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ABSTRACT 

A model of gene flow and selection in two linked loci is analyzed. The 
problems considered are the effects of linkage on the clines in frequencies at 
the two loci and the role of gene flow in producing linkage disequilibrium 
between the loci. Also, the possible significance of linkage as a mechanism for 
permitting a population of “track” spatial changes in the environment is 
considered. The results are that when the recombination fraction between the 
loci is of the same order of magnitude as the selection coefficients or smaller, 
then linkage is important in determining the gene frequencies and a substantial 
amount of linkage disequilibrium is present in the cline. Depending on  the 
spatial pattern of selection on the two loci, linkage can either decrease or 
increase a population’s response to local selection. 

ENE flow between local populations can be an important mechanism in de- 
termining their genetic composition. Depending on the amount of gene flow, 

a population may be genetically distinct, a part of a cline, or a part of a pan- 
mictic population. Much work has been done on the interaction of gene flow with 
spatially varying selection on a single locus (see ENDLER 1973; and SLATKIN 
1973). I will present here the results from a model of gene flow and selection on 
two linked loci. 

There are two questions of interest which arise in this problem: (1) What 
is the effect of linkage on the gene frequencies in clines predicted on the basis 
of the one-locus theory? (2) How much linkage disequilibrium between the loci 
can be produced by gene flow? The first question relates to the effect that linkage 
has on a population’s ability to respond to local environmental conditions. I will 
show that, depending on the patterns of environmental change, linkage can either 
increase or decrease the response to those patterns. The second question pertains 
to the interpretation of linkage disequilibrium in natural populations. LEWONTIN 
(1974) says that presence of linkage disequilibrium is a sensitive measure of 
additive epistasis between loci. However, I will show that a large amount of link- 
age disequilibrium can be generated by gene flow in a cline, even in the absence 
of epistasis. This same point has been made by LI and NEI (1974), by FELDMAN 
and CHRISTIANSON (1975) and by PROUT (1973) for other models of gene flow. 
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THE MODEL 

I will consider a genetic model with only two loci with two possible alleles at 
each locus (Al7 A, and B,, B,) and assume that there are a large number of col- 
onies or demes each identified by a single spatial coordinate, z. Random mating 
and selection take place independently in each colony. After selection acts, indi- 
viduals disperse before mating. The model is of species which have non-over- 
lapping generations and which are subject to density-independent selection. As- 
sume that there is no position effect (i.e., the fitness of the A,Bl/A,B, and 
A,B,/A,B, genotypes are the same), there are nine fitnesses which must be spe- 
cified at each location. They can be represented by a matrix W,j ( z )  (z' 0,1,2 
and j = 0,1.2), which represents the fitness of a genotype with i A ,  alleles and 
j B ,  alleles. The recombination fraction between the two loci is 1. 

Since density effects are ignored. the state of the population in each colony 
can be represented by the frequencies of the four gametes. If we define zl(z,t), 
z , (z , t ) ,  z3(z , t )  and z4(z , t )  to be the frequencies of A$,, A$,, A$,, and A,B, 
respectively in colony z in generation t ,  then after mating and selection but be- 
fore dispersal, the gametic frequencies in each colony are 

where 
wl(Z,t)=2,(Z,t)W,,(z,t)+ Zz(Z,t)w,,(z,t)+s,(z,t)W,z(z,t)+z4(z,t)Wll(z,t) 
w, (z,t) = 5 1  (z, t)  W,,(z,t) + zz (z,t> Wzo (z , t )  + 5 3  (z,t> Wl, (z, t)  + 2 4  (z,t> Wl, (z,t> 

W(z,t)=z,(z,t) w,(z,t>+z,(z,t)W,(z.t)+s,(z,t)W,(z,t)+x,(z,t)~,(z,t> 

W ,  (Z,t) = 5 1  (z, t)  WIZ (z , t )  f zz (z , t )  Wi1 (z$)  + x? (z, t)  WO2 (z,t> + x4 (z,t> (z,t) 
w4 (z,t) zr 5 1  (z, t)  wii ( z , t )  + 2 2  (z$> W l O  ( z , t )  + z1 (z,t> WO1 (z,t> + z4 (z,t> W O O  (z,t> 

(2) 
and 

D (z, t)  = z1 (z,t> 2 4  (4 - 5 2  (z,t>x3 (z,t) 

