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ABSTRACT 

Assuming age-independent fertilities and mortalities and random mating, 
continuous-time models for a monoecious population are investigated for weak 
selection. A single locus with multiple alleles and two alleles a t  each of two 
loci are considered. A slow-selection analysis of diallelic and multiallelic two- 
locus models with discrete nonoverlapping generations is also presented. The 
selective differences may be functions of genotypic frequencies, but their rate 
of change due to their explicit dependence on time (if any) must be at  most 
of the second order in s, (i.e., O(s2)), where s is the intensity of natural selec- 
tion. Then, after several generations have elapsed, in the continuous time 
models the time-derivative of the deviations from Hardy-Weinberg proportions 
is of O(s2), and in the two-locus models the rate of change of the linkage dis- 
equilibrium is of O(s2).  I t  follows that, if the rate of change of the genotypic 
fitnesses is smaller than second order in s (i.e., o(s2)), then to O(s2) the rate 
of change of the mean fitness of the population is equal to the genic variance. 
For a fixed value of s, however, no matter how small, the genic variance may 
occasionally be smaller in absolute value than the (possibly negative) lower 
order terms in the change in fitness, and hence the mean fitness may decrease. 
This happens if the allelic frequencies are changing extremely slowly, and 
hence occurs often very close to equilibrium. Some new expressions are derived 
for the change in mean fitness. It is shown that, with an error of O ( s ) ,  the 
genotypic frequencies evolve as i f  the population were in Hardy-Weinberg 
proportions and linkage equilibrium. Thus, at least for the deterministic 
behavior of one and two loci, deviations from random combination appear to 
have very little evolutionary significance. 

I .  INTRODUCTION 

N 1930 FISHER enunciated the Fundamental Theorem of Natural Selection- I that the rate of increase of fitness is equal to the genic variance-and invoked 
it as the main underpinning of his view of evolution (FISHER 1930). He held 
that evolution occurs primarily by the deterministic increase in fitness of large 
populations under the action of natural selection. He recognized that mutation 
supplies the raw material for genetic diversity, but to random drift he assigned a 
relatively minor role. WRIGHT (1931, 1970) emphasized that, due to pleiotropy, 
epistasis, and selection for an intermediate optimum, the fitness surface has many 
selective peaks. Small populations can “sample” this surface by random drift, 
sometimes crossing a saddle from a lower selective hill to a higher one. He pointed 
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out that if a species is divided into many such small populations, which exchange 
relatively few migrants, selective dispersion may enable it to reach the highest 
peak on the surface. The neutral theory of KIMURA (1968) and of KING and 
JUKES (1969) ascribes much of evolution, especially at the molecular level, to 
mutation and random drift. The ascertainment of the level and range of appli- 
cability of these theories and of their comparative importance in the evolution 
of phenotypes is, if broadly understood, one of the central problems of population 
genetics. 

Another important problem of evolutionary theory has been the assessment of 
the size of deviations from random combination, i.e., from Hardy-Weinberg pro- 
portions and linkage equilibrium. Systems in Hardy-Weinberg ratios and linkage 
equilibrium are completely described by gene frequencies, and have much simp- 
ler dynamics than those for which random combination fails, thereby necessi- 
tating the use of genotypic proportions for a full specification. It is of great 
interest to attack this problem under the biologically common conditions of 
random mating, loose linkage or independent assortment, and weak selection. 

For the continuous-time model employed by FISHER (1930), KIMURA (1958) 
proved that, even with constant genotypic fitnesses, departures from Hardy- 
Weinberg proportions and linkage equilibrium will give rise to additional terms 
in the time-derivative of the mean fitness. Since these terms may sometimes be 
negative, the mean fitness may decrease. In nearly all biological circumstances, 
deviations from Hardy-Weinberg proportions and linkage equilibrium will occur 
in populations unless generations are discrete and nonoverlapping ( NAGYLAKI 
and CROW 1974). 

With discrete nonoverlapping generations, provided the fertilities of matings 
may be expressed as products of factors corresponding to the genotypes, Hardy- 
Weinberg proportions will be attained in just one generation of random mating 
(BODMER 1965; KEMPTHORNE and POLLAK 1970). For a single locus with an 
arbitrary number of alleles, several authors have demonstrated in this Hardy- 
Weinberg model that the change in mean fitness is nonnegative, being zero only 
at equilibrium, but it is not exactly equal to the genic variance (SCHEUER and 
MANDEL 1959; MULHOLLAND and SMITH 1959; ATKINSON, WATTERSON and 
MORAN 1960; KINGMAN 1961a,b). EWENS (1969a,b) has shown that if fitnesses 
are additive between loci, the mean fitness is nondecreasing, and observed that 
this generally implies nondecreasing mean fitness for sufficiently weak additive 
epistasis. The work of MORAN (1964) and EWENS (1969c, pp. 94-96) shows that 
even in the general two-locus, two-allele case the mean fitness may decrease. 

