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ABSTRACT 

The theoretical basis and computational procedures for estimating the 
culling variate utilized by breeders in actual selection are presented. The essen- 
tial part of this procedure is to derive the unknown culling variate in terms 
of a linear combination of traits based on realized indirect selection differentials 
of those traits and phenotypic variances and covariances among traits in the 
population. Special emphasis is placed on the distribution of the variables 
involved. The accuracy of the culling variate is estimated by use of the biserial 
correlation with some modifications. Numerical illustrations are given for dif- 
ferent types of selection. 

T is more common than exceptional to observe that the realized selection cri- 
I terion differs to some extent from the intended one, irrespective of selection for 
a single trait or simultaneous selection for multiple objectives. Even in a well- 
designed selection experiment dealing with laboratory animals, it is common to 
observe that some individuals which are endowed with high predicted breeding 
value and were, therefore, singled out for reproduction were supplanted by infer- 
ior individuals owing to reproductive failure or  early death or some other reason. 
On the other hand, breeders using an index including several traits often observe 
similar results. Also in practical breeding programs for multiple traits, some 
breeders prefer to use selection criteria based on experience and intuition rather 
than on theoretical considerations. I n  this case, there is no theoretical basis to 
predict, compare or interpret the effectiveness of selection, i.e.. whether or not 
the changes observed in the various traits are in accordance with existing quan- 
titative genetic theory. 

The description and evaluation of selection practiced on more than one trait 
have received little attention. To determine the relative importance of each trait 
and the role of an entire set of traits in selection, it is necessary to consider the 
interrelationships between these traits. The application of selection index prin- 
ciples for the examination in retrospct of selection on more than one trait was 
first used in swine by DICKERSON et al. (19541. Similar but more refined methods 
were presented by HARVEY and BEARDEN (1962), MAGEE (1965) and more 
recently by BERGER and HARVEY (1975) and KOCH, GREGORY and CUNDIFP 
(1974) , under the assumption that all traits are normally distributed. 
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Recently, YAMADA (1975) has pointed out that selection criteria in two-way 
selection for pupa weight in Tribolium could differ from each other by introduc- 
ing unconscious secondary selection for pupation time. Accordingly, these selec- 
tions resulted in asymmetrical heritabilities and genetic correlations. The same 
author also pointed out that the skewness of the distribution of a trait in two-way 
selection would result in different selection criteria, although the experimenter- 
had intended to select only for a single trait. 

The objectives of this paper are to extend the method used by DICKERSON et al. 
(1954) and others and to apply it to cases where the distributions among traits 
are not normal, as well as to provide a logical procedure to evaluate selection cri- 
teria used by breeders and experimenters, based on available information. 

THEORETICAL CONSIDERATIONS 

For simplicity, the description will first be presented in the case where two 
characters are bivariate normal. Let X ,  and X ,  represent the trait subjected to 
intended selection and the correlated trait, respectively. If selection is practiced 
only on X,,  the relationship of the selection differentials of X ,  and X ,  is given as 

APz.1 = APi.1- ( l a )  

= Mi., h.1 (1b) 
where u2 and ax,, represent the variance of X I  and the covariance between XI 
and X,, respectively, and b, , is the regression coefficient of X ,  on X,. AP,.j is the 
selection differential of the first subscripted trait (i) when selection is intended 
for the second subscripted trait(j), as is illustrated in Figure 1. The notation 
which will appear in the following section is identical to that used previously 
except that G represents “genetic.” 

U 
XZI 

GI 

XI 

x2 I I 

- 
x2 

- 
X I  

FIGURE 1 .-The relationship between direct and indirect selection differentials. 
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The next example considers the case where selection was on X I  and X,. Thus, 
the criterion of selection is an index of the form of I = blXl + b,X,, in which 
the bi’s are unknown. The realized selection differentials in X ,  and X ,  will, 
therefore, be 

In  the matrix notation, these equations can be expressed as 

by imposing the condition of 
U,’ / APr.[= I . (3c) 

In  the above, AP1,,  and APs. l  are the realized selection differentials in  XI and 
X , .  which are expressed as the deviation of the mean of selected individuals, 
X i ( , q ) ,  from the population mean, x, ( o , ,  of the trait considered, i.e., 

, *. 