(See LEWONTIN and KOJIMA 1960 for a derivation of these equations.) 
We consider only the simplest kind of dispersal of individuals and assume that 

there is no mortality during dispersal and no habitat selection. In  that case dis- 
persal affects each of the gametes independently, regardless of whether the dis- 
persal occurs during the adult stage o r  the gamete state of the life cycle. I will 
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assume that dispersal occurs after selection. A slightly different model would be 
required for a situation in which dispersal occurs at the seed or larval stage, but 
there are no significant differences between the two approaches unless very 
strong selection is considered. Dispersal is modeled by a function M (z,z‘) , which 
is the probability that an individual will leave colony z’ to settle and mate in 
colony z. If the colonies are discrete, then M is a matrix (commonly called the 
migration matrix; cf. MAL~COT 1948; or KIMURA and WEISS 1964) and if there 
is assumed to be a continuum of colonies then M is a function of two variables 
and is called the migration function (MAL~COT 1948; or SLATKIN 1973). 

To  compute the x’s in the next generation in one colony, the contributions 
from all other colonies must be summed (or integrated, depending on the model). 
Theref ore, 

and we have a complete specification of the model in equations (1 ) , (2) and (3). 
In this paper, I will consider only the equilibrium solutions to this system so 
x, (z,t+l) = xl. (z, t)  and assume also that the equilibrium solutions are stable. 
This assumption is supported by the numerical iteration of the basic equations. 

By sufficiently restricting the model we can gain some insight about the solu- 
tions. For mathematical convenience, I will consider the continuum model on a 
linear, infinite region which is homogeneous with respect to dispersal. The as- 
sumption that the region is infinite in extent is not restrictive. The effects of finite 
boundaries are not important as long as the boundaries are far from the regions 
of significant changes in the gene frequencies. Genetic drift is assumed to be 
unimportant so the properties of the model do not depend on the total size of the 
region. Since dispersal is assumed to be homogeneous and symmetric, M (z,z’) 
must bP a function of Iz-z’I only. 

EXAMPLES 

Initially, we write the relative fitness, Wii,  in the form shown in Table 1. The 
parameters s and t are measures of the selection acting at each of the loci; e is a 
measure of the deviation from additive selection between the loci; and y ( z )  is 
a function which describes spatial variation in the relative fitness values of the 
alleles. In this model, the geographic changes are assumed to occur at the same 
location for both of the loci. The function ~ ( z )  is defined so that it has a maxi- 
mum value of 1; thus, the spatial variation in this selection is separated from the 

TABLE 1 

Selection matrix when environment changes at the same location for both loci 



790 M. SLATKIN 

strength of selection, measured by s and t ,  and the epistasis measured by e. The 
fitnesses are written in this way to facilitate comparisons with the one-locus 
model of gene flow and selection and with the two-locus models without gene 
flow. If the fitnesses are additive between the loci, then e = 0; if they are multi- 
plicative, then e = st. 

We will consider a model of a step change in environmental conditions sep- 
arating two regions: in one, A ,  and B ,  are favored and in the other, A,  and B, 
are favored. ’rhus y ( z )  = +1 for  z>O and -1 for z<O. We expect to find a cline 
in frequencies at both of the loci and. if the loci were independent, one-locus 
theory could be used to predict the shape of the cline. We consider here the effect 
of epjstasis and linkage on the clines predicted using one-locus theory. 

First, we analyze the case with s = t. From the symmetry of the problem, it 
is reasonable to assume there is a solution which is unchanged if A,  is replaced 
by B,, A ,  by B, and z by -2. For this solution x,(z) = x,(z) = x 2 ( - z )  and 
x,(z) = x4 (- z )  . T. NAGYLAKI (personal communication) has shown that for 
this model, such a solution always exists. While there may be other equilibrium 
solutions not having these properties, in the numerical calculations there was no 
evidence that there are other stable equilibrium solutions for which all alleles 
are present. 