Since a complete formulation of continuous selective models without age- 
structure was given only recently (NAGYLAKI and CROW 1974), the effect of 
deviations from Hardy-Weinberg proportions on the change in fitness could not 
be evaluated. Considerable attention has been devoted, however, to the departures 
from the Fundamental Theorem due to linkage disequilibrium in Hardy-Wein- 
berg models, and, as a result, much insight into the dynamics of two-locus systems 
has been gained. Based on his study of diploid and haploid discrete-time systems, 
KIMURA (1965) suggested that with small selective differences, and loose linkage 
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or independent assortment, a population rapidly reaches a state he named “quasi- 
linkage equilibrium” (hereafter referred to as QLE) . Motivated by his work, we 
shall say a diallelic two-locus system is in QLE if the linkage disequilibrium 
ratio, 2, varies more slowly than the gametic frequencies. In this condition, the 
Fundamental Theorem of Natural Selection is generically approximately valid. 
QLE has been discussed from a slightly different point of view by WRIGHT 
(1967). KIMURA clearly recognized that it would take several generations to 
reach QLE, and formulae for the approximate time required in continuous and 
discrete models have been given (NAGYLAKI 1974). Asymptotic analyses by 
FELDMAN and CROW (1970) suggested that QLE could not be interpreted as the 
more rapid ultimate rate of convergence to equilibrium of 2 than of the gametic 
frequencies. It was later proved generally in all models that asymptoticatly 2 and 
the gametic frequencies have the same time-dependence, and an approximate 
formula was presented for the beginning of the asymptotic time region (NAGY- 
LAKI 1974). 

The first rigorous proof of QLE, as defined above, was obtained by CONLEY 
(1972) in a continuous Hardy-Weinberg model. Using the qualitative theory of 
dynamical systems, he showed that after a short time (the same as that given in 
NAGYLAKI 1974) the time-derivative of the linkage disequilibrium D is at most 
of the second order in s (i.e., O ( s 2 ) ) ,  the intensity of natural selection. It follows 
at once that the same is generally true for Z. CONLEY’S treatment was elaborated 
and generalized to multiple loci and multiple alleles by SHAHSHAHANI (1974). 
HOPPENSTEADT ( 1976) simultaneously explored deviations from Hardy-Wein- 
berg proportions and linkage equilibrium in a continuous two-locus, two-allele 
system by supposing that the fertilities of matings depend only on the female 
genotype, the male and female genotypic frequencies are the same, and (implic- 
itly) crossovers occur immediately after fertilization. He established that for 
sufficiently slow selection, if the initial linkage disequilibrium is small ,the mean 
fitness is nondecreasing. 

With mathematical techniques similar to HOPPENSTEADT’S (1976), we shall 
investigate departures from Hardy-Weinberg ratios and linkage disequilibrium 
and their contribution to the change in mean fitness for weak selection. In Section 
11, we shall consider continuous time models for a single locus with multiple 
alleles in a diploid organism and two alleles at each of two loci for both diploids 
and haploids. The models analyzed will be the most general ones possible for a 
panmictic monoecious population with age-independent fertilities and mortalities. 
In Section 111, we shall carry out the corresponding calculations for Hardy- 
Weinberg two-locus diallelic and multiallelic models with discrete nonoverlap- 
ping generations. Some new expressions for the change in mean fitness will be 
derived in Sections I1 and 111. The evolution of the genotypic frequencies will be 
studied in Section IV. 

11. CONTINUOUS TIME 

We shall rely heavily on the formulation of continuous selective models in 
NAGYLAKI and CROW 1974. At least for a single locus with multiple alleles, it has 
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been established that, as long as the mating frequencies and birth and death rates 
are age-independent, this formulation is completely general ( CORNETTE 1975). 
1. Single locus 

Let the alleles at the locus under considering be Ai, i = 1, 2, . . . . We denote 
the frequencies of the allele A, and the ordered genotype AiAi by pi and Pij 
(=Pj,) , and use 

as measures of the departures from Hardy-Weinberg proportions. We suppose 
all the fertilities differ from the constant b and all the mortalities from each other 
by quantities of the order of the constant s. If the selective differences are con- 
stant, s can always be taken as the largest selection intensity. Let m, and m repre- 
sent the Malthusian parameter of the allele A ,  and the mean fitness of the popu- 
lation. With random mating, our basic equations are (NAGYLAKI and CROW 1974) 

Q . . = P . - p  2 1  - 1.1 $3 . (1) 

pi = pl (mi - m) , ( 3 )  

where the superior dot signifies the time-derivative, and f i j  (P,t) is a complicated 
function of birth and death rates, genotypic frequencies, and possibly of time, of 
order unity (i.e., bounded as s + 0). 