The equations (3a) are identical to the ones obtained by HARVEY and BEARDEN 
(1962) and MAGEE (1965), except that in those studies the variables were 
standardized. 

The variances and covariances of equations (3a,b) can also be expressed in 
terms of direct and indirect selection differentials based on paper selection for 
X ,  or X , ,  assuming that the intensity of selection expressed in terms of standard 
deviation units, i. is the same whether selection is solely on XI or  solely on X ? ,  
i.e., APl.l/uxl = AP, ? /uX2 .  The value of i can be obtained from BECKER (1975). 
Thus, we have 

U; = U = AP:,% i2 and ax, , = AP,  APj.j  / i2 . ( 5 )  x ,  * 
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It is worthwhile to note here that regression and correlation coefficients may 
also be expressed in terms of selection differentials as 

U2 x,, 
u2 u'2 

XI x, 
(assuming bivariate normality) - - 

(Gel - 
- q2 

The quantities uXI , and U-, , appearing in equations ( 5 )  to (6e) are defined 
as the directional variance and covariance, respectively. 

These two directional covariances, as well as the parialices of the same trait 
obtained by truncating either the higher or lower tail of the distribution should be 
equal to each other under the assumption of a bivariate normal distribution. 

The substitution of ( 5 )  into (3a) will yield 

in which I is the realized selection index o r  culling variate in the actual selection. 
The solution of b,'s can be obtained with the same condition of (3c) as 

or b = i2 diag APj.j]-l A P ~ , ~  

where b, A P i . j ,  diag APj.j  and APi.I  represent corresponding column vectors or 
matrices shown in (8a). 
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One can extend the theory to the evaluation of the index for k traits as follows: 

_I, p :!::::?] F2. 0 ]-lr:] - APk.1 (9a) 

APk.1 APk2 . . A P k k  APk.k 

or b = i’ CAP1 diag LIP, AP, . I  . (9b) 
The constant i2 can be removed from (8a.b) and (9a,b) to derive the index, 

since rankings of individuals are required rather than absolute values. 
To express the weights, be's, relative to the maximum (brl,ax), one simply 

divides each b, by b,,,, i.e., bl* = b,/bmax. 
In the case where simultaneous selection for multiple traits by means of the 

intended selection index, I ,  = w l X l  + w 2 X 2  + , . +w,~X,,, is  used as a reference, 
the realized selection index, I ,  can be evaluated as accurately as before. 

Once the values of b,’s in the realized index are determined. the corresponding 
genetic gains of the component traits can be obtained as follows: 

A G ~ . ~  - APLr Cova ( X J )  
U; 

= COV,(Xi,Z) 
13c), which yields 

Genetic components of variances and covariances in (1 1 )  as well as those of 
phenotypic in (3b) should be estimated from ordinary variance component 
analysis. 

The genetic variances and covariances in ( 1 1 ) can be expressed as follows: 
= AG, , AP, / i‘ (=a) 

(12c) 
( 1 2 4  

- 
- O G ,  

U’ 0% O G , ?  = A G ~ . ~  AP, / i2 (12b) 
- 

U - U = AG,., APz.2 / i2 
U - U = AG2.1 APl,l  i2 
012 G,  ? 

021 @ ? I  

- 

The ~3Pi. i ’~ and A G ~ . ~ ’ s  can be evaluated by applying the same selection inten- 
sity, say Q. actually given to the population under consideration, from the tech- 
niques of linear heritability and genetic correlation, first given by ABPLANALP 
(1961 ) and later YAMADA (1972), after some modifications suggested by ARTHUR 
and ABPLANALP (1975) as follows: 

Assuming a one-way linear mathematical model for X as an example, 

X H  = px f Bx, f W,,, k = 1,2, . . . ,a; 1 = 1,2, . . : ,n (13) 
where Bx, is the effect of the kth  genetic group, and W,,, is the within-group 
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random deviation of the Ph individual belonging to the ktt i  genetic group. 

X' with selection intensity, Q. 
Now. calculate the following quantities by selecting the top q individuals for 

n 
n-1 A W x . x ,  = - [.1Pn:,,,.l 

in which 

Equations (15a) and (15b) ;ire defined as between-group and within-group 
selection differentials, respectively. and 8/,, = 1 for all selected individuals based 
on the primary selection criterion X', and 8/., = 0 otherwise. 

