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ABSTRACT 

The consequences of asymmetric dispersion on the maintenance of an allele 
in a one-dimensional environmental pocket are examined. The diffusion model 
of migration and selection is restricted to a single diallelic locus in a monoe- 
cious population in the absence of mutation and random drift. I t  is further 
supposed that migration is homogeneous and independent of genotype, the 
population density is constant and uniform, and Hardy-Weinberg proportions 
obtain locally. If dispersion is preferentially out of an environmental pocket 
at the end of a very long habitat, the condition for maintaining the allele 
favored in the pocket becomes less stringent than for symmetric migration; 
dispersion preferentially into the pocket increases the severity of the condi- 
tion for polymorphism. If an allele is harmful in large regions on both sides 
of an environmental pocket, the probability for polymorphism is decreased by 
asymmetric migration. The criterion for  the existence of a cline is independent 
of the sense of the asymmetry; the cline itself is not These phenomena are 
studied both analytically and numerically.-It is shown for  symmetric migra- 
tion and variable population density that the more densely populated parts of 
the habitat are more influential in determining gene frequency than the others. 
Thus, the higher the population density in an environmental pocket, the more 
easily an allele beneficial in  the pocket will be maintained in the population. 

HERE has been much interest recently in the amount and pattern of genetic 
Tvariability maintained by the joint action of migration and selection. Research 
concerning populations distributed in clusters is discussed in detail in NAGYLAKI 
(1977aj. Considerable progress has been made in the study of continuously 
distributed populations. The problem of the existence, uniqueness, and stability 
of clines in the simplest case of uniform population density and homogeneous 
and isotropic migration was investigated by CONLEY (1975), FLEMING (19751, 
NAGYLAKI (1975, 1977b), and FIFE and PELETIER (1977). Some work has been 
done on clines involving two loci (SLATKIN 1975) and quantitative characters 
(SLATKIN 19771, and the exploration of random genetic drift in a cline has 
begun (FELSENSTEIN 1975; SLATKIN and MARUYAMA 1975;, NAGYLAKI 1978). 

If a cline exists, there must be sufficient environmental heterogeneity to 
reverse the direction of natural selection at least once. Not infrequently, such 
spatial diversity must also be reflected in inhomogeneities in the migration pat- 
tern and carrying capacity. This motivated the analysis of the consequences of 
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a discontinuity in the migration rate (NAGYLAKI 1976) and the diffusion treat- 
ment (NAGYLAKI 1976) of SLATKIN’S (1973) geographical barrier model. Using 
SAWYER’S (in preparation) recent results, we shall study the effects of a jump 
in population density in Section 111. 

Asymmetry in the dispersion rate may exist for plants due to prevailing winds 
or asymmetric migration of pollinating insects and for animals owing to a 
gradient of suitability over the habitat, as may be associated with more food, 
better terrain, more desirable temperatures, etc. MAY, ENDLER, and MCMURTRIE 
(1975) have examined the step and linear selection gradients with numerical 
and scaling methods. They found a “downwind” displacement (i.e., in the direc- 
tion of preferential migration) of the cline in both cases, but a significant broad- 
ening of the cline only for the step environment. We shall derive some qualitative 
properties of clines with asymmetric migration in Section I. The effect of the 
asymmetry on the conditions for the existence of clines will be investigated in 
Section 11. 

I. QUALITATIVE RESULTS 

The analyses in this paper will be confined to one spatial dimension. They 
apply, therefore, to two distinct biological circumstances. Organisms are fre- 
quently restricted to the immediate neighborhood of a river, seashore, etc., or 
may live in a river or narrow valley. Alternatively, the distribution of the popu- 
lation may really be two-dimensional, but only one of the coordinates may have 
genetic relevance. This would happen, e.g., if only latitude matters on a geo- 
graphic scale, or locally if individuals exist at various elevations on a mountain 
range. Previous work (HANSON 1966; NAGYLAKI 1975) indicates that the differ- 
ence between one and two dimensions, though not negligible, is neither sur- 
prising nor extremely large. 