By the usual variation-of-parameters formula, we may write the solution of 
(2) as 

Qij ( t )  Q i j ( 0 ) c b t  -I- S@ fi?"'fij[P(T) , ~ J d r .  (4) 
Let tl be the shortest time such that IQij(0) < s for all i,j. Of course, if the 
system starts sufficiently close to Hardy-Weinberg proportions, tl will be zero. 
Biology allows us to assume that f i j  is uniformly bounded for all t 2 0. Then, 
for t 2 tl ,  Qi = 0 ( s )  , so we write Qi ( t )  = sQOi ( t )  . Typically, for an approxi- 
mately stabilized population, b is close to unity, so tl will rarely be more than 
several generations. Thus, the system approaches the Hardy-Weinberg surface 
Qij = 0 to O(s) very rapidly, but at t = tl it is still very far from gene frequency 
equilibrium, the gene frequency change being quite small (crudely, stl) from 
t = 0 to t =tl. For t > tl, (2) reads 

QOij  - bQ"ij + f i j (P  , t )  . ( 5 )  

From ( 1 ) , (3) , and ( 5 )  , we conclude that Pij = 0 ( s )  for t > tl. We posit that 
the explicit dependence of the selection coefficients on time, if any, is quite weak, 
in fact, of O ( s 2 ) .  This means 

-- afii - o(s) . 

Notice that arbitrary dependence on genotypic frequencies is permitted. From 
( 5 )  and (6) , we obtain 

(6) at 

(7)  
d 
dt - [Q"ij - b-'fij(P , t ) ]  - b [ Q o i j  - b-l f<j(P,  t ) ]  4- O ( S )  , 

whence, by a formula analogous to (4), it follows that 
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(8) 
We define tP (2  t l )  as the shortest time such that 

(9) 
Usually, tz - tl will be several generations. More generally, the order of magni- 
tude of tl  and t2 will be tl =: - bllns and tz z 2t1. Our results concern the slow 
evolution of the system near the Hardy-Weinberg surface for t 2 tz. Since the 
population is not close to  equilibrium until roughly the much longer time t3 z l/s 
has elapsed, the results are not asymptotic, and cannot be deduced by linear 
analysis. For t > tz, (8) implies 

Q"%,(t)-b-lf%j[P(t) , t ]  = {Qo%j(tl)  - b-lfij[P(t,) , t l ] }  e-b(t-tl) 4- O(s) . 

IQ"ij(t1) - b-'fij[P(tl) , tl] 1 e-b(t*-tl) I S. 

Q"ij(t) = b-lfij(P , t )  + O(s) . (10) 

Therefore, recalling ( 6 )  and that P i j  = O ( s ) ,  we find Qoij ( t )  = O(s) or 

Qij ( t )  =0(s2 )  , t > t z .  (11) 
Equation (1 1) is the main dynamic result olf this subsection. Due to its close 

biological and mathematical analogy to QLE, we shall designate this approximate 
constancy olf the deviations from Hardy-Weinberg ratios "quasi-Hardy-Weinberg 
equilibrium" or QHW. 

We shall now apply (1 1) to the Fundamental Theorem. The rate of change of 
the mean fitness is (KIMURA 1958) 

where V ,  is the genic variance, the d i j  are the dominance deviations, 

eii =Pij/(pipj)  = Q i j / ( p i p j )  -I- 1 7 (13) 
o a  

at e.=-he , 

and the bars indicate averages over the genotypes. Clearly, V, = 0 (s2). We 
assume that = o(s2) (i.e., lmzjj/s2 .+ 0 as s -+ 0 for all i,j). This means that 
the variation of the genotypic fitnesses with time, either directly or through the 
genotypic proportions, must be rather slow. This condition is much stronger than 
( 6 ) ,  which sufficed f a r  (11).  But ( I I ) ,  (13), (14),  and the fact that Q i j ( t ) ,  

p i ( t ) ,  and di j  are all of O(s) inform us that for t > tz the last term in (12) is of 
0 (s3). Therefore, generally, for sufficiently weak selection the genic variance 
term dominates in (12) , the others being negligible as s -+ 0, and the mean fitness 
is nandecreasing. 

It is important to realize that, although the above result is generally true, it 
may fail to hold in some small regions. The genic variance can be smaller than 
a constant of the order of unity times s2. Then the second and third terms in (12) , 
which may be negative, may dominate. This exception is particularly likely to 
occur close to an equilibrium. Since they are combinations of time-derivatives, 
the last two terms in (12) obviously vanish at equilibrium. If pi is the average 
effect of Ai, the genic variance is (KIMURA 1958) 

V g = 2 ~ p i p i  . (15) 
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Hence, <Vg = 0 at equilibrium. (We may also conclude this because all other 
terms in ‘112) are zero a t  equilibrium.). Therefore, if I/, were to approach zero 

faster than either r; or sd as the system:tgnds to a stable equilibrium, % may be 
negative sufficiently near that equilibrium. Such exceptions are  expected to be 
local and without much evolutionary significance. While there is substantial 
gene frequency change, (15) leads us to believe that the genic variance should 
generally be of the order of s2. 

