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ABSTRACT 

Some multi-allelic data obtained by COYNE (1976) and by SINGH, LEWON- 
TIN and FELTON (1976) are analyzed for their compatibility with the neutral 
alleles theory. It is found that strict neutrality appears not to be the case, but 
that if further alleles were to be distinguished in the samples, neutrality could 
become a possible explanation. 

Section I 
HE papers by COYNE (1976) and SINGH, LEWONTIN and FELTON (1976) 

Tindicate that, if sufficiently great effort is expended in performing electro- 
phoresis under various conditions, a considerable number of different alleles can 
be detected even in small samples of genes. COYNE found 23 distinct alleles in 
only 60 genes at the xanthine dehydrogenase locus of Drosophila persimilis, 
while SINGH, LEWONTIN and FELTON found 27 alleles in 146 genes from the 
xanthine dehydrogenase locus of D. pseudoobscura using four electrophoresis 
conditions, and an additional heat-sensitivity test revealed at least 37 alleles in 
that sample. 

The purpose of the present paper is to analyze the allele frequencies reported 
in those papers to see if they are consistent with strict selective neutrality. We 
find, using various statistical tests, that neutrality is not a plausible explanation 
for the data. However, it will also be pointed out that if the more common 
“alleles” should really be subdivided into further alleles, the strict neutrality 
hypothesis may possibly be resurrected. 

LEWONTIN (personal communication) has analyzed the data using an F 
approximation for the null hypothesis distribution of the information statistic. 
We here give exact results, or simulation results, for  various test statistics. Our 
conclusions are qualitatively similar to those of LEWONTIN, and allow us to 
compare the accuracy of the F approximation. 

Section 2. Results for the pooled samples 

allelic distribution is concerned, by the numbers 
The 60 genes analyzed by COYNE (1976) may be summarized, as far as their 

118, 23, 41, 321 ( 1 )  

with the interpretation that 18 alleles were represented once each in the sample, 
Genetics 88: 171-179 January, 1978. 
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three alleles were represented twice each, one allele had four representatives, 
and the most common allele was represented by 32 genes. The total number 
of alleles is 18 + 3 + 1 + 1 '= 23, and the total number of genes is (18 x 1) + 
(3 X 2)  + (1 X 4) + (1 x 32) = 60. More generally, we shall describe a sample 
by symbols of the type 

np, n?, n.2,. . . (2) 

where aj is the number of alleles each having n3 representatives. The total num- 
ber of alleles in the sample will be written 

k = a l  + a2 + as + . . . ( 3 )  

n = alnl + a2nz + asns + . . . . (4) 

Assume that the sample (2) was drawn from a large population, in which 
statistical equilibrium has been reached, in which all genes (of whatever allelic 
type) have the same mutation rate and all mutations produce new alleles, and 
in which selection does net operate. Then, EWENS (1972) obtained the following 
probability for a random sample to be of composition (2), subject to giuen values 
of kandn as in (3) and (4), 

Pr(no;l,n2,n2,. . . [k,n) 

n! 
n>n?n? . . , a,!a,!a,! . . . IS(:)/ ; 

where S(:) is a Stirling number of the first kind (see ABRAMOWITZ and STEGUN 
1965 Table 24.3 for some numerical values). We do not use EWENS' notation, 
however; in particular, our n corresponds to his 2n. 

The beauty of (5) is that the conditioning on a given value of k has made 
the sample probability free of any unknown population parameters, especially 
the size of the population and the mutation rate. The probability (5) has been 
verified, at least as an approximation, for sampling from various population 
models subject to selective neutrality. See, for instance. KARLIN and MCGREGOR 
(1972) ; WATTERSON (1974a,b) ; KELLY (1977) ; WATTERSON (1976) ; KINGMAN 
(1977). 

