,,E[JIX,Y] (4b) 
where 

E[JIX,Y]  = j P [ j l X , Y ]  

V A R [ j ( X , Y ]  = ,; ( j - - E [ J I X , Y ] ) 2 P [ j ( X , Y ]  . 
1 =a 

( 5 )  
3 =o 

In all of the culling procedures to be considered 
V 
A. E[JIX,Y]  = n ~ X + Y  . 

This simply states that the process of culling does not result in any systematic 
change in the frequency of the A, allele in the offspring. Using this we can write 
for p’ = J/n 

(7a) 

EAP = EH-p (7b) 

(7c) 

X 
X S Y  Ep’ = E,, - 

i X 
VARp’ = E,,VAR [--IX,Y] + V A R ,  ___ X + Y  * 
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The expectation of the allele frequency in the young adults is the same as in the 
gametic pool, while the variance in the frequency can be partitioned into a com- 
ponent due to the culling process and a component due to the variance in 
X / ( X + Y )  in the gametic pool. Similar partitionings occur in the theory of effec- 
tive population size. As n increases, both the mean change in p and the variance 
in p approach zero (asymptotically) at the rate n-l, providing the difference in 
the mean number of off spring per individual of the two genotypes also approaches 
zero at the rate n-l. The limiting diffusion equation arrived at by this procedure 
depends on the nature of the culling process: 

1. Culling with replacement: This  is perhaps the easiest to visualize but the 
least biological. In this case 

For this case  EA^ is given by (7%) while 

1 x  X X 1 
VARp'=-E[-]( n X+Y 1-E[--]) X+Y +VAR[--]( X+Y 1--) n . (9) 

In order to approximate this case with a diffusion equation as n - +  00, we must 
assume that the difference in the mean number of offspring per individual for 
the two genotypes approaches zero at the rate n-l. To do this let EXi = a (  l-l-pln-I) 
and EYi,= a (1 +,p2n-1). 

Let VAR X ,  = a: and VAR Y ,  = U; . 
Then, as IZ -+ CO 

 EA^ = n-'M(p) f O(n-') 
V A R A ~  = n-'VB(p) + 0 (n-') 

where 
? M ( ~ )  = p(1-p) rE".l-p2+~~(a;-o;)1 
V B b )  = p(1-p) [ l + ~ " p ~ ; + ( l - p ) U ; ) l  ( l i b )  

(1 la)  

(For more details on this calculation see APPENDIX 11.) 

If time is measured in units of n generations, the limiting process will satisfy 
the stochastic differential equation 

where W(t)  is normalized Brownian motion. The only problem arising in 
this scheme will occur if X=O and Y=O in some generation. If a21 and n is 
large, the probability of this event is extremely small; and as n-+W becomes so 
small as to be irrelevant to the limiting process. To make the process well defined 
for the finite n case, adopt the convention that if X+Y=O in some generation, 
new experiments are performed in sequence until X+Y>O for  the first time, at 
which time the gametic pool is culled with replacement. 

2. Culling without replacement: This is clearly the most realistic culling 
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procedure. The problem with this procedure, however, is that there may be a 
non-zero probability that X+Y<n, in which case the culling cannot be carried 
out. Any model incorporating a variable offspring distribution will suffer some 
such difficulty and in each case an artificiality must be introduced to overcome 
the problem. It  is only necessary that whatever artificiality is introduced, it does 
not imply a non-biological interaction as was present in the DPBP model. The 
simplest method to overcome the possibility that X+Y may be less than n is to 
assume that Pr [ X ,  = 01 =0, and Pr [ Yk = 01 =O. Other techniques could be used. 