Our results are easily represented diagrammatically in  the two-allele case. For 
brevity, let us write p = p , ,  q = p., Q Qlz .  It is trivial to see that Q,, -- Q,:’ = - Q.  
The coordinates Q,p are more convenient than P I , ,  2P,, , P,, of the customary 
de Finetti plot. The constraints P, ,  > 0 , P,, > 0 , P,,  + P,, I 1 imply that the 
system evolves in the region bounded by the three parabolas in  Figure 1. Hardy- 
Weinberg proportions correspond to the dashed line Q = 0 , 0 F p 5 1 .  A typical 
trajectory is sketched in Figure 1. The times are roughly t ,  - b-’lns . tL’ z 2 t l ,  
and t:, =: r’. For 0 i t i t ,  , p changes only by about s t ,  =: - h-’slns . while Q is 
reduced to O ( s )  in this short time. Hence, the trajectory is nearly horizontal. 
For t1  i t 5 t? . the changes in p and Q are comparable and small, both being 
about - h-’slns. For t 2 tL’ . 6 = O(sL’) . so during t,. i t i t:, Q changes by only 
about s‘(t:+ - t,) s2ts 5 s , while p approaches equilibrium quite closely. There- 
fore, during this long time the trajectory is nearly vertical. Note that the rate of 
qmtion along the trajectory is much faster on the “horizontal” than the “vertical” 
portion, though the rate of gene frequency change is hlways p=O(s ) .  The  
equilibrium satisfies Q( ”) = O ( s )  . The Fundamental Theorem holds on the 

vertical” part, t 2 t l .  

2. Two Loci, Diploids 
.We suppose that there are two loci. with alleles A ,  , A ,  at  one and B ,  , B, a t  the 

other, c is the recombination fraction, and both types of double heterozygotes 
have the same birth rate, b. Letting the subscripts 1 ,2 ,  3,4 represent the gametes 
A,B,, A,B,, A,B,, A,B,, we may still use pi  and P i j  for gametic and genotypic 
frequencies and Qi as an  index of departure from Hardy-Weinberg. We define 

=; + 1, i = 1 7 7 1  4. F ’  = - 1, i = 2.3 and the actual and Hardy-Weinberg linkage 
disequilibria, D = P I ,  - P,;{ and D,, -1 pip, ~~ p,.p:{. The system evolves governed 
by the differential equations 

L <  

Q.. 11 =- b Q i j  f Eiejbc’D’ f S f i j ( P , t )  , 

pi = p ;  (mi - 6) - F i o l L )  , 
D = - CD + s g ( P , t )  

(16) 

(17) 

(18) ~ 

where a = bc and the matrix C and vector Dread 

C = b  (19) 

The  selection terms f i j  and g correspond to (but, of course, are not equal to) f i j  

in (2). 
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FIG. I .-The evolution of a typical diallelic single locus system. 

Following Subsection 11.1, we show directly that we rapidly reach bo#& QLE 
and Q H W .  Observing that the eigenvalues of C are b and 01, we now define tl as 
the shortest time such that 

(20) max[lD(O) [e+, lDO(0) 1~4, IQij(0) I B " ~ ]  I s . 
Writing the analogue of (4) for (16) and (18), we see immediately that fo r  
t 2 tl Qij E sQOij and D = sD' are of O(s). Thus 

Q". 2.3 . = - bQO.. 23 + f i j P , t )  + O(S) 7 

Do = - CDo + g(P, t )  

(21 1 

(22) 

For t 2 tl, P i j  = O ( s ) ,  so with the assumption (6) on f i j  and g we find easily 
that (7)  and the equation 

. 

g 1 + 0 (SI (23) 
d - [Do - C-lg(P,t)] =- CIDo - C-l 
dt 

hold. Let tz be the shortest time such that c d t r t l )  I s. For fairly loose linkage or 
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independent assortment, this will be only slightly longer than the time defined 
by (9). Hence, for t 2 t,, we still have (1 0) , as well as 

from which i t  follows that 
D"t) =C- lg (P , t )  +O(s) , (24) 

(25 1 
KIMURA (1958) calculated the derivative of the mean fitness for an  arbitrary 

& ( t )  =O(?) , D ( t )  =O(s2)  , t 2 t-2 . 

m = v , + r i z +  n=l Z ~ ( " ) P ) + ; E  , 

number of alleles at two loci to be 
-__ - 

(26) 

where V, is the genic variance (for both loci) , s (%) corresponds to the departure 
from Hardy-Weinberg at locus n and d(%) to the dominance deviation at that 
locus, and (p and E are measures of linkage disequilibrium and epistasis. We 

again assume rh = o(s2). By expressing e(") and 4 in terms of QZi and Do, one can 
convince oneself that (25) implies for two alleles at each locus = O(s') and 
i = O ( s 2 ) .  Therefore, the Fundamental Theorem of Natural Selection will again 
hold for slow selection. As discussed in the previous subsection, where V, is 
anomalously small, this conclusion may be false. By the two-locus generalization 
of (15), V, = 0 where the gene frequencies are constant, so failure will most 
often occur near equilibrium. 

