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ABSTRACT

A two-site infinite allele model is comstructed to study the effect of intra-
genic recombination on the number of neutral alleles and the distribution of
their frequencies in a finite population. The results of theory and Monte Carlo
simulation of the two-site model demonstrate that intragenic recombination
significantly increases the mean and variance of the number of alleles when
the rates of mutation and recombination are as large as the reciprocal of the
population size. Data from natural populations indicate that this may be a
significant process in generating variation and determining its distribution.

IT has been known for some time that intragenic recombination might be as

powerful an agent for generating new variation as is mutation (Wart 1972).
In addition, Koer~ and Eanes (1976) conjectured that such a process would
maintain a number of rare alleles in excess of that predicted by neutral allele
theory alone. The belief in what is called the classical view of evolution (LEwoN-
TIN 1974) probably accounts for a lack of interest among population geneticists
in intragenic recombination; for if the population is homozygous at most loci,
then intragenic recombination has no effect. Although it was known that a large
amount of genetic variation might not be detected by electrophoretic surveys of
natural populations (LEwonTIN and Hussy 1966), it is just now becoming clear
how much variation is concealed (CovywEe 1976; SineH, LEwonTIiN and FELTON
1976).

If there exists a large amount of variation, intragenic recombination would be
important in population genetics only if the rate is large enough to be an effective
means of generating additional variation. Therefore, it is important to know what
rate of intragenic recombination is required to generate an increased amount
of variation in a finite population. Furthermore, even if intragenic recombination
generates an increased amount of variation, it must be shown that the effect of
intragenic recombination is qualitatively different from that of an increased
mutation rate. Therefore, it is important to know what the distribution of allele
frequencies is in a population in which intragenic recombination is an important
source of variation.

Intragenic recombination can occur both by crossing over and by a non-
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reciprocal process, gene conversion. If gene conversion is not symmetric, then
it acts almost like meiotic drive (Gurz and Lestie 1976). If gene conversion is
symmetric, it can be thought of as a reduced rate of reciprocal recombination
from a population point of view. Since the interest here is to determine the rate
of intragenic recombination necessary to increase the number of alleles and
affect the distribution of alleles, it is assumed throughout this paper that gene
conversion is symmetric.

A model of intragenic recombination with a large number of sites at which
mutation can occur is probably impossible to construct. However, many of the
above question can be answered by using a two-site model. If intragenic recom-
bination is symmetric, then such a model is equivalent to a two-locus model with
each locus considered as a mutable site and each gametic type as a different
allele.

THEORY

The two-site model used is equivalent to the infinite allele (Kimura and Crow
1964) two-locus model of random union of gametes (Karrin and McGrecor
1968). It assumes a finite population of 2N gametes. In order to generate a
gamete in the next generation, two gametes are selected at random with replace-
ment from the existing 2V gametes. For any two arbitrary gametes denoted by
a,b; and a,b,, one of the four meiotic products a.b,, @;b., a,b,, and a;b, is selected
with probability 15 (1—r), Yr, Y4r, and 1% (1—r), respectively, where r is the
recombination value. This process is then repeated until 2/V new gametes have
been generated.

Five inbreeding coefficients or descent measures are needed to describe the
behavior of the system from one generation to the next. Three of the inbreeding
coefficients involve two gametes chosen at random without replacement from the
2N gametes; one coefficient with three gametes; and one coefficient with four
gametes. If an arbitrary gamete is denoted by a;b;, then the five inbreeding
coefficients are:

For two gametes a;b; (1=1,2):

&, = P(a;=a,) = Probability a, is identical by descent to a.
®p = P(b,=b,) = Probability b, is identical by descent to b,
®,5 = P(ay=a,, b,;=b,) = Probability a, is identical by descent to a, and b,
is identical by descent to b,
For three gametes a;b; (i=1,2,3):
T4s = P(a,=a., b;=b;) = Probability a, is identical by descent to a, and b,
isidentical by descent to b,
For four gametes a;b; (i=1,2,3,4):
Ayp = P(ay=a;, b,=b,) = Probability g, is identical by descent to a; and b,
is identical by descent to b,
These are the same five variables that have been used for the two-locus model
with random mating of zygotes (WEeir and CockeEruam 1974; SgranT 1974).
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If there is no mutation, the recurrence equations for the five inbreeding
coefficients are:

oot (1o 2 ),

wi=t (11 ),

1 1
@AB’:(l_r)z[—z‘]v‘l_ (1 —_QW @AB:I +2r(1—r)P+r2A (1)
Ty’ = (1—r)T+rA
AAB’ = A
where