We denote the mean and variance of the migrational displacement per 
generation by the genotype-independent constants m ( - w  < m < w )  and uz. 
Let us assume that the population density is constant and uniform and Hardy- 
Weinberg proportions obtain locally. The population is monoecious, with the 
alleles A ,  and A,  segregating at the locus under consideration. We neglect muta- 
tion and random drift, and suppose that at position z the Malthusian parameters 
of the genotypes AIAI,  A,A,, A,A, have the form sg(z), h g ( s ) ,  -sg(z). Thus, 
s (> 0) is the strength of natural selection: and h (-1 i h 5 1) specifies the 
degree of dominance, assumed to be independent of location. Over- and under- 
dominance are excluded for simplicity; to infer their effects, see NAGYLAKI 
(1975). 

The equilibrium frequency, p ( z ) ,  of A ,  at z satisfies (NAGYLAKI 1975) 

1 - U, p” - mp’ + sg(z)f(p) = 0, 2 
where 

f(p) = p(1 - p )  (1 + h - 2hp) ,  (2) 
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and primes indicate derivatives with respect to x. Care must be exercised in im- 
posing conditions at the boundaries of the habitat. If the population density is p, 
the flux of individuals is m p - (1/2) U: p’ (NAGYLAKI 1975). Hence, zero-flux 
boundary conditions cannot be stipulated with asymmetric migration and uni- 
form population density. Suppose, however, that the population density is con- 
trolled by reduction everywhere to p at regular short time intervals. Then we 
can study continuous variation only in the gene frequency, and requiring the 
finiteness of its time derivative at the boundary yields 

p‘ = 0. ( 3 )  

This boundary condition was deduced by FLEMING and Su (1974) in the neutral 
case, but one can see easily that their argument still applies in the presence of 
selection. 

Positivity is the only property of f ( p )  required for the following qualitative 
results. We assume that g ( x )  is continuous; we may think of the step environ- 
ments of Section I1 as limiting cases. 

1. Maxima and minima 
In view of the downwind displacement of clines mentioned above and analyzed 

below, it is perhaps not entirely obvious that maxima and minima of p(x) can 
occur only where A,  is advantageous and deleterious, respectively. Since p’ = 0 
at a stationary point of p(x), (1) shows that s g n p ” ( x )  =-sgng(x), where 
sgnx = x/ 1x1, thereby establishing that p(x) can have maxima and minima 
only where g (x) 2 0 and g(x) 5 0, respectively. 

2. sgn g (x) = sgn x 
Let us restrict ourselves to a single reversal of the direction of natural selection, 

choosing sgng(x) = sgnx without loss of generality. We enforce (3) at any 
boundaries of the habitat. If there is no boundary for x < 0, then p(-“) = 
p/(-”)  = O .  With no boundary for x > 0, p ( “ )  = 1 and p’(”) =O.  With no 
boundaries, intuition, experience (FLEMING 1975; NAGYLAKI 1975, 197713; FIFE 
and PELETIER 1977) and related work (SAWYER, in preparation) lead US to 
expect, at most, one stable cline. With at least one boundary, we expect at most 
one stable and one unstable cline. 

(a) Monotonicity: I n  spite of preferential dispersion, we expect intuitively 
that the cline is monotone nondecreasing. To prove this, assume the contrary, 
i.e., @(so) < 0 for some xo. If g ( x )  is nonzero near the boundaries (or nonzero 
for sufficiently large 1x1, if x = t-” is a “boundary”), we have from (1) and 
(3) sgnp”(x) = -sgn g(x) = -sgnx, and hence p’(x) 2 0 sufficiently close to 
the boundaries. Therefore, p(s) must have a maximum at some xM < xo and a 
minimum at some xm > xo, whence xu < x,%. But Result 1 implies xM > 0 and 
xm < 0, demonstrating our assertion by contradiction. 