Equation (26) is derived by first decomposing with respect to loci and then 
with respect to alleles within loci (KIMURA 1958). It is instructive to conform 
more closely to our dynamical treatment and decompose first with respect to 
gametes and then relative to alleles within gametes. We may allow an arbitrary 
number of alleles at each locus. Defining O i j  fo r  gametes as in (13), and writing 
pi for the average effect of a gamete and A,j  for the "dominance" deviation 
between gametes, KIMURA'S (1958) method yields 

- - 

= v,,, - 2cuD& + m + ;A , (28) 
where V,,, is the gametic variance, corresponding precisely to the genic variance, 
and 

E =  z z Eipi (29) 
represents the epistasis in the average effect of the gametes. Returning to (27) 
and separating alleles in the first term by the same method leads to 

in which I is the epistatic deviation within gametes and $ represents the ratio of 
the gametic frequencies to the product of the corresponding allelic frequencies. 
Now (25) shows directly that 4 = O(sz) and e = O ( s 2 )  for the two-allele model. 
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3. Two Loci, Haploids 

parameters of the gametes (m,) prescribed, m = 
The haploid system evolves according to (17) with D = Do, the Malthusian 

p,mi, and 
2 

D = -  CUD + s f (p7 t )  ' (31 1 
We now interpret b as the probability of a conjugation for  any gamete, so that 
01 = bc is the probability of recombination. With t2 defined as in Subsection 11.2 
and the assumption (6) for f ,  a much simplified version of the above analysis 
gives 

Let 
D ( z )  =O(s2) , t 2 tZ 

E = $. Eimi 
1 

measure epistasis, 2 = p1p4/  (p,p,) be the linkage disequilibrium ratio, arid 
R = p.-l. Then (FELDMAN and CROW 1970) 

I 

- 

m = v, + m + E(RZ) -12  . (33) 

From (32), we have 2 = O(s2) for t 2 t,, and hence the above conclusion con- 
cerning the Fundamental Theorem for weak selection still holds. 

The commmon tetrahedral representation of the system with the pi as coordi- 
nates is not as well suited to displaying its dynamics as 5 and y, the frequencies 
of A,  and B,, and D. The system evolves in a three-dimensional region passing 
through the horizontal unit square 0 5 x,y 5 1. For t < t , ,  the motion is rapid 
and nearly vertical, while for t > tz it is slow, nearly horizontal, and observes 
the Fundamental Theorem. The detailed description of Figure 1 applies with 
only trivial and obvious modifications. The same picture may be employed in 
Section 111. 

111. DISCRETE TIME 

We shall assume that the fertilities of matings are expressible as the products 
of factors associated with each of the genotypes. Then, with discrete nonover- 
lapping generations, Hardy-Weinberg ratios are attained in just one generation 
of random mating (BODMER 1965, KEMPTHORNE and POLLAK 1970). Thus, only 
the diploid and haploid two-locus models are of interest here. 

1. Diploids 
We employ the notation of Subsection 11.2 for alleles and gametic and geno- 

typic frequencies. With fitnesses wX3 we have (see, e.g., KIMURA and OHTA 1971, 
P. 90) 

( 34) 

(35) 

(36) 

Z A p z  = p,(w%-W) - E ~ C D  , 
AD = - CD + ~ f ( p , t )  , 

D = ~ 1 4 ~ 1 ~ 4  - ~ 2 3 ~ 2 ~ 3  , 
where the linkage disequilibrium reads 
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and the gametic frequencies are measured immediately after fertilization. From 
(35) , we obtain the discrete analogue of (4) : 

.T= I 

~ ( t )  = ( I - ~ ) ~ D ( O )  + s ( i - ~ ) t  I: ( i - C ) - 7 f r P ( T - i )  , T-il . (37) 
I 

(The sum is absent for t = 0.) Therefore, t ,  is now the minimum time such that 
( l - c ) t l lD(0 ) )  I s. Hence, D ( t )  =O(s) for t > tl, and we may write D ( t )  = 
sDo( t )  in (35): 

ADo = - cD" f f ( p , t )  . (38) 

(39) 
as long as the explicit time dependence of the selection coefficients is quite weak, 
in fact, of O ( s 2 ) .  More precisely, for (39) to follow from (38), the analogue 
of (6). 