1
I'= g7 {1+ @N=1) (@st@rtess) + (2N—1) (2N—2)Tun}

1
A= _(_2—175—3_ {2N + 2(2N—1) (& +Bp+D45)

+ (2N—1) (2N—2) (&, +®p+4T4p) + (2N—1) (2N—2) (2N—3) Asz}
which can be obtained from Table 1 and Table 2.
The equilibrium values of the five inbreeding coefficients are

A

Oy =P =Pup=Tuyp = Ay =1

if there is no mutation; that is, the population is homozygous at both sites. The

TABLE 1

The probability of occurrence and the value of the inbreeding coefficient for each arrangement of
three gametes randomly sampled with replacement from a population of
2N gametes (a, B8, and ¥ are different gametes)

Arrangement
2
1 3 Probability P(a,=a,,b,=b,)
a 1
@ _— 1
@ 4N2
2N—1
@ A _ D,
a 4Nz
a 2N—1
a —_ Py
B 4Nz
2N—1
@ . I Pan
8 4N?
B @eN—1)(2N—-2)
! _ Typ
Y 4N?2
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TABLE 2

T he probability of occurrence and the value of the inbreeding coefficient for each arrangement of
four gametes randomly sampled with replacement from a population of
2N gametes (a, 8,7, and § are different gametes)

Arrangement(s)
1 3
9 4 Probability P(a,=a,b,=b,)
1
S 1
a 8IV3
a a 2N—1 "
B B 8NN3
B B 2N—1
@,
a a a 4N3
a @ @ IN—1
@5
8 B a 4N3
B a B 2N—1
®4n
B B @ 40V3
B Y (2N—1) 2N—2)
A @,
@ @ 8N3
@ o« (2N—1) (2N—2)
T @p
B 8N3
B o
v v (@N—1) (2N—2) .
oNs 4B
B B
o Y Y
(2N—1) (2N—2) (2N—3)
Ayp
b ) 8NN3

rate to homozygosity is 1—\,, where A, is the largest eigenvalue of the Jacobian
evaluated at this equilibrium. The eigenvalues are:
1

A.],':A,z::l_él—v—

and XAz, Ay, and As are (1 - 21W) times the roots of the cubic equation

IN3x® —

N(2N2r2—6N2r+6N?—2Nr2+-8Nr—7N-+r*—4r+3) 22 + (2)
(1—r) (N-1) (@N2r*—6N2r-+6 N2 —4Nr*+-9Nr—8N-+r*—3r+3)x —
(1—r)3(N—1)2(2N—3) =0

which is the same polynomial as equations (16) and (17) in Karrin and
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McGrecor (1968). They have shown that the largest root of equation (2)

2
decreases from (1 — —) to (1 2N) as r varies from 0 to 1,
Therefore the largest eigenvalue is A, = ( 1— _21W

If the mutation rate at each of the two sites is v and each mutation is unique
(the infinite allele model of Kimura and Crow, 1964), then the recurrence
equations are:

wr= (1) [+ (1= 1 )a ]
oy = (1) 5+ (1- 1)%]

@AB'=<1—V)4{(1—r)2[_21W+(1 ) ewm | +2r(t—nr+ 8} (3)

N
PAB, - (1—V)4[(1_T)T + rA]
AAB’ - (1'—V)4A

where T and A are as defined above. The equilibrium values can be obtained
using Cramer’s rule. Three different cases are considered:

1. N>>1, V’:O(%-), and r <<y

A 1
=Ty

A 1

% = TNy )
LSO S

427 1+ 8Nv

f‘ABz 3+ 20Nv

(1+4Nv) (1 + 8Nv) (3 + 8Nv)

9 4 72Nv + 64/N%?

B4z = (1+4Nv) (1 + 8Nv) (3 + 4Nv) (3 + 8Nv)

2. N>>1, vfzo(-llv) , re
F PO
1+ 4Nv
N
1 -+ 4Nv
128N** | 32N**r -1 76 N** 48 N?pr-+-8N*r*~-72Nv-+26Nr+9
(1-F4Nv) (256 N 192N 'rL-32N*»r"-1-320N"*1-152N*»r-+-8N*°+-108 N »1+-26 Nr-+-9)

I 80N> 48N*vr 48N 72Nv++26Nr-+9
4B T {1 4Nv) (256N 192N r 132 N°rP - 320NV 152V *rr-8N*r*+ 108N v+ 26 Nr-+-9)

(5)

A
Dyp =
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64NV~ 48N vr 8NP+ 72Nv+26Nr+-9
(11-4N7) (2567 L 192N/ 132N+ 320N+ 152N*»r+-8Nr’"+ 108N v+ 26Nr+9)

R
Agp &

3. N>>1, v:o(%,_) , T >

. 1

= TN,

b 1
2T+ 4Ny

L. t (6)
BT AN

A 1

Lar = A amyye

a 1

Aas = T AN

Since in all three cases it is assumed that IV >> 1, these results are the same as
those obtained by SeranTt (1974) for the two-locus model with random mating
of zygotes.