(b) Downwind displacement: In  view of the above monotonicity, we may 
roughly define the location, 2, of a cline as the position of the greatest slope. 
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Then p ” ( 2 )  10 and (1) inform us that mp’(2)  = s g ( f ) f [ p ( Z ) ] .  Therefore, 
with symmetric dispersion, m = 0. we obtain 3 = 0. For m # 0 we find sgn f = 
sgn g ( 3 )  = sgn m because p ’ ( T )  2 0. This establishes the downwind displace- 
ment observed numerically for the step and linear selection gradients by MAY: 
ENDLER, and MCMURTRIE (1975). 

3 .  Scaling 
We posit that the habitat is unbounded (i .e. ,  very long for both x > 0 and 

x < 0 compared to m and U ) .  and seek the controlling dimensionless measure of 
the asymmetry of dispersion. Taking d as the characteristic length of the environ- 
mental variation, we consider the special case (,p 2 0) 

-1 , x < -d/2,  
- ( - 2 ~ / d )  P ,  

+( 2 x / d ) ~ ,  O < x < d / 2 ,  

-d/2 < x < 0, 

+1 9 > d/2 ,  

g(x) = (4) 

of odd g ( x )  . With m = 0 we derived the characteristic length 

w = (z2dF)1/(&+2) = l ( d / l ) d ( @ + 2 )  = d(z/d)2/(@+2) (5) 

for the cline (NAGYLAKI 1975, 1977b). In (5),  1 = ~/d / s ,  the width of the cline 
for the step environment (SLATKIN 1973). Setting z = wf in ( 1 )  and dividing 
by U? / (2w2), we see that the coefficient of the first derivative becomes 

iZ= 2mw / u 2 .  (6) 

Manifestly. IEl < < 1 and l?Z >> 1 correspond to small and large asymmetries. 
For the step ( p  = 0) and linear ( p  = 1) selection gradients, E agrees with the 
critical asymmetry parameters of MAY. ENDLER, and MCMURTRIE (1975). For 
a neutral belt separating the regions where A ,  and A ,  are favored, p = m. SO 

w = d and Fii = 2md / U ? .  Only in this case is m“ independent of the selection 
intensity s. Otherwise, (5) and (6) show % is a monotone decreasing function 
of s. Thus, weak selection enhances asymmetry. The asymmetry parameter is 
a monotone decreasing function of U and a monotone increasing function of d .  

11. QUANTITATIVE ANALYSIS 

We seek criteria for the existence o€ clines. One expects to observe many of 
the relevant biological phenomena with semi-infinite and infinite habitats and 
no dominance ( h  = 0). The conditions we shall obtain are certainly sufficient 
(SAWYER. in preparation), and probably also necessary (NAGYLAKI 1975). For 
stability we can rely on SAWYER (in preparation), but uniqueness we must con- 
jecture. No numerical evidence was found against necessity or uniqueness. Gen- 
eralization to an arbitrary degree of dominance is straightforward, but, at least 
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for h < -%, we do not expect the sufficient conditions to be necessary (NAGYLAKI 
1975). 

1. Semi-infinite cline 
We suppose the habitat is the half-line 0 5 x < W. The geometry envisaged 

here would apply to fresh-water organisms in a river flowing into a body of salt 
water, organisms distributed over a region bounded on one side by a mountain 
range, river, or seashore, etc. Assume A,  is beneficial in 0 5 x < a and harmful 
in x > a, the ratio of the uniform selection intensities being d: 

We introduce the dimensionless coordinate [ = x/a and redefine p and g as 
P ( 8  and 

From ( l ) ,  (2), and ( 3 )  we obtain 

p"-  Pp'+  k 2 g ( [ ) p ( l  - P) = 0, (9) 

p ' (0 )  =o, P("> =o,  (10) 

t > 0, 

where primes now signify derivatives with respect to & /3 = 2am/02 
(-" < P < ") is the crucial dimensionless asymmetry parameter, and 
kZ 2sa2/u2 controls the behavior of the cline without asymmetry (NAGYLAKI 
1975). 