In  particular, the probability (5),  when applied to the COYNE data (1) , yields 

and the total number of genes in the sample will be written 

( 5  1 - - 

60! 
23.4.32.18!3! /S(ii)j Pr(118. 23, 4l, 32'lk = 23, n = 60) = 

= 5.952 x 10-7 . 
Similarly, the SINGH, LEWONTIN and FELTON data (obtained before the heat- 
sensitivity test was applied) had k = 27 alleles in n = 146 genes, the sample 
composition being 

1l0, 23, 37, 52, 62, 8l, 111, 68l , (6) 
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which has probability 

Pr(ll0, 23, 3?, 52, 62, 8l, ll', 68l I k = 27, n = 146) 

146! 
23.37.52.62.8.1 1.68.10!3!7!2!2! lSl",'A I _ _ _ ~ -  - - 
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= 2.326 x . 
With a slight change of notation, let a ( j )  denote the observed number of alleles 

having j representatives in a sample, let a ( j )  = E [ a ( j ) ]  and ~ ( j )  =standard 
deviation of a ( j ) .  Then using (4.5) in WATTERSON (1974a), we may calculate 
a ( j )  and ~ ( j )  corresponding to distribution (5) for the data sets (1) and (6). 
We have: 

COYNE data 
i 1 2 3 4 5 6 7 . . .  32 . . .  

a ( j )  18 3 0 1 0 0 0 . . .  1 . . .  

u(i)  1.9 1.9 1.5 1.2 1.0 0.8 0.7 . . . 0.002 . . .  
a ( j )  10.8 4.5 2.5 1.6 1.1 0.7 0.5 . . . 0.000004 . . . 

SINGH, LEWONTIN and FELTON data 
j 1 2 3 4 5 6 7 8 9 10 11 12 . . .  68 ... 

a( i>  8.9 4.2 2.7 1.9 1.4 1.1 0.9 0.8 0.6 0.5 0.5 0.4 . . . 0.0004 . . . 
u(i)  2.2 1.8 1.5 1.3 1.2 1.0 0.9 0.9 0.8 0.7 0.7 0.6 . . . 0.02 . . . 

Note particularly that the most frequent allele in each case appears to be too 
frequent and, for the COYNE data, that the number of singleton alleles appears 
too high for neutrality. 

The above calculations show that both sets of data are very unlikely to occur 
under the neutral alleles distribution ( 5 ) .  But of course each possible sample 
would have low probability, there being so many possible samples. Therefore, 
to assess whether either of the data sets (1) and (6) afford evidence against 
neutrality, we need to consider the probabilities of getting as extreme, or more 
extreme, data sets. Many methods of deciding which samples are "more extreme" 
have been suggested in the literature. We here concentrate on three such 
methods, more to illustrate the methods than in the belief that they are really 
appropriate in the present context. 

The homozygosity test: The homozygosity of a sample, or a population, is 
defined as the sum of the squares of all allele relative frequencies. In the notation 
(2), it becomes 

a ( j )  10 3 7 0 2 2 0 1 0 0 1 0 . . .  1 . . .  

E = a ,  (q2+a3 (q+ n . . . .  n n 

For the particular data (1) and (6), the homozygosities are E = 0.2972 and 
P = 0.2353, respectively. I t  takes a considerable amount of computer time to 
evaluate the significance level of these statistics by adding the probabilities (5) 
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for all samples having these, or more extreme, E values. By computer simulation, 
however, it is very quick to generate samples having (5) as distribution and to 
estirnate the significance levels by the proportion of more extreme E values in 
the simulated samples. We ran 1000 independent samples with k = 23, n = 60 
and found that no sample had an P value as large or larger than P = 0.2972, as 
for COYNE’S data. Again, we ran 2000 independent samples with k = 27, n = 146 
and found only 8 had as large an E value as did SINGH, LEWONTIN and FELTON’S 
data. We may conclude that both data sets depart significantly from the neutral 
alleles distribution ( 5 )  in the direction of excess homozygosity (that is, a defi- 
ciency in heterozygosity). 