The basic equations ( 1 )- (3)  can be written 

- ex, (2’) ] + rD (2’) } dz’ 

- x,(z’) (2s,(z’)-e)] -rD(z’)} dz’ (4) 

in this special case. We notice that the combination x,(z) - x4(z) appears fre- 
quently enough that i t  may be a more useful variable than one of the original 
ones. Since there are now only two independent variables, we write 

N z )  = Xl(Z) - &(Z) ( 5 )  

and find the equations for B ( z )  and x2(z). We note 

1 --Bz (2) 
- 5 2  (2) 4 

D ( z )  = 
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to find that 

e 
- 2x2(z')] + Y B ( 2 ' )  (1-B2(2'))/2} w (2') 

and 

(l+B'(Z') - 222(z')) - 
2 w  (2') 

+ -  r (I-B2(z') -+X~(Z'))) dz' 
4w (2')  

where 

Equations (7)  and (8), in general, cannot be solved analytically, but there are 
some conclusions which we can reach by comparing them with previously solved 
cases. Those conclusions will be verified by numerical solutiorls. 

The epistasis appears in each equation as a term multiplied by e. Therefore it 
seems that there is no complex effect of epistasis in this problem as there is in 
other models (the two-locus, heterotic model, for example). When the fitnesses 
are approximately multiplicative ( e  of the same order of magnitude as s2), then 
for weak selection, eQs and the solutions to ( 7 )  and (8) are almost independent 
of e. To be more precise, the solutions to (7) and (8) could be expressed as 
perturbation series in e and to the lowest order, the gene frequencies in the cline 
would be independent of e. This is in contrast to the two-locus heterotic models 
in which the result depends strongly on the relative values of e and r. Of course, 
when e is on the same order of magnitude as s, or when s is nearly 1, the epistasis 
may be important and this argument cannot be used. 

If we let e=O (considering only the lowest order terms and ignoring epistasis) 
and reduce (7) and (8) to differential equations by using the same techniques as 
in my previous paper ( SLATKIN 1973), we get 

__ d 'B(z )  - s y ( 2 )  ( I -B ' ( z )  - 2x,(x)) -12  

2 dz2 
-1' d2x2(z) r 

2 dz' 4 
- - - s y ( z ) B ( z ) z 2 ( 2 )  + - ( I -B ' ( z )  - 

where 

1 2  = J_"w M (.) z'dz 
Equations (9) and (10) are correct to  lowest order 
solution, it is sufficient to consider only the region 

in s. For the symmetric 
O<z<". The parameter 
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1 is approximately the dispersal distance. The boundary conditions are that 
B(O)=x’,(O)=O and B(zj-+l and x2( z ) -0  as x + m .  The reduction of the integral 
to the differential equations is equivalent to assuming that gene flow can be 
modeled as a diffusion process and is valid when the higher moments of M(z-2’) 
are not too large. That assumption is satisfied for most migration functions which 
have been measured. 

We note that 

the linkage disequilibrium at z.  Therefore (9) and (1Oj can be rewritten 

-1‘ d2X2(z) ___ - -sB(z)x.(z) + ID(Z)  . 
2 dz2 

We consider first the case where r>>s. As in the case of a cline in allele fre- 
quencies at one locus. the natural length scale in equation (12) is l/dT (see 
SLATKIN 1973). Sicce the gametic hequencies sum to one, the gametic fre- 
quencies must all change on the cam? length scale. The natural length scale for 
equation (13) is not Z/dyunless D is of the same order of magnitude as s/r. Thus 
when r>>s we would expect D to be small. Conversely, wheE r and s are of the 
same order of magnitude we would expect that D could be significantly larger. 
These predictions based on a qualitative analysis of the differential equations are 
confirmed by the numerical iteration of the exact equation as discussed later. 

When D ( z )  is small. it can be ignored in (12), which then has the solution 

and we find that the allele frequencies are the same as in the unlinked case 
(SLATKIN 1973). Equation (14) differs from equation (1 1 ) in SLATKIN (1973) 
by a factor of -\iz as a result of an algebraic error contained in that paper and 
lrirrdly pointed out by T, NAGYLAKI (personal communication). This is the 
expected result and the calculation merely shows the range of I for which linkage 
would be expected to be unimportant. As will be verified by the numerical 
results, when I is of the same order of magnitude as s o r  smaller. there would be 
a significant amount of linkage disequilibrium present in the cline. One conse- 
quence is that i fs  is reasonably large (.l or .2), then some linkage disequilibrium 
is present for unlinked loci (r=.5) as a result only of the gene flow. 