The interpretation of  AB^.,, and A W ~  ,, are as follows: 

and 

where r" is Wright's coefficient of relationship between the member of the same 
genetic group, and ilGx.x. and AE.y,.y, are defined as tl:e genetic and environ- 
mental selection differentials. respectively.  AT^,,^, is the estimator of APx.x,; 
similar to the case of variance component analysis, i.e., U;, = U;; + U:: . 

In the above from (14a) to (16c). X and X' are mutually exchangeable, i .e. ,  
X =X' in the case of direct selection and X # X'  in the case of indirect selection. 

Heritability and genetic correlation can be obtained from 

The application of the above derivation to k traits is a straightforward proce- 
dure and is omitted. 

How well the derived index fits the actual selection can be evaluated by using 
biserial correlation. under the assumption that the derived index and the under- 
lying variate of the actual selection are distributed as the bivariate normal and 
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the index is continuous while the underlying variate takes either a 1 or 0 value. 
The estimator of the correlation is 

since 

where I , ,) ,  I(sr and I represent the average of the derived index values of the top 
Q individuals selected by truncation, the average index value of actually selected 
individuals, and the average index value of the whole population, respectively. 
ul is the square root of the variance of the derived index, Q is the proportion of 
selected individuals in relation to the whole population, and z is the height of the 
ordinate of the normal distribution at the point of truncation above which the 
proportion of the selected to the whole population is equal to Q. 

The selection index in retrospect mentioned above can also apply to the case 
where within- and between-family selection or combination of these were prac- 
ticed in a lowly heritable trait but with individual selection in other traits. Ii 
such is known a priori, the indirect selection differentials in (3a,b) should be par- 
titioned into their components and the variance-covariance matrix should be cal- 
culated accordingly. i.e.. 

where the subscripts Wxi ,  Bxi and X j  of the elements of the vector or matrix 
are within- and between-family effects of the it'' trait and individual records of 
the it" trait, respectively, and the prime of a vector indicates a row vector. It must 
be noticed that the covariance between within-family and between-family effects 
is zero for all i and i. 

The variances and covariances in (22) can be replaced by direct and indirect 
selection differentials as given in ( 5 ) .  Namely, 

crk = AWi,i APi.i / i2,  ulc'x(lvxj = AWi.! APj.j/ ?, xi 

UB X' B x* = ABi.j  ~ P j . j /  i', u w x i x j  uwxiwxj7 (23 1 
~ B ~ ~ x ~  = ~ B ~ ~ B ~ ,  , uix, = A&.i APd.i/iz; etc. 

In the above A P i , j  and APj. i  should be replaced by A T i , j  and  AT,.^, respec- 
tively, for computational purpose. 

The resulting index is therefore 
- - 

I = b l (X l , ,  - Xl,,) + b,(Xl, .  - X , , . )  + b , (X , , ,  - x, ) 
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The last comment is on independent culling level selection. One may argue 
that the breeder may have applied independent culling levels rather than a linear 
combination of traits. If this view was strongly suggested, the following selection 
index can be evaluated: 

z = X!l x;* x;3 

The solution of b,’s can be obtained by In transformation. Index contours will 
consist of hyperbolas that slice the population as is shown in Figure 2. It is ques- 
tionable, however, if the use of such a multiplicative index is more advantageous 
than a linear one, because (1) the selection index in retrospect is definitely an 
approximation of actual selection in terms of linear form, and (2) such a multi- 
plicative index will give a new complication for the interpretation of the conse- 
quence of selection. 

NUMERICAL ILLUSTRATIONS 

A set of hypothetical data of 25 individuals which belong to 5 genetic groups 
sampled randomly from a base population and measured on three traits is pre- 
sented in Table 1. For simplicity, rG is assumed to be unity, although i t  is 
unrealistic. 

Suppose that 8 individuals were selected by a breeder without describing his 
selection criteria. The selection intensity actually applied was Q = 8/25 = 30%. 
One would like to know the breeder’s culling variates in terms of the selection 
index in retrospect, based on available information. 