A cline will exist if k > K ,  where K is the smallest positive eigenvalue of the 
linearized equation 

p" - PP' + k 2 g ( 0 p  = 0, t > 0, (11) 

with the boundary conditions (10) (SAWYER, in preparation). The solution of 
(11) in (0,l)  is a linear combination of exponentials; in (1,") it is a decaying 
exponential. The constants in the exponents are determined by substitution into 
( I  1) .  Imposing p'(0) = 0 and continuity of p ( t )  and p'(5) at [ 1 permits the 
elimination of the normalization constants and leads to the eigenvalue equation 

(12) 

where h = 4k2 and y = (pZ - A)'/.. By using exp (p[/2) and [ exp (P[/2) as the 
linearly independent solutions in (O,l), it is easy to verify that the special case 
k = p/2 is given correctly by taking the appropriate limit in (12). The reader 
unfamiliar with the procedure described above (12) will find the detailed soh- 
tion of a similar problem in Section IV.5 of NAGYLAKI (1975) helpful. 

We can calculate K explicitly by iteration for small asymmetry, /3 -+ 0. Noting 
that coth iz = -i cot z ,  we easily obtain from (12) the Maclaurin series 

F ( h )  ~ a ~ y c o t h  (y/2) - (Pz+azX)1 /2 - Ip (1  + a 2 )  = O ,  
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F ( X )  = 2ak(a cot k - 1) - P(1 + a,) + O(82). (13) 

~ = t a n % ~ + O ( p ) ,  (14) 

Therefore, (12) and (13) inform us that 

the leading term agreeing with our previous result for isotropic migration 
(NAGYLAKI 1975). From (12) and (13) we deduce 

upon inserting (14) and expanding in powers of /3. Clearly, we may neglect the 
uncalculated second order term in (15) if 1/31 << (tan-l a!),. 

We observe that for sufficiently small ,B preferential dispersion into the 
environmental pocket (/3 < 0) raises K, thereby increasing the stringency of the 
critical condition k > K, as expected from the influx of A,  genes. But excess migra- 
tion out of the pocket (/3 > 0) eases the requirement for polymorphism. This 
result is recognized as biologically reasonable if it is recalled that the population 
density is regulated in this model, so that an efflux of individuals from the pocket 
raises the frequency of A ,  in the rest of the habitat without depopulating the 
pocket. We shall see numerically that the conclusions of this paragraph apply 
without restrictions on the magnitude of 8. The fact that the change in K is of 
O(8) may be established for any selection gradient g ( t )  by perturbation theory 
(see, e.g., MATHEWS and WALKER 1964, Chapter IO). For the special case (8) 
of g ( [ ) ,  (15) was derived completely independently in that manner. 

To begin the general analysis of (12), let us show that F ( 1 )  is monotone 
decreasing wherever it is finite. For X i P2, we have 

1. s i n h y - y  42 
4y sinh2 (y/2) + 2 (P2 + ,a2h) lI2 

F'(X) = - 

which is indeed negative because sinh y 2 y for y 2 0. If A > P2, we define 
r]  = (1 - /32)1/z and compute 

again demonstrating Ft (A) < 0 since r]  2 sin r]  for r]  2 0. 

that 
Monotonicity enables us to find bounds on K. By direct calculation we prove 

F ( 0 )  > O  ifandonlyif p < ~ o = l n ( l + ~ z ) ,  (16a) 

F ( p 2 )  > 0 if andonlyif /3 < 8, E 2[1 - (1+a2)-1/2], (1 6b) 

F(/3 ,  + 2) > 0 (16c) 

P ( p  + 42-) = - W .  (W 
if and only if 8 < p2 = -r( I+(U~)-~/~, 
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Employing the variable b = (1 + a2)1/2 - 1 and the elementary inequality 
( b  > 0) ln(1 + b)  > b/(l 4- b ) ,  we conclude trivially that Bo > &; obviously 
p1 > 0 > p2. To understand what happens as /3 + Po-, note that for /3 > 0 (12) 
gives 

F ( 0 )  = 28 coth (p/2) - /?(2+a2), 

whence 

(17) 
a -F(O) =- aB 

4 sinh2(P/2) + a Z ( d  + /3 - 1) < o. 
2 sinh, (p/2) 