Hivr (1975) used the two-locus infinite allele model with random union of
gametes to study linkage disequilibrium in a finite population. The results in
equation (10) of Hrrr and the results in (53) of this paper can be obtained from
each other by a linear transformation. This is true since, if IV is large, then:

o, =21—H,=1 '_igzéjpipi
dp =1 —Hz=1 2,99
Pup = 3 ffii= 2 (pigi + Dij)*
=1—H,—Hy+H,H;+ 212] piqiDi; +ZE] D%
Lup = 2. piqifii = Z piqi (pigi +Di;)
=1—H,— Hy+ H,H, +§J_P¢%Du
Dap = 2 Piqipiq; = { —H,—Hy+ HaHs

where p; is the frequency of the i** allele at the A locus, g; is the frequency of
the j** allele at the B locus and f;; = p:q; + D;; is the frequency of the gamete
containing the i** allele at the A locus and the j* allele at the B locus.

The total mutation rate of the gene for the model of intragenic recombination

1 .
is p = 2v and, therefore, the effective number of alleles is n, = ——. The effective
AB
number of alleles for N >>1 and u =0 (—;v) is:
1+44Np, if r<< "
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(14-2Np) (32N -+48N3p2r-+16N3ur2-1-80N 242+ 76V 2ur4-8N2r2-54Nu-+26Nr--9)
16N3u3+-8N3p2r4+-44N2p24-24N2ur+-8N2r2-|- 36 Nu—+26Nr-+-9
if rep (7)
(1+2Np)? if r>>p.

The effective number of alleles for various values of Ny and for several values
of the ratio of p to r is plotted in Figure 1. It is seen that:

(1) The effect of intragenic recombination increases as Ny increases;

(2) for small values of Vp, there is essentially no effect; and

25 ~
r>>u
r=10u
20 A
r= bu
15 A r= 2u
ne
r=u
10 4
r=0
A
51
0 + T T T T T T —
0 0.5 1.0 1.5 2.0

Nu

Ficure 1.—The effective number of alleles for the two-site infinite allele model with
intragenic recombination.
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(3) a recombination value of the same order of magnitude as the mutation rate
can have a large effect even for moderate values of Ngp.

MONTE CARLO SIMULATION

Since the effective number of alleles is a function of both the number of alleles
and their frequencies, the increase in the effective number of alleles shown in
Figure 1 might conceal a much greater change in the number of alleles. In order
to derive the formulas for the mean and variance of the number of alleles and
the variance of the homozygosity, the distribution of allelic frequencies is
required. Because we are unable to obtain a formula for the allelic distribution,
a Monte Carlo simulation of the model for intragenic recombination was
undertaken.

In the Monte Carlo simulation, five pseudo-random numbers are used to gen-
erate each new gamete from the existing gametes. Two are used to select two
parental gametes from the 2/V existing gametes with replacement, one is used
to determine which one of the four meiotic products is selected, and two are used
to determine if a mutation occurs at each of the two mutable sites. This sequence
is then repeated until 2V new gametes are selected, which then become the 2IV
gametes in the next generation.

For each run, the initial population was assumed to consist entirely of one
allele. In order to insure that we were sampling from a stationary process, the
first sample recorded was the 12/Vt* generation. Also to insure that the covariance
between consecutive samples was minimal, the samples were taken 2/V genera-
tions apart. For each sample the number of alleles and their frequencies were
recorded. A total of 95 samples were analyzed for each run.

Two population sizes were used: 2V = 100 and 2V = 200. For each population
size runs were made with 4Nu=1 and 4Np=4 (u=2v=0.005 and
p = 2v = 0.02 for 2N = 100; p = 2v = 0.0025 and p = 2v = 0.01 for 2N = 200).
For each combination of population size and mutation rate, five different recom-
bination values were used: » = 0, r = p, r = 2u, r = 54, and r = 10p. Small values
of the population size were chosen in the interest of economy for computer
simulation, although they imply unrealistically high rates of mutation and
intragenic recombination. Two replicate runs were made of each of the twenty
combinations of population size, mutation rate, and recombination value.