I n  the opposite extreme, for small values of r,  the model is nearly the same as 
a model of a one-locus system with four alleles. In this case two of the “alleles” 
(A,B, and A,B,) are at a disadvantage throughout the range and therefore should 
not be present at equilibrium. For r=O, we can easily show that the A,B, and 
A,B, gametes would be absent by noting that when r=O, the only possible solu- 
tion of (13) with X ’ ~ ( O ) = O  and x 2 ( x ) = 0  is x p ( z ) = O ,  since B(z )>O for z>O in 
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the symmetric case. Thus, this system is equivalent to a two- allele system in 
which the selective different is 2s. The maximum slope of the cline in frequencies 
at the two loci is .\/8s/3I2, which is larger by a factor of .\/2 than in the case with 
large r .  For intermediate values of r ,  we would expect the cline to be somewhat 
steeper than for large r ,  but the maximum possible increase in the slope is dx 

In my previous paper, I used the inverse of the maximum slope of the cline 
as a measure of the “characteristic length” of the system (SLATKIN 1973). I 
showed that the gene frequencies at equilibrium do not respond to spatial changes 
in the environment that occur on a scale less than the characteristic length. The 
above analysis indicates that linkage decreases the characteristic length whenever 
r is of the same order of magnitude as s and that the maximum decrease is 
1 /v% or about 30%. Therefore, tighter linkage between two loci will allow the 
gene frequencies at both loci to respond to smaller scale changes in the environ- 
ment than they would in the absence of linkage, as long as the environmental 
changes occur in the same location at both loci. This suggests the possibility, 
then, of selection in favor of a modifier allele for tighter linkage in those cases 
when environmental changes are on a scale smaller than Z/& the characteristic 
length in the unlinked case. This is consistent with KARLIN and MCGREGOR’S 
( 1  974) general theory of modifier alleles. 

The predictions about the behavior of the exact model are based on a qualita- 
tive analysis of the approximate differential equations. I tested these predictions 
by directly iterating the discrete analog of equations (1 ) - (3 )  on a computer. 
Equation ( 3 )  was replaced by 

n 

3=1 
s(i,t+l) = x*( j , t )M( i , j )  . 

where M(i , j )  is the migration matrix and i and i identify one of the n locations 
in the cline. In  practice n was always even, so there was no colony a t  the point 
corresponding to z=0; the region z<O was replaced by i<n/2 and z>O by 
i>n/2+1. 

The parameter n was large enough that the allele frequencies were nearly 
1 or 0 at the boundaries. I always chose the boundaries to be approximately ten 
times the characteristic length and assumed a reflecting boundary condition. 
Further increases in n did not have any significant effect OE the equilibrium 
solution. The model was iterated until an equilibrium was reached. The results 
in the first case are shown in Figure 1 ; the linkage disequilibrium, D, is plotted 
for different values of r .  It could be anticipated from the analysis of the differ- 
ential equations that the size of the region for which D could be significantly 
greater than 0 is of the same order of magnitude as the characteristic length. 
The maximum slope of the cline (A=z(n /2+1) - z (n /2 ) )  is given in Table 2 
for different values of r. Also given in Table 2 are the results for different 
amounts of epistasis. These calculations verify the prediction about the relation- 
ship between r and s and about the importance of e. 

Using the above results, we can speculate about the properties of a system 
with more linked loci. For simplicity, we can consider the case in which there are 
k loci of equal effect and assume that the selection coefficients between the loci 
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. 2 o t  I \  

Z 
FIGURE 1.-Linkage disequilibrium us. distance for fitness as in Table 1, s=t=.l and 1 ~ 3 .  

are additive. In the case of complete linkage (r=O), by analogy with the two- 
locus case, the system again reduces to a two-allele model with the selective 
differences between the two alleles of ____ ks (ignoring epistasis). Therefore, the 
maximum slope of the cline would be V4ks/3l2 and the associated characteristic 
length ZV3/4ks. In  the two-locus case, the linkage did not have a great effect 
on the characteristic length but with more loci, the characteristic length decreases 
by a factor of l/dx Therefore, there is the possibility, at least, that the charac- 
teristic length may be reduced by an order of magnitude. That result would not 
depend strongly on either the additivity of the selective values or the equivalence 
of the loci assumed here. 