The significance of the results is confirmed by the calculation of the means 
and standard deviations of P under the distribution (5). Formulas for these were 
given by WATTERSON (1977) and some numerical examples in WATTERSON 
(1978). In  the present cases, with COYNE’S data we would expect F to be 0.0831 
with standard deviation 0.0180; the observed value is nearly 12 standard devia- 
tions too big. With the SINGH, LEWONTIN and FELTON data, we expect P to be 
0.0984 with standard deviation 0.0278; the observed value is nearly 5 standard 
deviations too big. 

The information statistic: Defining the information statistic as 

n1 n2 ~ = - [ a , - l n  (;) +a,-ln (2) +...I n n n 

we find that the COYNE and SINGH, LEWONTIN and FELTON data yield respec- 
tive values of Z=2.0842 and Z=2.2797. These may be contrasted to their 
expected values 2.8029 and 2.7325, with standard deviations 0.0935 and 0.1416 
respectively, the moments being computed using (4.5) in WATTERSON (1974a). 
The observed values are therefore more than 7, and more than 3, standard devia- 
tions below their means, respectively. This agrees with the significant results 
reported above (see also SINGH, LEWONTIN and FELTON (1977)). 

The  most frequent allele: In  COYNE’S data, the most frequent allele was 
represented by 32 = n,,, (say) genes; for the SINGH, LEWONTIN and FELTON 
data, nmax = 68. Some significance levels for nmax were given by EWENS (1973) 
but for samples of 300 or more genes. A formula for the distribution of nmax was 
given by WATTERSON and GUESS (1977,4.7) and some mean values were tabu- 
lated by them. For the present k,n combinations we compute that the probabili- 
ties of getting nmax as large or larger than the observed values are 0.000007 and 
0.002758. respectively. Again, the extreme significance of the COYNE data, and 
the significance of the SINGH, LEWONTIN and FELTON data, is noted. For con- 
firmation, in simulations of 1000 samples in each case, we found mean values 
for nmax of 10.7 and 29.8 respectively, and standard deviations of 3.2 and 9.7 
respectively. The observed values of nmax were thus over 6, and nearly 4, standard 
deviations above their respective means. 

All of the above results should be treated with extreme skepticism. Among 
other assumptions, it has been assumed that the data sets are random samples 
from their respective species populations, and that all alleles are accurately 
detected and counted. We shall make some remarks about the latter assumption 
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in the discussion below. Concerning the former assumption, we know that the 
data were collected from various populations, and that these should be analyzed 
separately. Fortunately, we can carry out such analyses because the authors 
reported their results in sufficient detail. 

Section 3.  Results for individual populations 

which were drawn from three populations, may be summarized as 
In  the notation (2), (3) and (4), the allele frequencies of COYNE’S samples, 

Fish Creek: 17, 2l, 15‘ with k = 9 alleles in n = 24 genes, 
Mather: with k = 10 alleles in n = 21 genes, 
Sisters: with k = 11 alleles in n = 15 genes. 

19, 12l 
110, 5l 

The Fish Creek sample could be equally, or more, extreme (with respect to 
all the statistics E,  I ,  and nmax) if it had consisted of Is, 16l. Using the formula 
(5), the probability of getting the observed sample or the more extreme one is 
only 0.0042. LEWONTIN (personal communication) reports an 8’-approximation 
significant at the 0.001 level. Both the Mather and the Sisters samples are as 
extreme as possible, and have respective probabilities of only 0.0012 and 0.0262. 
Again, LEWONTIN reports significance levels < 0.001 and 0.004 using the F- 
approximation. 

COYNE (1976 p. 604) remarked “Because of the small sample sizes, however, 
the degree; of freedom were too small for the values to achieve significance. 
Much larger sample sizes than those used here will be necessary to properly test 
the data for correspondence to neutrality”. Whatever the validity of COYNE’S 
remarks for  the approximate tests he used, our exact tests above show that these 
samples have very significant departures from neutrality. 