(40) 
must hold. Equation (39) instructs us to define tz as the shortest time such that 

(41 1 

D"t) = c-lf(p,t)  + O ( s )  , (42) 

AD( t )  =o(s2) , t 2 t, . (43 1 

Since Ap,. = o(s) for  t 2 t,, (38) leads to 

AIDo - c - ' f (p , t ) ]  - c[Do - c-' f(p,t)] f O ( S )  , 

f [ P ( t )  7 t + 11  - f [ p ( t ) ,  t l  = O ( s )  7 

p" tJ  - c-'f[p(t,),t ,] I(1 - c)t2-5 I s . 
Therefore, for t 2 tz, 

from which, with the aid of (40), we deduce ADO = O ( s )  and the desired result, 

To see how (43) is reflected in the Fundamental Theorem, it is necessary to 
derive a suitable expression for the change in the mean fitness. This is 

== 2 (w'tjp',.p'j - wtjp3pj) 
- _  

= A w + ~ Z W , A ~ ,  f Z ~ , ~ A p , . A p j  , (44) 
C l  

where the prime indicates the next generation and 

nu/= Z p'zp'3Aw33 (45) 
1 1  

is the change in genotypic fitnesses averaged over the next generation. Substi- 
tuting (34) into (44) yields 

where 

v,,, = 2 2  1 P i ( W i  - W ) 2  (47) 

is the gametic variance corresponding to (28), and the epistatic parameters are 
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A formula somewhat resembling (46) has been given by TURNER (1970). 
Next, we note that (KIMURA 1965) 

V,,, = V ,  + 2E2R1 . (49) 

All the epistatic parameters are of 0 (s), and for t > tl, D = 0 (s) . Consequently, 
for t > tl (46) and (49) give 

(50) AE = V ,  + G+ 2 ~ 2 ~ 4  - ~ C E D  + o(s3) . 
Following KIMURA (1965), we compute the change in 2 = plp4/(p2p3)  : 

AlnZ = Z & i A h p i  
z 

= X ?I ~ipi- lApi  + o(s2) . (51 1 
Equation (51) is valid for t 2 tl because then Api = O(s). Substituting (34) into 
(51), we find 

Z-lAZ E - cDR + O(s2) , (52) 

(53) 

Since the factor of 2 in (53) occurs due to diploidy, the analogy with (33) is 
complete. The crucial feature of (53) is that the last term is not of O ( s 2 ) ,  as 
might have been expected a priori, but of 0 ( 9). 

whence (50) becomes 

AE = V ,  + AW+ ~E(Rz)-IAZ + o ( ~ ~ )  . 

From (36), we obtain 

D = pZp3 (w14z - w 2 3 )  pZp3 [z - 1 + 0 (s) 1 * (54) 

AD = p2P3AZ + O(s2) , (55) 

whence, for t > tz, (43) allows u s  to  conclude A 2  = O(s2). Thus, the epistatic 
term in (53) is of O ( s 3 ) .  If we suppose the genotypic fitnesses change slowly, 
aw,j = o ( s 2 ) ,  then the genic variance will dominate for slow selection, and the 
Fundamental Theorem will hold. 

As discussed at length in Sec. 11, if the allelic frequencies are changing 
extremely slowly, as is the case very close to an equilibrium, exceptions are 
possible. This is why, in the heterotic multiplicative model, the existence of the 
stable D = 0 equilibrium, which is not a maximum of the mean fitness (Roux 
1974; KARLIN 1975), does not invalidate our analysis. In the example of MORAN 
(1964), the mean fitness is decreasing far from equilibrium because the allelic 
frequencies are constant, and hence the genic variance is identically zero. Since 
most evolution is likely to be due to substantial gene frequency change, such 
situations probably have little biological importance. 

2. Haploids 
Measuring the gametic frequencies immediately after conjugation, if wi are 

the prescribed gametic fitnesses, the basic equations now read (KIMURA 1965) 

For t 2 tl, Api = 0 (s) and Z - 1 = 0 (s) . Therefore, 
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EApi = pi (wj - ZZ) - E~cZU-~D , (56) 

(57) AD = - CD + sf (p , t )  , 
where 

D =z wiw4pip4 - wzw3pzp3 

A m  = zij-'V, -4- ZG 4- ZU-'ER-I ( E  - ciFIRD) , 

(58) 
Hence, the diploid analysis, (37) to (43), remains valid unaltered. Following 
(44) to (49), we now find 

(59) 

where 
__ 

E = z E ~ w ~  1 , A W = Z ~ ' ~ A W ~  a , (60) 

and (52) is replaced for t > tl by 

( E -  cZZ-'DR) +0(s2)  . (61 1 

(62) 

(63) 

Z-lAZ = E-1 

Substituting (61) into (59), we obtain 

AZZ = V, + G+ E ( R Z ) - ~ A Z  + 0 ( ~ 3 )  , 
corresponding to (53). But 

D = pZp3 ( W ~ W Z  - w2w3) = pzp3 [z - 1 0 (s) I 7 

so that ( 5 5 )  s t i l l  holds, whence AZ = O(s2) for t > t2,  and the Fundamental 
Theorem is valid as long as Awi = o(s2) .  

3. Diploids, Multiple Alleles 

As a small step toward the analysis of the multiple-locus, multiple-allele prob- 
lem, it is worth considering two loci with multiple alleles. This is most easily 
done in discrete time because of the Hardy-Weinberg simplification. 