The variance-covariance matrix and other important statistics obtained from 
the data are as follows: 

x2 I I 

cu I I ing 
variate 

- 
X I  

FIGURE &.-Multiplicative index, I = Xb,  X b , ,  is applied to independent culling level selec- 
1 2  

tion. k, and k2 are truncated points on XI and X , .  
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TABLE 1 

Data of 25 individuals 

893 

Genetic No. of Traits Selected or not 
groups individuals x, x2 x:, Case 1 Case2 Case 3 Case 4 

1 1 
1 2 
1 3 
1 4 
1 5 

2 6 
2 7 
2 8 
2 9 
2 10 

3 11 
3 12 
3 13 
3 14 
3 15 

4 16 
4 17 
4 18 
4 19 
4 20 

5 21 
5 22 
5 23 
5 24 
5 25 

Average 

2.0 20 28 
16 24 20 
24 16 36 
32 22 32 
28 18 24 

24 24 16 
20 28 24 
28 20 28 
36* 26 32 

- 

32 22 20 

26 22 32 
22 26 4Q 
30 18 48 
38 24 44 
34 20 36 

28 32 24 
24 28 32 

- _  
- 

- - 

- 

- 

- 
32 24 40 
40 30 36 
36 26 28 

- 
- - -  

32 26 28 
28 30 36 
36 22 44 
44 28 40 
40 24 32 

30 24 32 

- _  
- - 
- - _  
- 

1 

1 

1 
1 
1 

1 

1 
1 1 
1 

1 
1 
1 

1 1 
1 

The individuals whose measurements of each trait are underlined were used to calculate 
direct selection differentials of three traits for estimating LINEAR parameters. 

I. Basic statistics. 

ANOVA-ANOCOVA, based on the model (13). U’,. = U; + u2,<and U 

A. Phenotypic and genetic variance and covariance components estimated by 
+ = U 

rr, ,  G <  * 
i 

1 6.84 28.16 
6.84 18.00 -2.80 

-2.80 72.00 

[uaij] = 12.00 12.04 12.96 
3.20 ] 

[ h z ] ’ =  [ 0.2308 0 . W  0.444441 

[ 12.04 8.00 
12.96 3.20 32.00 
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B. Phenotypic and genetic selection differentials computed from (16a-c) . 
APi,j’S were estimated by ATj.j’s and thus  AT^,^ = A G ~ . ~  + A E ~ . ~ .  

[ATi.j] = 8.6250 0.6875 4.4375 
1.3125 4.9375 1.5000 
5.1250 1.0000 10.1250 1 
2.6250 -0.2500 4.5000 I 1.5000 1.1875 

I 
[AGj.j] = 1.7500 2.5625 3.1875 

F.6250 

Phenotypic and genetic variance-covariance matrices computed from the 
above, giving i = 1.081 after Table 2 of BECKER (1975). 

=  AT^.^ diag  AT^.^/ i’ = 2.9049 38.4487 
9.6874 20.8623 12.9968 

4.2253 87.7281 1 
[ u ~ , . ~ ]  = A G ; . ~  diag  AT^.^/ i’ = 12.9165 10.8273 27.6181 

11.9939 6.3379 10.2891 I 19.3748 -1.0563 38.9903 1 
[ h‘ ]’= [ 0.2029 0.3038 0.4444 ] 

11. Case study 1. 
The culling variate is obtained from the first two traits by intentionally 

ignoring the third trait to compare the efficiency with three-trait selection. Ob- 
served selection differentials in the first two traits are: 

AP’i , i= [ 6.75 1.25 ] 

A. With the parameters taken from 1.A (ANOVA-ANOCOVA estimates). 

b = p2.00 6 .87-1  p 7 q  = p.1277 
6.84 18.00 1.25 0.0212 

Z = 0.1270X1 f 0.0212X2 

from (3b) 

0.8829 
1.0363 

rb = ___ = 0.8520 from (20) 

A G , . ~ =  12?3 p 1 2 7 1  = p77921 from (11) 
0.0212 1.6987- 

B. With the parameters taken from 1.B (LINEAR estimates). 

b =  63.6600 2.9049-1 E:;;] = [010551] from (8a) 
[9.6874 20.8623 0.0109 

Z = 0.1055X1 + O.01O9X2 
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10.8277 [“.lo57 [1.480jI 
6.3379 0.0109 1.3344 