The SINGH, LEWONTIN, and FELTON data were drawn from twelve distinct 
populations. Two provided very small samples: 

Population AU: 
Popdation GU: 

12, 22 with k = 4, n 
22 

6 , 
with k = 2, n = 4 , 

and in each case there was only one other sample configuration possible having 
the same k,n values, namely (1 3,31) and ( l1,3I), respectively. Whichever of these 
sample configurations had arisen, they could not have provided significant evi- 
dence against neutrality. For most of the other populations, only the most 
extreme possible sample would have been significant at the 5% level; this 
actually occurred with the HR population, whose composition 15,71 with k = 6, 
n = 12 has probability 0.0427. Otherwise, although the samples were fairly 
extreme, they were too small to  be significantly so. The exact probabilities for 
getting at least as extreme a sample (as large or  larger homozygosity) for all 
twelve populations are compared below with the F-approximation probability 
obtained by LEWONTIN (personal communication) for the information statistic. 

Population SZ SS CN SC WR CH CE MV HR AU GU BO 
Probability 0.25 0.13 0.22 0.28 0.09 0.18 0.13 0.70 0.04 1 1 0.38 
F approximation 0.14 0.08 0.08 0.18 0.05 0.16 0.08 0.59 0.01 0.83 1.00 0.36 
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DISCUSSION 

In the above analyses, I have quoted one-sided significance levels, namely the 
probabilities for “neutral” samples to have as high, or higher, homozygosities 
than those observed. These may be doubled if two-sided tests and significance 
levels are required, at least in those majority of cases when the observed homozy- 
gosity is higher than its median value. In any case, there is strong evidence of 
non-neutrality in the individual populations of D. persimilis, and less strong 
evidence in the D. pseudoobscura data. It is interesting to note that the F-approxi- 
mation underestimates the error probability. As we have remarked before, the 
conclusion relies on the data correctly indicating the allele frequencies in the 
samples. But SINGH, LEWONTIN, and FELTON found that by an additional heat 
sensitivity test, they could distinguish 37 (rather than 27) alleles in the 146 
genomes examined. Combining their Tables 1 and 4, we find that the pooled 
sample of D. pseudoobscura had a composition, in order as listed by SINGH, 
LEWONTIN, and FELTON: 

“Allele” frequency 1 1 5 3 1 1 8 1 2 5 2 1 3 3 6 2 6 
Number of 

aliasedalleles 1 1 1 1 1 1 1 1 1 2 2 1 1 1 2 1 2 

1168 3 1 1  1 3  1 3  3 146 
2 5 2 1 1 1 1 1 1 1  37 

In particular, we see that the most frequent “allele”, whose high frequency of 
68 was the main cause of the significance of the results for these data in section 2, 
is really the combined total of (at least) five distinct alleles. It could well be that 
if the 68 genes were appropriately redistributed among 5 alleles (and the other 
aliased alleles’ counts be similarly redistributed), the significance would evapo- 
rate. In fact, however, SINGH, LEWONTIN, and FELTON report that the most 
common allele among the five has frequency 45. If this were observed in a sample 
from a single population, with k = 37 and n = 146, it would still be significantly 
large. Unfortunately, due to some ambiguous lines with respect to heat sensi- 
tivity, the detailed compositions of the twelve populations’ samples were not 
found. 

It is an interesting consequence of neutral allele theory that we can calculate 
a probability for  the above pooled data even though some “allele” frequencies 
are in fact totals for aliased alleles. Let N,,N,,  . . . ,N,$ denote the numbers of 
each of k alleles in a sample size n = N,+N, . . . +N,. We assume that both k 
and n are given, and that the alleles are here listed in some order (for instance, 
in electrophoretic order). (So far, we have ignored the ordering of the alleles.) 