Returning to the two-locus model, when the two loci contribute unequally 
to the fitnesses, the analytic problem becomes more complex and less revealing. 
I will limit myself to a presentation and discussion of the numerical results. The 
selection model is the same as in the previous cases (Table l ) ,  but now s is 
significantly greater than t. When r=O, numerical study indicates that the results 
from the one-locus model still apply and we can predict that allele frequencies 
at the two loci will be the same and can be predicted from a one-locus model 
with selection coefficients, s+t+e. Since we have assumed s>>t and e to be of 
the order of st, the frequencies at the A locus (the more strongly select locus) 

TABLE 2 

Maximum slope of cline for selection in Table I with s=t=.l and k 3  

r 
APmaz 

e= 0.0 0.01 0.02 

0.00 
0.05 
0.10 
0.15 
0.20 
0.25 
0.5 

,0624 .a630 ,0634 
,0578 

.0538 ,0548 .(I558 
,0532 

,0508 ,0520 ,0528 
.0511 

.0478 .0489 .0498 
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will be approximately the same as in the case without linkage. At the B locus, 
however, the cline will be greatly steepened because of linkage. The maximum 
slope of the cline at  the B locus will be increased from roughly 64t /3Z2 to 64s/3Z2.  
For example, if s=.l and t=.01, the slope increases from .12/1 to .37/1. 

The results from the computer iteration of equations (1)-(3)  are shown in 
Figures 2 and 3. In Figure 2, p ( B , )  (=x,(z) f x 3  ( z )  ) the frequency of the B, 
allele is plotted against z .  When r=O, p ( A , ) = p ( B , ) .  The maximum values of 
D ( D ( i )  at i=n/2 or n/2+1) are given in Table 3.  That is another measure of 
the importance of linkage. 

The maximum slope of the clines in the A and B loci are shown in Figure 3 
as functions of r .  We can distinguish three regions. For r<t ,  the loci are acting 
effectively as a single unit. For t<r<s, linkage is affecting the allele frequencies 
but the loci are more or  less independent. For r>s, linkage has little effect, and 
the loci are almost independent. Again, we find that the loci do not have 
to be very closely linked for linkage to be important in determining allele 
frequencies. 

The first two cases analyzed using the selection model in Table 1 are those 
in which the change in environmental conditions is assumed to occur at the same 

Z 

O S o 2 r  
0 .0 ‘ I  

\ I 

-2 
0 0.0 5 0. I 0.15 0.2 

r 
FIGURES 2 AND 3.-Allele frequencies and maximum slopes of clines produced by selection of 

the type given by Table 1 with s=l and t=.01 and 1=3. 
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TABLE 3 

Maximum linkage disequilibrium for selection in Table I with s=.l t=.Ol 

r Din/?)  

0.0 
0.025 
0.05 
0.075 
0.1 
0.15 
0.2 

0.25 
0.1358 
0.0937 
0.0713 
0.0579 
o.wo3 
0.3325 

location for both loci. That model is motivated by the problem of the evolution 
of coadapted gene complexes in response to different patterns of environmental 
variations. A similar problem is one in which the changes in selectim occur at 
different locations for the two loci. The selection model for this case is given in 
Table 4. I shall assume that y,(z ' )  = 8(z+z,) and y, (z)  = 0(z-2 , )  where 
8 ( z )  = -1 fo r  z<O and 4-1 for z>O. The geographic pattern is illustrated in 
Figure 4. 

In this case, when zo is large, the clines in frequencies of the two loci are 
independent of each other and are determined by the selection coefficients at the 
two loci; linkage has no effect. Only when there is some overlap of the clines 
can linkage be important. The clines will overlap when 22, is approximately the 
same as or less than the larger of the two characteristic lengths associated with 
the two loci. In such cases, the two effects of linkage that are of interest are the 

TABLE 4 

Selection matrix when environmental change is different at the two loci 

FIGURE 4.--Illustration of the pattern of selection in Table 4. 
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shifting of the two clines from zo and -zo toward 0 and the steepening of the 
clines as occurs in the cases analyzed previously. By referring to equation (12), 
we can see that linkage disequilibrium modifies the effective selection at  each 
locus. When the selection intensities at the two loci change at different places, 
one result is that the effective selection does not reflect the actual spatial patterns. 