Hence, K + O f  as /3 + Po-. Therefore, if dispersion out of the pocket reaches 
or exceeds the critical value Po, a cline will be maintained by any nonzero selec- 
tion intensity. Together with (16), this yields the following limits on the critical 
value K :  

p < Bp2 implies (1/2) (pz + < K < (1/2) (pz 4- 4 ~ ~ ) ~ / ~ ,  (18a) 

pZ 5 /I < /I1 (18b) 

81 I /3 < 80 implies 0 < K _< (l/Z)p, (18c) 

p 2 Bo implies K = O .  (18d) 

implies (1/2) IPI < K I (1/2) (p' + i ~ ~ ) ~ / ~ ,  

We observe also that if A,  is lethal outside the pocket, i.e., as a + 00, (12) 
reduces to the simpler equation 

y coth (y/2) = 8. (19) 

As ,8 -+ - 00, (18a) suggests that K 4 (1/2) (pz + 4 ~ ? ) ~ / ~ .  To check this, we apply 
the bound (18a) to (12) and infer that cot (17/2) + --CO as /3 -+ -00, whence 
r ]  -+ 2x, as required. 

L. A. PELETIER has pointed out (private communication) that sufficient asym- 
metry destroys the cline even in an infinite habitat. In the special case studied 
here, we can easily confirm this interesting result and derive the critical range 
for the asymmetry parameter. A ,  might be swamped by A, for sufficiently large 
negative m. The critical condition (12) is clearly unaltered by shifting the 
pocket in (7) to the left by a. Hence, if a + E, then /3 -+ -00, and the result below 
(19) requires k > -1/2 8, i.e., m > - U ~ Z  To preserve A,, m must not exceed 
a critical value depending on the selection coefficient, sa2, favoring A,. Thus, by 
analogy with the above criterion, m < and we conclude that a cline 
exists if 

-qCZ < m < au$Z. 

Notice that in terms of the scaled asymmetry parameter. G ,  in (6) this condition 

reads 
- 2 4 R  Gi < 2d.5,. 
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TABLE 1 

Critical unlues K for the semi-infinite cline 

P\C 1 / 2  1 9 00 

-1 0 5.51 5.54 5.58 5.66 
-2 1.71 1.82 1.98 2.26 
-1 1.18 1.34 1.55 1.90 
-1/2 0.870 1.08 1.33 1.73 
-1/10 0.563 0.848 1.15 1.60 

0 0.464 0.785 1.11 1.57 
1/10 0.341 0.720 1.06 1.54 
1 / 2  0 0.396 0.874 1.42 
1 0 0 0.615 1.27 
2 0 0 0 1 .oo 

10 0 0 0 0.07 

I .o 
0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0. I 

FIGURE 1,-Two semi-infinite clines: CY = I, p = i /z ,  k = 0.8 (lower curve) and CY = 2, 
F = 2, k = 0.6 (upper curve). 
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We exhibit typical critical values K ,  computed from (12) and ( 19) , in Table 1. 
The values of the critical asymmetry parameter Po corresponding to a = 1/2, 
1, 2 are 0.223, 0.693, 1.609. The numbers in the table conform to (18), agree 
closely with (15) for p = * 1/10, and indicate that K is a monotone increasing 
function of a and a monotone decreasing one of 8, as expected and discussed 
above. 

Evidently, there are three distinct cases: 0 < k < K ,  no cline; k > K > 0, a cline 
exists; k > K = 0 (8 > Po) ,  a cline exists. An example of each situation was 
chosen by referring to Table 1. Indeed, for (Y = 2, 0.874, 
a thorough study of (9) and (10) revealed no cline. For a= 1, 1/2, 
k = 0.8 > K = 0.396, the unique lower solution in Figure 1 was found. Finally, 
with a = 2, p = 2, k = 0.6 > K = 0, the unique solution is the upper one in Figure 
1. (Both curves are accurate to at least 1 part in 1000.) 

2. Infinite cline 

We are concerned here with g([) such that A,  is favored in a finite interval 
( g  > 0) and deleterious elsewhere ( g  < 0). In  contradistinction to the case of 
symmetric migration. due to the asymmetric first derivative term in (9), we 
cannot obtain the infinite cline even for g(-() = g([) by reflecting the semi- 
infinite one about the origin. We shall first prove some results for arbitrary 
environments. 