111. Case study 2. 
The culling variate is obtained from all three traits, providing 

AF, . r=  [ 6.75 1.25 -0.50 ] 

A. Based on ANOVA-ANOCOVA estimates. 

b = 52.00 6.84 28.161 -l [ f:::] = i 28.16 -2.80 72.00 -0.50 
6.84 18.00 -2.80 

I = 0.1 708X1 - 0.0070X2 - O.O74OX, 

rb = ~- ‘‘l8l2 - - 0.9346 
1.2638 

B. Based on LINEAR estimates. 

0.1 708 
-0.0070 
- - 0.0 740 

895 

from (11) 

- 0.17081 = [:::A);! 
- 0 .OO 70 
- -0.0 740 -0.1773 

9.6874 20.8623 

I = 0.1572X1 + 0.0357X2 - O.O709X, 

1.0757 
1.1252 rb = ~ = 0.9583 

= [ ::q 
-0.0709 

AGi,r = 12.9165 10.8273 27.6181 0.1472 = 
L1.9939 6.3379 10,2894 [ 0.03571 
19.3748 -1.0563 38.9903 -0.0709 

IV. Case study 3. 

the following index. 
In  this particular example, eight individuals were chosen a priori, based on 

I ,  = (XlhZ - x,, ) + 2(x,, - x, ) + (XihZ - x, ) - ( X , , ,  - x, ) 
From Table 1, we compute 

AP’, r = [APcl I APuXl I APx, r APx ,  r ]  

= r2.00 2.50 2.50 -4.001 
A. Variance-covariance matrix appropriate for  the analysis is obtained from 

I.A., based on (23), i.e., U;, - UL - u i X ,  etc. 
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?O.OO 0 -5.20 15.26 

0 12.00 12.04 12.96 

-5.20 12.04 18.00 -2.80 

15.20 12.96 -2.80 72.00 
- - 

b’=   UT^^]-' [APi . , ] ) ’=  [0.0723 1.7660 -1.0886 -0.43111 

r b = - -  3’5625 - 0.6308 
5.6478 

B. Similarly from I.B. (23), i.e., ali’ ali.X2 = ( T X ~ , ~  - U R ~ , , ~  = 63.6600 - 12.9165 
XI 

= 2.9049 - 10.8273 = -7.9224. 

-7.9224 10.8306 
12.9165 10.8273 27.6181 

- 
aRx,.* = 50.7435 and oll,g x 2  = uii~xlIi~Xp - a+ - 

18.4522 19.3748 4.2253 87.7281 I 50.7435 0 

-2.3065 11.9939 20.8623 12.9968 !. [ u T i , i l  = 

11’ = [ 0.51 70 0.9805 -0.2764 -0.2597 ] 

2.9028 
3.5019 r b  = ~ = 0.8289 

When within- and between-family selections were not taken into considera- 
tion, the index obtained by ANOVA estimates is 

I = 0.1341X1 + 0.0716X2 - 0.1052Xj. with r b  = 0.9877. 

V. Case study 4 
Actual selection was independent culling levels for X, and X , .  X, 2 28 and 

X, 2 36, ignoring X,. We would like to compare the efficiency of additive and 
multiplicative indices. 

The variance-covariance matrix based on ANOVA estimates for X, and X,, 
after coding the variables. x, = ( X , + l )  - (smallest X, value) and In trans- 
formation, is 

Lax,,] = 1.5257 0.237,] 
0.2374 0.5901 

Observed indirect selection differentials in In units are 
AP’, I = [ 0.4382 0.5732 ] 
b’ = [ 0.4825 
Z = 0.4825 lnX, + 0.7772 lnX3 or I = Xo 4az5Xo j i i 2  

0.7772 ] 

r b  = 0.9719 
Conventional additive index computed from AP’, , = [5.25 

The above results indicate that the linear index is at least as efficient as the 

8.501 is 
b’ = L 0.04700 0.1002 1. r b  = 0.9777. 
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multiplicative index. However, little reliance can be placed on these results with 
such a small amount of data. 