The joint probability of getting a particular sample, under neutrality, is (see 
WATTERSON 1974a, 2.26) 

Total 

k 

j=1 
Pr(N, = nl,Nz = n,, . . . , N h  = nkik,n) = fl(n,) ( 7 )  

-~ 

f k  ( n )  
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w!tere n1,n2, . . . .nk > O and nl + n, + . . . . + nk = n. Here f k ( n )  is a “first type 
Stirling dis tributioii” 

where 4 is an arbitrary parameter, 0 < 4 < 1, which cancels out from ( 7 ) .  In  
particular, f l  (.) is the logarithmic distribution, parameter $. If we now add some 
of the allele numbers together, e.g., let 

be the totals of k,,k,,k,, . . . allele counts, then (7) is replaced by 

Pr(Sl = sl, S, = s,, . . . ]I: ST = n , Z k,  = k )  
1 1 

rI f k  ( S J )  
1 3  

fk(n> 
- - 

In  particular, the probability of the aliased-alleles data above, in their listed 
order, is 

[fi(l>I’O [fi(2)I2f,(2) Cfi(3>16f,(3> 

fi(5) f2(5) Cf2(6>12fi(8> f z ( l l >  f5(68)/f37 (146) 

= (wl,l)lo (w1,2), w2,2 (W1,3l6 WZ,? Wl.5 WL.5 

= 3.547 x 10-23 , 
where, in EWEN’S ( 1972) no tation, 

( w 2 , 6 >  w1,8 w2,11 W 5 , G B  / W37,14G 

W k n  = k !  [ S , y / n !  . 

However, it is not clear how neutxality should be tested, because it is an open 
question as to which possible sample; would be “more extreme” than the observed 
one. The difficulty may be overcome eventually by the complete sequencing of 
all genes so that their alleles will be fully distinguished. 

Averages of sample homozygosities have often been used as statistics for esti- 
mating o = 4N,u, where N ,  is the effective population size and U is the mutation 
rate per gene per generation. For instance, SINGH, LEWONTIN and FELTON (1976, 
p. 625) estimated @ / 4  as 0.68 on the basis of a maximum heterozygosity of 0.73 
(homozygosity 0.27). Assuming neutrality, the population homozygosity, F ,  has 
an expected value 1/( 1 + O) so that an intuitively reasonable estimatezf @ would 
be F-I-1. Using the sampZe homozygosity, B, suggests a n  estimate @ P-l-1, 
but this has been shown, by KIRBY (1975) , to have a much greater mean-square 
error as an estimate of o thin does the maximum likelihood estimate, 0, based on 
k and n alone (see EWENS 1972). Moreover, under neutrality, E ?oes not have 
mean 1/( 1 + 0) , but rather n-I+ (1 - n-l)/( 1 + 0) , see NEI and ROYCHOUD- 
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HURY (1974) and WATTERSON (1977, 4.3.1), and this suggcsts the use of the 
estimators 5 = n ( 1 - P )  / (nP - 1 ) , which is greater than o but will have a 
similarly large variance. 

For the twelve samples analyzed by SINGH, LEWONTIN and FELTON (using 
their criteria 1-4, but not heat sensitivity) we find the following estimates: 

Population SZ SS CN SC WR CH CE MV HR AU GU BO 

rr - 

6 11.65 1.32 1.14 4.90 3.43 6.22 1.32 7.88 4.11 4.06 0.88 2.68 
0 5.26 0.65 0.59 3.36 1.72 3.59 0.65 5.26 1.67 2.60 1.00 2.13 
O 10.14 0.72 0.71 4.87 2.14 5.18 0.72 10.14 2.14 6.50 2.00 2.88 

- 
N - 

- 
In the neutral case, all three estimatorss are biased, 6 and being slightly too 

large on the average and o too small. Their biases are also subject to any selective 
influences. As pointed out to me by EWENS, the homozygosity tests of neutrality 
used above are, in effect, tests for the compatibility of 6 and 0. Preliminary 
calculations suggest that E(%) is more reduced by deleterious alleles than is E ( & )  
when 0 and/or selection increase. Further work is needed to see whether the 
substantially smaller mean-square error of 6 compared with 5 (or 0) is main- 
tained from the neutral case into non-neutral cases. 