With suitable scaling, the exact and linearized differential equations are still 
(9) and (1 1 ), but now and the boundary conditions are p (  ") = 
p(-" )  = 0. With zero boundary conditions at infinity, the linear differential 
opera tor 

= 1/2, k = 0.7 < K 

< .$ < 

appearing in (1 1) is the adjoint of the operator 

Therefore, ( 11) and the problem with the sense of the asymmetry reversed have 
nontrivial solutions for precisely the same values of k ( CODDINGTON and LEVIN- 
SON 1955, p. 292). Hence, we conclude that the critical value K is independent 
of the sign of P. The reader who does not find this biologically surprising should 
recall that we did not assume that g( - [ )  = g([), which would have made the 
result trivial, and the cline itself [Le., the solution of (9) with a fixed k > K ] ,  

as our examples will show, definitely depends on the sign of p. 
From our result, K (-p) = K ( p ) ,  we infer that 

K ( 8 )  = K ( 0 )  + 0 ( P 2 )  (21 1 
as /3 + 0. Thus, for weak asymmetry anisotropic dispersion has a much smaller 
effect in an infinite habitat that in a semi-infinite one. Equation (21) was also 
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proved directly: a perturbation calculd tion (see. e.g.. MATHEWS and WALKER 
1964, Ch. 10) demonstrates that the term linear in 

We  turn to the special case of an environmental pocket in --a < z < U and a 
piecewise constant selection ccefficient. With the definitions of 6, p. and k for the 
semi-infinite habitat. we choose 

vanishes identically. 

- y i ,  2 < -1, 
- 1 < [ < 1 ,  (22) { 2;. [ >  1. 

g ( t )  = 

We solve (1 1) in (-%.%) viith g ( f )  given by (22). The solutions are decaying 
exponentials in (-=, -1) and (1. ”) and a linear combination of exponentials 
in (- 1, 1 ) , the constants in the exponent5 being cletermined by (1 1 ) . Enforcing 
continuity of p ( [ )  and p.’(() a i  [ = *1 and simplifying tenaciously, we arrive 
at the eigenvalue equation 

G ( h )  = (uv - T ? ) T - ~  tan 7 + u + U = 0, (23) 

where U = (,& + Y ? X ) I ’ ~ ,  U = (/3’ + ,2i)’/2. and 7 was defined above (16). In the 
degenerate case k = (1/2) /I, one must use the solutions exp(/35/2) and 
[exp(/3[/2) in (-1, 1).  Since the equations for the normalization constants turn 
out to be inconsistent, we conclude that (1/2) ,8 is not an eigenvalue. This result 
is ensured automatically by the form of (23) because 

G(h)  > 0 if k I (1/2)/p/  . (24) 

Observe that only /3‘ appears in (23). in accordance with the evenness of K ( P )  
proved below (20). The invariance of K under the interchange of (Y y is not an 
independent result: this transformation amounts to the replacement 6 + -6, 
which is manifestly equivalent to p + -/I. 

For small asymmetry, /3 + 0, (23) yields 

a+’ - tan (2k) } + & { [ ___- (.+U)‘ ] tan (2k) + 2k secZ (5%) f - a+Y } 
“7 (1 -ay 1 “Y 

+ O(p-l) = 0, (25) 

whence 

tan (2k) =- f O ( p 2 ) .  
1 -ay 

Therefore, we find 

K =  (1/2)(tan-’cr+ tan-ly) + O ( p ’ ) .  (27) 

Substituting (26) and (27) into the p2 term in (25) and expanding in powers of 
/3‘ yields 

+ 0 ( P 4 ) .  (28) p‘ y- l+ tan-l (Y + tan-1 7) 
K = (1/2) ( tan-l a + taw1 y )  + 4(tan-l ,a + tan-l U )  
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If there is no asymmetry, (27) generalizes the critical condition (14) for a semi- 
infinite habitat. The latter applies to the infinite habitat if 01 = y. Note that (27) 
agrees with (21 ) . With 1p [ < < 1 , (28) implies that asymmetric dispersion raises 
K ,  increasing the stringency of the condition for existence of a cline. We shall see 
numerically that this conclusion holds for any 8. 