Let Pij designate the frequency of the gamete AiBj. If Wii ,k l  and wij represent 
the fitnesses of the genotype AjAkBjBl and gamete AiBj, then 

wig = kl 2 Wij,klPkl * (64) 

(65) 

( 66) 

The difference equations of the model read (KIMURA and OHTA 1971, pp. 92-93) 

EAPij = Pij (w*j - ZU) - CDij 7 

where the linkage disequilibria are 

Dij =? (Wij,klPij&l - wi1,kjPilPkj) - 
Observing that 

? D i j = O ,  Z D i j = O  , 
a i 

we derive from (65) and (66) 

aDi i  = - cDij + s f i j (P , t )  . 



LINKAGE AND SELECTION 595 

Comparing (65 )  and (68) to (34 )  and ( 3 5 ) ,  it is obvious that (37 )  to (43) 
apply unaltered if the appropriate subscripts are added. 

We turn t~ the mean fitness, 

W =  i l k l  w . .  *g,lcl p . . p  2.3 k l  - (69 )  

Following ( M )  to (46 )  leads to 

AZZ 1 E-' (Vgam - 2cX) + X i  + E-' [ 
- 2 ~  B X i j P i j ( W i j  - E) +eZ Z XijDij]  , 

PijP&l(wij,bl - E )  (wij - W )  ( W ~ Z  - W) %?kl 

( 7 0 )  2.3 1.1 

X i j  = ( W i j , k l  - ( 7 2 )  
- 

X =  5 P i j X i j =  (wij-W)Dij . (73 )  
2.3 

Next, we must generalize ( 4 9 ) .  To decompose Vgm into additive (V,) and 

(74 )  

(75 )  

epistatic (V,)  components, we set 

uij E wij - .G = ai + pj + Eij . 
Minimizing 

V ,  = 2 F, PijE'ij = 2 Pij ( ~ i j  - ai - pi)' 
2.3 

with respect to the average effects ai of Ai and pi of Bj yields 

7 P i j ( U i j  - ai - P j )  Z PijEij = 0 , 
PijEij = 0 . 

(76 )  

( 7 7 )  

Introducing the frequencies pi and qj and average excesses ai and bj of Ai and B3 
through the equations 

3 j 

F P i j ( V i j  - ai - p i )  = 
1 

pi= ? Pij , q j =  Pij 9 (781 

( 7 9 )  p .  . - p . . v . .  ,a, - $3 rg , qjbj = Pijvij , 
we obtain from (76)  and (77 )  

2 p4aiai-I-2 Z 3 q jb jPj=2 Pi j (ai+pj) '=V0 . (80) 

Substituting (74 )  into (71)  and using (76 )  and (77 )  gives 

VQam = Vg + V ,  . (81 )  

Dij(t) =O(s) , t > tl . (82) 

But we have 
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Therefore, (72 ) ,  (SI),  and (82) reduce (70) to the generalization of (50) : 

As before, we shall suppose that == o(s2). Combining (66) and ( 8 2 ) )  we 
find the linkage equilibrium approximation 

Pij = p i q j  + O ( S )  , t > ti . (84) 

For t Z tl ,  we have 

ADjj = (PklAPij PijAPkl - PkjAPi1 - PilAPkj)  O(S*) . ( 8 5 )  

Substituting (65) into (85) and recalling (67), we get 

ADij = if; { p k l p i j [  (wij - E) + ( w k l -  E) 1 
- P k j P + l [ ( W i ~ - a G )  + ( W k j - W ) ] } - C D i j + O ( S 2 )  . (86) 

Hence, 

ADij = 3 piqjm1 [ (wij - E) f - fi) 
- (mil - E) - ( ~ k j  - E)] - ~ D i j  + O(S’)  
= Z PiQjPkQl(Eij  + E k l -  Eil - E k j )  - C D i j  + O ( 9 )  
= Z [PklP+j(Eij E k 1 )  - PiZPkj(Ei1 + E k j ) ]  - CDij 

k l  

O(S2) 
k l  

= PijEij - ~ D i j  + O(S‘) , (87) 
where we employed successively (84), (74), again (84) and (76) and (77). 
Therefore, 

2 Z E j j A D i j E 2  3 Pi jE2i j -2c  3 D i j ( ~ i j - @ i - , G j )  + O ( s 3 )  
ij 2 . 1  I 1  

- 

= v, - 2cx  + 0 ( ~ 3 )  . (88) 
using (67), (73 ) ,  ( 7 4 ) )  and (75). So, (83) becomes 

AE = Vg I- G+ 2 2 1  EijADij + O ( s 3 )  , (89) 

which, owing to the fact that aDif = O(s2)  for  t 2 t,, proves the Fundamental 
Theorem. 