One clear advantage 61 has over o and & is that 6 requires knowledge of_only 
+e number of alleles in the sample together with the sample size, whereas @ and 
g r e l y  on knowing also the allele frequencies. In the pooled sample studied by 
SINGH, LEWONTIN and FELTON, there were 37 alleles distinguished in the 146 
genes using the five criteria; had the sample been from a single population, 
we could calculate 6 = 15.65, whereas, not knowing P exactly, we could not 
calculate o o r  0. 

I cannot see much point in averaging the sets of twelve estimates o (or o or g) 
or estimating a parameter o by first averaging the twelve homozygosities. There 
seems to be no reason why the effective sizes of twelve populations and hence 
their o values should be equal. Had the samples been taken from one population 
at one time, it would be better to pool them first and treat them as a single large 
sample. 

- 
N 

N 

N - 
- - 

- -  
A U -  

I thank PROFESSOR W. J. EWENS for much advice in the analysis of these data, and MRS. 
M. Wu for help with the computing. I especially thank PROFESSOR R. LEWONTIN for sending 
me his analysis of the data. Thanks are also due to the referee for some helpful comments. 

LITERATURE CITED 

ABRAMOWITZ, M. and I. A. STEGUN, 1965 Handbook of Mathematical Functions. Dover, New 
York. 

COYNE, J. A., 1976 Lack of genic similarity between two sibling species of Drosophila as 
revealed by varied techniques. Genetics 84: 593-607. - , 1377 Corrigenda, Genetics 
85, No. 3. 



MULTI-ALLELIC DATA 179 

The sampling theory of selectively neutral alleles. Theor. Pop. Biol. 3: 
87-112. -, 1973 Testing for increased mutation rate for neutral alleles. Theor. Pop. 
Biol. 4: 251-258. 

Addendum to a paper of W. EWENS. Theor. Pop. Biol. 3: 
113-116. 

Exact results for the Moran neutral allele model. Adv. Appl. Prob. (In press). 
The population structure associated with Ewens’ sampling formula. 

Theor. Pop. Biol. 11 : 274-283. 
A discussion of simulation results for various aspects of the neutral alleles 

model. Theor. Pop. Biol. 7: 277-287. 
Sampling variances of heterozygosity and genetic 

distance. Genetics 76: 379-390. 
Genetic heterogeneity within electro- 

phoretic “alleles” of xanthine dehydrogenase in  Drosophika pseudoobscura. Genetics 84 : 
609-629. -, 1977 Corrigenda, Genetics 85, No. 3. 

The sampling theory of selectively neutral alleles. Adv. Appl. Prob. 
6: 463-488. -, 1974b Models for the logarithmic species abundance distributions. 
Theor. Pop. Biol. 6: 217-250. - , 1976 The stationary distribution of the infinitely- 
many neutral alleles diffusion model. J. Appl. Prob. 13: 639-651. - , 1977 Heterosis 
on neutrality? Genetics 85: 789-814. -- , 1978 The homozygosity test of neutrality. 
Genetics (In press). 

Is the most frequent allele the oldest? Theor. Pop. 
Biol. 11: 141-160. 

Corresponding editor: D. L. HARTL 

EWENS, W. J., 1972 

KARLIN, S. and J. MCGREGOR, 1972 

KELLY, F., 1977 
KINGMAN, J. F. C., 1977 

KIRBY, K., 1975 

NEI, M. and A. K. ROYCHOUDHURY, 1974 

SINGH, R. S., R. C. LEWONTIN and A. A. FELTON, 1976 

WATTERSON, G. A., 1974a 

WATTERSON, G. A. and H. A. GUESS, 1977 