To obtain bounds on K ,  we put 

H ( h )  = uu - 72 , (29) 

H ( X )  > O  ifandonlyif (1 - aa2y2) i i<p2(2+a2+y2) .  (30) 

and show easily that 

Let us define 

(31) 
T 2  , h l = p 2 + - p  x 2 = / 3 2 + 7 r 2 .  

p2 (2 +ff2 + y2) 

1 - aZy2 
A0 = 

(If ay  = 1, we may choose Xo = m.) Recalling (24), we see that there are three 
cases for /3 # 0 (/io = p” if and only if p = 0) : 
(i) 

G(X) > 0, p2 I X < X1; G(X17) = 200; G(X2) > 0. Therefore 

Xo < p 2  or ho 2 A,: 
In view of (30), H ( h )  2 0 for p2 5 di i A,. Then (23) and (29) tell us that 

(ii) 

G(X) > 0, X I Xo and G(X,-) =-W. So 

pZ < A, < XI: 
We infer from (30) that H ( h )  > 0, X < ,io and H ( X )  < 0, h > Xo. Hence, 

(iii) X ,  < A, < A,: 
Now G(X) > 0, A < X1; G ( X I ~ )  = em; G(ho) > 0. We deduce that 

If A ,  is lethal in f < -1, we let y tend to in (23) and find 

u7-I tan 7 = -1. (33) 

Should A ,  be lethal everywhere outside the pocket, we let a + 00 in (33), whence 
tan 7 + 0 and 7 + T .  Thus, K + (1/2) (p2 + x2)l12. We expect the same result for 
very large asymmetry. Indeed, as 1/31 4 m, (30) informs us that case (i) applies, 
so (23) yields tan 7 

We display some representative critical values K calculated from (23) in Table 
2. Recall that 

(34) 

0. 

.((.,r;P> = K(a7YG-P) = .(x.;B). 
Table 2 indicates that K is a decreasing function of a, 7, and 8. The bounds (32) 
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TABLE 2 

Critical values K for the infinite cline 

a Y 0 1/10 1 / 2  1 2 10 
P 

1 /2 1 /2 0.464 0.477 0.650 0.891 1.359 5.176 

1 1 p 0.625 0.63 1 0.748 0.955 1.397 5.181 

1 1 0.785 0.789 0.864 1.033 1.440 5.187 
2 1 0.946 0.949 1.001 1.136 1.503 5.136 
2 2 1.107 1.109 1.147 1.252 1.576 5.205 

2 1 /2 0.785 0.789 0.872 1.045 1.452 5.190 

are satisfied, and the approximations for small and large p are quite accurate 
for p = 1/10 and ,8 = IO. 

In Figure 2 we exhibit two solutions of (9) .  Both have a = 2, y = 1/2, and 
k = 3. The graph with the higher peak corresponds to p = -2; the other to /3 = 2. 
Observe the downwind displacement discussed in Section I. The amount of this 
displacement and the shape of the cline depend strongly on the direction of the 
asymmetry. (Both curves are accurate to at least 1 part in 1000.) 

111. DISCONTINUITY I N  THE POPULATION DENSITY 

To investigate the effect of variable carrying capacity in its simplest setting, 
we assume migration is symmetric, and the population density has the constant 
value po for x < O and Tpo ( r  > 0) for x > 0. If 7 <I,  we may imagine less food 
or water, more predators, less suitable climate, etc in x > 0. The equilibrium 
gene frequency satisfies ( 1  ) with m = 0: 

( 1 / 2 ) 2 p ” +  sg(x)f(p) = 0, x f 0. (35) 

SAWYER (in preparation) has proved that the correct connection conditions 
between x < 0 and x > 0 read 

p ( o - )  =p(Of), p’(o-) = T z p ” ( o + ) .  (36) 