For the culling without replacement 

A somewhat tedious calculation shows that in this case the drift coefficient of the 
limiting diffusion is the same as the previous case, but that the diffusion coeffi- 
cient is 

(14) V" (p) =p(l-p) [I-a-1+a-2(pa2,+ (1-p)0,2)] . 
As one would expect, V , ( p )  5 V , ( p ) .  

back to n with no change in p ,  
3. Non-random culling: If the population size of the gamete pool is adjusted 

E,VAR [j/n[s,y] = 0 (15) 
and the limiting diffusion, with the same drift coefficient as the preceding cases, 
has the diffusion coefficient 

(16) ViV,(p) = p ( 1 - p )  cr'(p0; + (I-p)02,) . 
In all three culling schemes, the drift and diffusion coefficients are in the same 

functional form as (1) ; their differences simply involve reparameterizations 
reflecting the nature of the culling schemes. Since the culling scheme is non- 
genetic, it seems natural to relate all cases to the non-random culling case. Notice 
that in this case the coefficient of p in the linear portion of the diffusion coefficient 
is &U:: This will be called the effective variance in offspring number for 
genotype A, and will be notated u2 : Similarly u2 will be the effective variance 
in offspring number for A,. By using the coefficient of p and (1-p) in the linear 
term in the diffusion coefficient for the three cases as the definition for the effec- 
tive variance in offspring number in the other two cases, we arrive at the 
following: 

ea 

Non- With Without 
Culling random replacement replacement 

0; t = a-%: 1 +a-%: 1-a-1+r20; . 
All three cases may now be said to satisfy the stochastic differential equation 
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V ( p >  =p(l-p) rpu: + (1-p) ““.,I * ( l a b )  

The fact that all three culling schemes yield equations of the same form sug- 
gests that this equation is the most general one for describing selection in a finite 
population in a constant environment. The models pioneered by WRIGHT and 
KIMURA (see CROW and KIMURA 1970, for a summary of their properties) must 
be regarded as special cases which are appropriate only if one of the following 
conditions are met: 

1. Random sampling from a n  infinite gametic pool: In the above parameteri- 
zation, a is a measure of the size of the gametic pool. As a -+ the average num- 
ber of juveniles does also and U‘, -+ 1 in both the with- and without- replacement 
schemes. As this occws at the limit the process satisfies 

M ( p )  = p(1-P) (P1-Pz)  (19a) 

V ( P >  = p ( l - p ) ,  (19b) 

which is the WRIGHT-KIMURA model. 

equal their means; so the difference 
2. Poisson offspring distribution: If X ,  and Yk are Poisson, then their variances 

(20) 
1 

(Pz-lru1) n 2 m o  oz - u2 = - 
n 

and the sum 

so in the limiting diffusion 

and 

or 

M ( P )  = p(1-p) (PI -PZ)  

V (p> = p(1-p) ( I+@) 

V ( p >  = p ( l - p ) c l  
depending on the culling scheme. 

3. Equal variances in offspring number: In  this case 

M ( p )  = p(1-p) (P1-P.2) (234 

V(P> =p(l-p) U: (23b) 
uz u.2 = $7 

e e, e*’ where 

It almost goes without saying that each of these conditions is seldom, if ever, 
realized in nature. Although it would seem that gametic pools are frequently 
large, it must be remembered that the relevant size is after, not before, the density- 
independent deaths occur. It is the size at the time of the density-dependent 
culling process that matters. The Poisson assumption has often been proposed 
for species producing lots of eggs, but with few survivors, (e.g., FISHER 1958). 
In the next section this kind of thinking will be explored more completely in an 
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example which will argue for this situation leading to a non-Poisson offspring 
distribution. Finally, we would expect there to be as much genetic variation in 
variances as there is in means; hence the arbitrary assumption of equal variances 
between genotypes is unwarranted. 

A N  EXAMPLE 

The ideas of the previous section may be well summarized and illustrated by 
a particularly simple example. We will construct a sequence of events to generate 
the random variables XS and Y k .  Suppose the probability that a young adult of 
genotype Ai survives to reproduce is ai. If it does reproduce, it produces a large 
number, Mi,  of offspring each of which has a small probability Pi of surviving 
the density-independent death processes. Thus the number of surviving off spring 
may be approximated by a Poisson density with mean = mi = MiPi. The distri- 
bution of X k  is thus 

Pr. [ X k  = O ]  = ( l-al) + a,e"zl (24a) 

Pr. [ x k  = j ]  = ale+% m,j/j! 

Pr. [ x k  = 01 = (1-a,) + a2e-% 

Pr. [ Y k  = j ]  = a2e*2mzj/j! 