We consider first the case with s=t. The results from the numerical iteration 
of the basic equations (1)-(3) are shown in Figure 5 for z0=5 and three values 
of r.  In  this case Zc=Z/VT = 9.48 and we would expect, from the above argument, 
that linkage would have an effect on the cline. We see that the cline does shift 
from -zo toward 0 as r decreases from .2 to 0. The cline is somewhat steeper for 
smaller values of r but that is not apparent from the figure. From the previous 
cases analyzed, we would not expect much steepening, even for very small zo. 
Figure 5 can be contrasted with the example shown in Figure 6. The only differ- 
ence is that zo=10 and, in that case, even with r=O. the cline is not shifted 
perceptibly. 

There are three parameters of interest in this problem, zo7 s, and T-. The main 
effect of linkage is the shifting of the cline from the location expected if there 

-zo z +zo 

3 
1.0 - 

- 

- 

-z, z +zo 
FIGURES 5 AND 6.-Gene frequencies in clines produced by selection of the kind in Table 4 

with s=t=.l and 1=3. In Figure 5, zo=lO. 
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2.5 --I a-.- - -0 

ZO' IO 

.2 U 

r 
FIGURE 7.-Location of midpoint of the cline plotted against r for different values of z selec- 

tion as in Table 4 with s=z=.l and k 3 .  

were no linkage, *cos to the actual location with linkage. For these purposes, we 
can define the location of the clines as the point at which p=1/. We can best 
understand the behavior of the system by plotting z (the point a t  which 
p ( B , )  =1 / )  against I* for different values of zo. as is showr! in Figure 7. A measure 
of the importance of linkage is d=zo-z j. We can see that for a fixed value of r ,  
d is a maximum when zo is roughly &/2. For smaller values of zo, linkage dis- 
equilibrium is larger but the distance that the cline can be shifted is smaller. 
For larger values of zo, the D is smaller and the cline is not shifted as much. 

The final case considered is the same as above but with s>>t. As before in the 
case of unequal selection coefficients, there is little change in the more strongly 
selected locus. We would expect that the cline in the more weakly selected locus 
be both shifted and made more steep as a result of the linkage. Two cases are 
shown in Figure 8. In part a, z,=20 in which 2,=8.2 and 26 for the A and B loci 
respectively, so there is little overlap in the clines and linkage has no effect, 
even when r=O. In part b, zo=lO, which is intermediate between the two charac- 
teristic lengths. Linkage shifts the cline in the B locus but does not steepen it 
significantly. For  smaller values of zo ( zo<5) ,  the results are almost the same as 
in the case with zo=O. which was treated above. 

We can again plot the maximum effect of linkage on the clines by z again s 
for different values of zn. In Figure 9, we see that the maximum effect of linkage 
occurs when zo is roughly one-half of the larger of the two characteristic lengths 
associated with the two loci. In other words, the shift in the cline of the more 
weakly selected locus depends mainly on its selection coefficient. 

DISCUSSION 

We have found that, with gene flow and selection on linked loci, when the 
recombination fraction, r,  is of the same order of magnitude as the selection 
coefficients for  the loci, then linkage will be important in determining the gene 
frequencies. In  such cases, there will be a substantial linkage disequilibrium 
between the two loci in the interior part of the cline. 
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I 1 I 

-z, z +z, 

FIGURE 8.-Gene frequencies when selection is determined by Table 4 with 
1=3. 

? 5 l5 t 

0.04 0.08 0.1 2 

s=.l, t=.O1 and 

r 
FIGURE 9.-Location of midpoint of clines in Figure 8. Similar to Figure 7, but with s=.l, 

t=.01 and 1=3. 
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Considering first the effect on the clines in gene frequencies, linkage allows a 
population to track the changes in the environment mare closely than in the 
unlinked case when the selection intensities change at the same point for both 
of the loci. This effect is already apparent in the two-locus case and can be even 
more important with more than two linked loci. This suggests the possibility 
of selection for  a modifier which reduces crossing o'ver. In contrast, when the 
selection intensities change at different places for different loci. linkage between 
the loci reduces the ability of the population to track changes in selection. In that 
case the locations of the clines would not necessarily correspond to the environ- 
mental changes. It is possible, then, that there could be selection in favor of a 
modifier allele which increases the recombination fraction between the loci. 