IV. THE EVOLUTION O F  THE GENOTYPIC FREQUENCIEs 

In Sections I1 and I11 it was demonstrated that in a short time tl the departures 
from random combination are reduced to a small quantity of O(s ) .  Geometri- 
cally, this means that in time tl the distance from the “independence surface” 
(IS) is reduced to 0 (s) . Furthermore, since we have seen that the rates of change 
of the deviations from Hardy-Weinberg and linkage equilibrium, after a time 
t2 2t,, are 0 (s2), the small distance from the IS changes very slowly. Thus, the 
trajectory is close and nearly parallel to the IS, as illustrated by the “vertical” 
portion of the path in Figure 1 for the special case of a single locus with two 
alleles. 
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Consider the system at  time t,. The point on the trajectory a t  that time corre- 
sponds to some set of gene frequencies p i ( t , ) ,  which evolve according to some 
complicated law, p i  ( t ) .  On the IS, there is a unique point with gene frequencies 
x , ( t , )  = p ; ( t l ) ,  and these evolve according to the much simpler law, x i ( t ) ,  
obtained. in principle, by solving the equations of the system with the assumption 
of random combination! In Figure 1 ,  of course, . ; ( t l )  = p ( t , ) ,  a point on the 
p-axis found by horizontal projection. We shall see that P i j ( t )  = a.i(t)nj(t)  + 
O ( s ) ,  i.e., the actual evolution of the genotypic frequencies is well approximated, 
with a n  error of O ( s ) ,  by the dynamics of the much simpler system on the IS. 
In Figure 1, for instance, the motion along the vertical part of the orbit differs 
only to 0 (s)  from the corresponding evolution on the Hardy-Weinberg line. 

The analysis to follow, whose crucial feature is random combination, is the 
same in all the models considered above. The  notation already established is best 
suited to exposition in terms of the multiallelic single-locus case of Subsection 
11.1. W e  display explicitly the possible dependence of the  genotypic fitnesses on 
the genotypic frequencies and the time, and set 

where the asterisk indicates evaluation at P I ,  = p , p , .  Substituting ( 1 )  and (95) 
into (93) yields 

rz (P,t> = c L  (p , t>  + O(Q> , (96) 

r(P,t> =&J) +WQ> , (97) 

c , ( p , t )  = r , 3 ( p + p , t ) p ,  i c ( p , t )  = pLc'(p7t) (98) 

- 

where 
- 

Inserting (96) and (97) into (94) gives 
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Let us turn to the trajectories, rri ( t )  , on the Hardy-Weinberg surface. From 
(99), these obvicrusly satisfy 

Ti  = STi[Ci(T,t) - &J)] . 
- 

As is necessary for Q H W ,  we suppose m = o(s2). On the IS, the third term in 
(12) is absent and 

v, = 2s2 I: T i [ C i ( T , t )  -i(iT,t)12 . (101) 

Consequently, (12) informs us that the system always tends to equilibria, which 
we suppose to be points (as they are generically if there is no frequency and 
time-dependence), where (101) vanishes. For t 2 tl, Q z j ( t )  = O ( s ) ,  which 
implies that the error term in (99) is of O(s2). Then (99) and (100) allow us 
to assert 

pi ( t )  = ~ i ( t )  + O ( S )  , t 2 tl (102) 

Pi,( t )  =7ri(t)Tj(t) +O(s) , t 2 tl . (103) 

Recalling (I) ,  from (102) we deduce the desired result: 

A conclusion equivalent to ( 103) has been reached by HOPPENSTEADT ( 1976) in 
a particular two-locus, two-allele model by a different method. If, due to unusual 
frequency or time-dependence, the system does not tend to an equilibrium point, 
(102) and (103) still hold for  tl 5 t I T ,  for any fixed time T.  

As a final point, let us establish that the genic variance on the actual trajectory 
is well approximated for t > tl by (101). The average effect of Ai, pi, is given 
by (KIMURA 1958) 

p i  mi - m - X pipjOzj 
I 

= S(Ci - C) + O(?) - X pjpj[l + O(S)]  

= scci ( p , t )  - a p , t >  3 + 0 ( s 2 )  y 

7 

(1 04) 
where in the second step we used (99) and (13), and (104) follows because the 
mean of the average effects is zero. Substituting (99) and (104) into (15) yields, 
for t 2 tl, 

V g = 2 ~ 2  z pj[ci(p7t) - c ( p y t ) 1 2  + O(sS) 
1 

= 2 s 2  x 1 r r i [c i (T, t )  - & t ) ] 2  + o(s3) , (105) 

as required. It follows from (100) and (105) that V, is much smaller than s2 
only if the allelic frequencies are changing extremely slowly. 

At least for one and two loci, the results of this paper strongly suggest that 
deviations from random combination have scant evolutionary significance. This 
appears to be the view of FISHER (1930) and WRIGHT (1969). 



LINKAGE A N D  SELECTION 599 

I am very grateful to PROF. CHARLES C. CONLEY for many highly instructive discussions about 
linkage and selection. PROF. JAMES F. CROW suggested a few years ago that there should be a 
QHW corresponding to QLE. I thank PROF. FRANK C. HOPPENSTEADT for  reawakening my 
interest in this problem by sending me his stimulating paper prior to publication. 
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