DISCUSSION 

A characteristic feature of this study is to provide a technique which enables 
one to evaluate objectively the realized selection as actually practiced by a 
breeder without knowing his selection criteria, provided that the data on all 
traits that contributed to the selection criteria are available. Few investigators 
have attempted to quantify such data. This study describes a useful technique 
designed to evaluate the results of long-term selection in plants and animals. 

For assessing the effectiveness of long-term selection in animals and poultry, 
such as described by DEMPSTER, LERNER and LOWRY (1952), YAMADA, BOHREN 
and CRITTENDEN (1958) and GOWE, LENTZ and STRAIN (1973), i t  has been estab- 
lished that realized heritability can be expressed as the ratio of actual gain to 
cumulative selection differential of the trait under selection. I t  is equally impor- 
tant to check il’ intended selection criteria remain the same throughout thc period 
of experimentation in the case of actual selection. If the criteria which were prac- 
ticed in the case of realized sekction were different from those used in the intended 
selection, the above mentioned ratio should rather follow the pattern of realized 
“coheritability” as defined by YAMADA ( 1968) than that of “heritability.” 

Another feature of the present study emphasized the u5e of equations (8) 
instead of (3b). One should mention, however, that the variances and covariances 
in (3b) are obtained from the static analysis of the population using the whole 
range of the distribution with the assumption of normality. Such an ideal situ- 
ation of normal distributions of those variables is not generally met in biological 
situations. Furthermore, it is frequently observed that the distribution of a vari- 
able under selection tends to be skewed as selection advances, although the orig- 
inal distribution was merely normal (YAMADA, unpublished data in Tribolium, 
mice and chickens). In the case the distribution of the trait under consideration 
is not normal, such as a longer tail toward the negative direction of the distribu- 
tion, then the selectioii differentials for both negative (-) and positive (+) direc- 
tions will not be the same when one uses the same selection intensity, i.e., 
AP, 1(-) > AP,  l ( + l .  No mathematical solution is available as far as the problem 
related to deviation from normality is concerned. Thus, it would seem appropri- 
ate, for the time being, to consider the selection differentials or  responses as being 
caused by asymmetrical effective variances or heritabilities for different direc- 
tions of selection with the same selection intensity. This in turn is equivalent 
to saying that APl.,(-) = i ax,(-) > 4Pl 1 ( + )  = i ax,(+),  rather than APl.l(-l = 
i(-) ax1 > L~’I.~(+) = i(+) uxl. The same argument can be extended to cover 
differential variances and covariances of two traits when the joint distribution 
deviates from normality. Therefore, AP21.1/AP22 = U ~ , , , / O ~ , , ,  and APl.z AP,.2/ 
APz.l  A P l  = ax1 z/ax, 1,  for the same selection intensity in both XI and X,. Such 
interpretations of differential Variances and covariances seem to be particularly 
useful to understand asymmetry in realized heritabilities and genetic correla- 
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tions observed in two-way selection for a single trait o r  selection for different 
traits (FALCONER 1969; YAMADA and BELL 1969). 

The variances and covariances obtained from ( 5 )  and (12a - d) should there- 
fore represent actual situations for the distributions, if those parameters were 
estimated by paper selection along with the directions of selection which actu- 
ally took place in each component trait. In this sense, the realized selection index 
derived from (8) would be more useful and practical than that from (3)  when 
the distributions of the variables are not normal. 

It must be pointed out, as did ABPLANALP (1961), that the use of LINEAR 
estimates of genetic parameters requires a large population and intense selection 
in order for the results to be very reliable, 

As to the efficiency of the realized selection index, ALLAIRE and HENDERSON 
(1 966) have presented two estimators. However, it is questionable if these esti- 
mators answer the question concerning the fit of the derived index to the actuaI 
selection. 

If the estimate of the biserial correlation deviates substantially from unity, 
one should suspect first that some additional information which had been utilized 
by the breeder is still missing in the evaluation of the realized index or actual 
selection. One should look for this information to improve the validity of the retro- 
spective selection index. This, in turn, improves the prediction of genetic gains 
in component traits. Secondly, one should check the distribution of the derived 
index jointly with the variables included in the index as curvilinear rdationships 
may decrease the efficiency. 
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