With other models of selection besides the ones used above, particularly those 
which allow for one locus to modify the dominance relationship at the other 
locus, very steep clines can result even in a two-locus system. CLARKE (1966) 
first investigated this problem and recently ENDLER (manuscript in preparation) 
extended CLARKE'S model and found evidence for that kind of selection acting in 
laboratory populations of Drosophila melanogaster. 

The shifting of a cline in frequencies at a locus away from the location 
expected on the basis of its selection pattern could be important in some popula- 
tions, BISHOP (1972) reports on a very detailed theoretical and experimental 
analysis of a cline in frequencies of melanic forms of the moth Biston betularia. 
BISHOP found that the observed cline was from 10 to 20 km from the location 
predicted with a computer model using estimated values fo r  the relevant param- 
eters. Even when factors such as heterosis and nonsymmetric dispersal were 
included in the model, the cevter of the predicted cline was at least 8 km from 
the observed cline. However, the shapes of the predicted and observed clines were 
similar. 

The linkage of the melanic gene to a strongly selected gene o r  genetic complex 
is a possible explanation for BISHOP'S (1972) findings. BISHOP demonstrated that 
the selection for or against the melanic form was quite strong, on the order of 
30% or more against the less favored form (BISHOP 1972, Table 12). Although 
he could not estimate the average migration distance per generation, he did find 
that at least 25% of the males traveled more than 2 km per generation. Thus 2 
km is a reasonable estimate for 1. Figure 7 shows the displacement of the center 
of a cline with s=t=.l and k 3 .  We can see that with tight linkage the displace- 
ment of the cline can be greater than the average dispersal distance. It is possible 
that with heterosis and asymmetric dispersal, the expected displacement due to 
linkage could be even larger. although a more detailed model would be necessary 
to make any quantitative predictions. The point here is that displacements of 
the magnitude found by BISHOP (1972) could be caused by linkage and that 
linkage would not necessarily change the shape of the observed cline from that 
expected in the absence of linkage. 

In a panmictic population with a symmetric selection model assumed, the 
recombination fraction, r must be less than the deviation from additive fitnesses 
between the loci for linkage disequilibrium to be present at equilibrium 
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(LEWONTIN and KOJIMA 1960). If the fitnesses are roughly multiplicative 
between the loci, then r must be less than the square of the selection coefficient. 
However, with gene flow, r can be equal to or even greater than the selection 
coefficients and there still can be a substantial amount of linkage disequilibrium 
present. Similar conclusions regarding the importance of gene flow in producing 
linkage disequilibrium have bee= reached by NEI and LI (1973), by PROUT 
(1973), by LI and NEI (1974) and by FELDMAN and CHRISTIANSEN (1975). 

That raises an interesting problem regarding the observations on linkage 
disequilibrium in natural populations. In many studies, significant linkage 
disequilibrium has not been four?d, even between very closely linked loci, except 
when the loci are on an inversion (CHARLESWORTH and CHARLESWORTH 1973). 
There are some exceptions (e.g., ROBERTS and BAKER 1973) and the data are 
hardly complete at this time. Also, there are technical problems in estimating 
small values of D. Still, i f  spatial variation in selective pressures is important 
and the loci which are studied by the current electrophoretic techniques are 
affected by the mafiy spatial patterns we observe in nature, then one is forced 
to ask why more linkage disequilibrium is not found. The problem is compounded 
by FELSENSTEIN’S calculations (1965) which imply that in many cases, a sub- 
stantial amount of linkage disequilibrium can be generated by fluctuating 
selection in a panmictic population, even though there would be no linkage 
disequilibrium if equilibrium is reached. Although the calculations have not 
been performed, it is certain that a combination of spatial and temporal variation 
in selection will produce some linkage disequilibrium under almost any reasolz- 
able set of assumptions. If studies on natural populations continue to indicate 
that linkage disequilibrium between closely linked loci is often not large, then 
we will be forced to conclude that either most selection coefficients are constant 
in space and time or that a majority of the loci observed in electrophoretic studies 
are, in fact, selectively neutral, as has been proposed by KIMURA (1968) on the 
basis of substitutiorr rates of alleles. 

I wish to thank JOHN ENDLER and JOSEPH FELSENSTEIN for valuable discussions of this 
subject, and J. F. CROW, T. NAGYLAKI, and the referees for helpful comments on an earlier draft 
of this paper. 
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