E x k  = a,m, 

and that of Yk is 

Obviously 
E Y k  = a2mZ 

VAR x k  = alm, + a1mI2 ( 1-a,) 

VAR Y k  aZmz + cuzmz2 (1 -a,) . 
Although there is a Poisson distribution buried in the model, the relevant distri- 
bution is very non-Poisson in character. Also, the average broad size Mi enters 
only through the product MiPi and, therefore, the temptation to regard M i  as 
the size of the gametic pool must be resisted in favor of MiPC. The importance 
of the proper stochastic description of this model is most drama tically illustrated 
if we assume both genotypes have the same mean number of offspring, i.e., that 

culml = azmz = p. 
The relevant diffusion equation in the binomial culling scheme has coefficients 

M ( p )  = p ( l - - P )  P (mz-ml) (25a) 

V ( p )  =p(l--P.)  c1+p (1-P) +P(pmz+(l--p)m1)1 - (25b) 

Thus allele A,  has an advantage when mz>ml, i.e., when allele A,  has more 
offspring per reproducing individual. This would seem paradoxical at first, but 
the reason lies strictly with variance effects. The statement that EXI,  = E Y k  and 
m, > ml implies that genotype A,  has a smaller Probability to survive to repro- 
duce than A,, but more offspring if it does. This causes A,  to have a larger vari- 
ance in its overall offspring production (compounding the survival probability) 
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and thus a selective disadvantage. Such situations are undoubtedly common in 
nature. This analysis indicates that simply examining the means of all fitness 
components and applying the classical ideas of selection in finite populations will 
not be sufficient to make decisions regarding the relative fitnesses of genotypes. 

DIRECT PRODUCT B R A N C H I N G  PROCESSES 

Consider a haploid species made up of two genotypes, A ,  and A,. Let p i  be the 
probability that an individual of genotype A,  has i offspring and let qi be the 
equivalent probability for A,.  To illustrate the biological flaw in the DPBP model 
assume that 

pi =%(1-8)  , i=o,1,2 

and 

p3 = 6 

p3+i = 0 i = l ,2, .  . . 

4% = 1/(1-8) , i =  0,l 

q 2  = ?4 (1+28> 

q2+i = 0 i = 1,2, . . . 
Genotype A ,  has o n  the average 1+28 offspring while genotype A, has fewer, 
1+S. Common sense and the theory of selection in infinite populations both sug- 
gest that genotype A ,  is superior to A,. If we apply the theory of DBPB to a p o p -  
lation of size 2, we arrive at the transition matrix 

1 0 0 
(1--6)/3 (1--6)/3 ( 1  f2S)  /3 

0 0 1 

which suggests that A,  is at a selective advantage. This is most dramatically 
illustrated when 8+1, in which cace allele A,, if segregating, becomes fixed in a 
single generation. The reason for this behavior is simple; by conditioning on the 
population size being constant, genotypes producing a large number of off spring 
per individual will often violate the conditioning, o r  at least make their appear- 
ance in the conditioned sample of offspring unlikely. The particular case chosen 
shows this most dramatically because genotype A ,  can have more offspring per 
individual than will appear in the total population in the next generation. In 
more realistic models, the discrepancy between the infinite population prediction 
and the DPBP theory will probably be reduced, but the point being made here is 
that the DPBP model introduces an interaction between individuals which is 
non-biological and runs counter to the ideas of natural selection. Certainly no 
such forces have ever been described in the ecologic literature, KARLIN and 
MCGREGOR (1964) introduced the DPBP as a technique fo r  investigating the 
influence of variable offspring distributions on the behavior of alleles in finite 
populations. Although the technique may give correct answers in certain 



VARIANCE IN OFFSPRING NUMBER 41 1 

instances, it should not be trusted in any situation involving alleles with different 
distributions of off spring numbers. 