For piecewise constant environments, we can analyze the situation with the 
aid of the scaling device employed in the study of variable migration rates 
(NAGYLAKI 1976). Suppose 

1, x < 0, 
-a?, z > 0, g(x) = { (37) 

in an infinite habitat, and there is no dominance ( h  = 0). With the new 
coordinate 
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FIGURE 2.-Two infinite clines: N = 2, y = i / z ,  k = 3 for both; p = -2 (higher peak), 
p = 2 (lower peak). 

the gene frequency and its slope are continuous at the origin, but a in (35) is 
replaced by ?a. Thus, the treatment of the jump in the migration rate in 
NAGYLAKI (1976) applies directly if the standard deviation ratio v therein is 
replaced by the squared density ratio ?. In particular, the gene frequency po at 
the origin is the unique root in (0 , l )  of 

(1 + T 4 a 2 ) & ( 3  -2po) 1. (39) 

Considering po = p0(7) as a function of T and differentiating (39) , we see easily 
that p o  (1 ) according as T 2 1. This means that the 
more densely populated part of the habitat is more influential in determining 
the gene frequency. Since the effect depends on the fourth power of the density 
ratio, it is a rather pronounced one. 

(T) < 0. Therefore, po (T) 

In a semi-infinite habitat with no dominance and selection pattern 

(40) 
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replacing Y by 2 in Eq. (19) of NAGYLAKI (1976), we infer that a cline will 
exist if 

k > tan-l ( A x ) ,  

k still being defined as below (10). Therefore, if the pocket is more densely 
populated than the remainder of the habitat (7  < l ) ,  (41) is less stringent than 
for uniform population density. An allele is more difficult to maintain in an  
environmental pocket with low population density. These conclusions are 
expected both intuitively and from behavior of the infinite cline. 

IV. SUMMARY 

The consequences of asymmetric migration on clines were investigated. As 
with symmetric migration, maxima of the frequency of an allele must occur 
where that allele is favored. With a single reversal of the direction of natural 
selection, clines are displaced downwind, but are still monotonic. A rather gen- 
eral asymmetry parameter. m, was derived for  an unbounded habitat by scaling 
in Eq. (6).  Small and large asymmetry correspond to Im"l << 1 and Im"J >> 1. 
As discussed in the paragraph following Eq. (19), for asymmetry parameters 
outside an interval including 0. there is no cline. 

If a semi-infinite habitat has an environmental pocket of length a at one end, 
the critical asymmetry parameter is ,8 = 2am/u2. where m and u2 are the mean 
and variance of the migrational displacement. For selection intensity s, no domi- 
nance, and weak asymmetry ( p  -+ 0). a cline exists if k = 2sa2/uz exceeds K, 
given by (15). Preferential dispersion out of the pocket increases genetic vari- 
ability; extra influx into the pocket decreases it. 

With an environmental pocket in (-a, U )  in an infinite habitat, the condition 
for the existence of a cline is independent of the direction of the asymmetry, but 
the cline itself is not. For small asymmetry. the effect of the anisotropy on the 
critical value K is second order in p. and hence fairly small. If the selection gradi- 
ent is described by (22)  and there is no dominance, K has the value ( 2 8 ) .  Asym- 
metric dispersion lowers genetic diversity. 

For symmetric migration and variable population density, regions of high 
population density influence gene frequencies more than sparsely populated 
areas. Thus. an allele is maintained more easily in a densely populated environ- 
mental pocket. With the semi-infinite habitat with selection coefficients and 
densities outside and inside the pocket having ratios -a2 and T, respectively, and 
no dominance, a cline exists if k > tan-' (Pa). 

1 am greatly indebted to STANLEY SAWYER for communicating to me his results prior to 
publication and for enlightening discussions. It is a pleasure to thank MITCHELL LUSKIN not 
only for carefully and capably perfoiming all 01 the numerical analyses reported here, but also 
for several stimulating conversations. I am grateful also to NORMAN LEBOVITZ for a very helpful 
discussion. I thank L. A. PELETIER for permitting me to quote his unpublished results. 
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