DISCUSSION 

Most of the important properties of selection for variances in offspring number 
were given in GILLESPIE (1974). That paper used the parameterization of ( 1  ) 
rather than (1 8),  but the results are easily reparameterized using the obvious 
equivalencies. It is interesting to compare the limiting operations used to arrive 
at  (1) us. (18).  In the former, the mean difference between genotypes was 
assumed to approach zero at the same rate as the variances, but the population 
size was held constant. In the latter, the means behaved in the same way as n-l 
went to zero while the variances did not. The method presented in this paper is 
probably preferable since it involves an explicit formulation whose biological 
assumptions are easily assessed. 

In  the theory of selection in temporally fluctuating environments, there are 
certain analogies to selection for within-generation variances in off spring num- 
bers. Most importantly, both models favor genotypes with lower variances in 
offspring numbers. I t  has already been pointed out that in selection in temporally 
fluctuating environments the mean fitness of the population will often decrease 
(GILLESPIE 1973). There seems to be no biologically motivated function of the 
state of the population + ( p ) ,  say, which has the property that Ed+(p)  > 0. It is 
natural to inquire whether a similar situation exists in the case of selection for 
the within-generation variance in off spring number. Here the situation is more 
clear-cut. If we define the mean fitness of the papulation corresponding to the 
diffusion model as 

then 
+(PI = P ( P I - u :  1 + (1-p) ( P . 2 - q  , 

Ed+(P) = p(1--P) [Pl-Pz+(fJ: 2 --I3 e1 >I2 
and thus the stochastic form of the fundamental theorem of natural selection 
holds for both moments of the offspring distribution. 
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APPENDIX I 

The problem is to go from the two-dimensional process defined by equation 
( 3 )  of GILLESPIE (1974) to equation (1) of this paper. One procedure to accom- 
plish this is as follows: 

( 1 )  Let the process begin evolving at time t=O at the point (p(O),jz)  and 
continue until t=T.  

(2) At t = T  begin the process again at the point ( p ( ~ ) , j z )  and allow it to con- 
" L e  until t = 2 T ;  at t=2T begin at (p(%),S) and so forth. 

( 3 )  This procedure results in a one-dimensional discrete-time Markov process: 
{ p ( O ) ,  p ( ~ ) ,  p (2T)  . . .}. Using the original equation, it is obvious that 

lim E p[ ( i f l ) ~ ]  - p ( i ~ )  
r, C' 

= lim  EA^ = M(p) 
7+ 0 

lim E&p2 = V ( p )  . 
r , o  

(4) If time is measured in units of 5-1 in the p (h) process, as 7-0 the limiting 
diffusion is clearly ( 1 ) . 

APPENDIX I1 

In this APPENDIX, derivation of the drift coefficient ( l l a )  will be given. An 

To obtain an approximation to E ( X / X + Y ) ,  we introduce the notation 
analogous calculation will yield the diffusion coefficient (1 1 b) . 

X - 
7 2 -  E+ sx ~- x -  - __ 

x+y x+y x+sx+r+sr 
n n  

where X = pEXi ,  r = (1-p) E r i .  Obviously: 

E6X = E6Y = 0 

E ( s X ) *  = p ~ ;  n-l 

E(SY)Z = (1-p)uZ 7z-I 

E ( S X 6 Y )  = 0 

11-1 may be expanded as a geometric series: 

(11-1) 

(1 1-2) 

+...I rsx-Xsr P6X*+ (X-F) SX6Y-YSX2 ________ - x 
- - [l+ x(F+T> + 

X Y  X ( X + Y ) *  
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The expectation of X I X S Y ,  using (11-2) is 

E(&)=--  p E X i  - - (~(1-p) ) EXiaZ2-EYjul2 3+. . . 
pEXi+qEY< n (pEXi+qEYi)  

Using E X <  = a( 1 +p1n-l), EYi  = a (1 +p2n-l) ,  we get 

E A ~ = E ( - )  x+y X - p=n.-I--  1 Pq(YL1-ruz) +p_(l--P) 
l+n- (pl+pz)  n 

Y l  EL2 

n n 
a[.;-.; + - U; - - U:] 
a3[1+ - Yl + - Y 2 ] 3  

x + .  . . 
P 4 
n n 

~ Pq(P1-Pz)  PQ - + 2 (u,2-u,2) + 0 ($) n-+ 00 n a n  