The number of alleles and their frequencies at each of the two sites were also
recorded for each of the 95 samples in every run. These data can be used as an
internal check to see if the simulations are giving results that approximate those
expected from the sampling theory of selectively neutral alleles (Ewens 1972).
Although the simulations provide estimates of the population parameters, we
choose to compare them to the sample statistics, with 7z = N, for the mean and
variance of the number % of alleles present in any generation, as was done by
Ewens and GiLLespie (1974) in their neutral allele simulations. In Figure 2,
the histograms for the observed and expected distributions of the number of
alleles at one of the sites are shown for the four cases: (1) 2N =100 and



RECOMBINATION AND NUMBER OF ALLELES 837

2N = 100 2N = 100
v = 0.01

v = 0.0025

80

Number of Samples

2N = 200 2N = 200
0.00125 v = 0.005

160

80

Number of Samples

Number of Alleles

Freure 2.—Results of Monte Carlo simulation of the one-site infinite allele model. Frequency
distribution of number of alleles: observed—shaded bars; expected—solid bars.

6 = 4Nv = 0.5; (2) 2N = 100 and § = 4Ny =2; (3) 2N =200 and 0 =4Nv=0.5;
and (4) 2N =200 and 0 = 4Nv = 2. For each of the four cases there are 950
samples (95 samples from 10 runs). The expected distribution was obtained
using the program given in Appendix 3 of Ewens (1972). In each case it is seen
that there is close agreement between the expected and observed distributions.

In Table 3 the mean and variance of the number of alleles for the gene (two-
site) in each run are shown. For r = 0, the expected sample mean and variance
of the number of alleles are (Ewens 1972):

Case Mean Variance
ON=100 0=4Np=1 5.19 3.55
ON=100 H=4Npu=4 13.53 9.15
2N=200 =4Nyu=1 5.88 4.24
2N=200 0=4N p=4 16.24 11.78

Except for the runs with r = 0, there is no theory to which these values can be
compared. However, some important observations can be made from these data.
It is seen that the mean number of alleles increases with increasing r. With
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4Ny =1, there is only a slight increase in the number of alleles with increasing
r, while with 4N = 4 the increase is dramatic. Second, especially with 4Ny = 4

the variance increases much faster than the mean. In fact, the ratio of the vari-
ance to the mean becomes much greater than one. From the equation for the
sample variance in Ewens (equation 24; 1972), it is easily seen that the ratio
of the sample variance to the sample mean for neutral alleles is always less than
one. This indicates that the sampling theory of selectively neutral alleles does
not apply to the case of intragenic recombination.

In Table 4, the mean and variance of the homozygosity is shown for each run.
Homozygosity is calculated as Ipit, where p; is the frequency of the 7** allele.

Expected values of the homozyg051ty are given by ¢,5 in equations (4), (5)
and (6). The expected values for the two-site model for the 10 cases are given
in Table 5. It is seen in Table 6 that the simulations are in good agreement with
the expected values, although the observed values are consistently slightly larger
than expected. In order to show that the distribution of alleles is not that pre-
dicted by the theory of neutral alleles, the observed variances of the homozygos-
ity have been compared to those expected for selectively neutral alleles

20
(TT0)°(210) 310) (8)

with 8 =4Npu (Warterson 1974; Stewart 1976; Kineman 1977). Since
9 = 4Ny is only appropriate when r =0, the formula above was used with
§ = n.—1, where the value of n. is given by equations (7). Values of the vari-
ances calculated by equation (8) are given in Table 5. The ratio of the observed
variance to the expected variance for each run is given in Table 6. Especially for
4Ny =4, the ratio of the observed variance to that expected increases as r
increases. KixeMaN (1977) has proved that whenever the distribution of alleles
is that of EwenNs’ sampling theory, then the homozygosity must have the vari-

o =

TABLE 5

Mean homozygosity calculated from the two-site model and variance of homozygosity
calculated from the one-site model (see text)

Recombination Mean Variance
4Nu rate (two-site) (one-site)
1.0 r=20 0.5 0.0417

r=u 0.4847 0.0401
r=2u 0.4758 0.0392
r=>5u 0.4629 0.0378
r=10p 0.4552 0.037
4.0 r=20 0.2 0.00762
r—=uyu 0.1633 0.00472
r—=2g 0.1477 0.00369
r=sy 0.1301 0.00269

r=10g 0.1215 0.00226
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ance given by equation (8). These comparisons clearly demonstrate that the
sampling theory of neutral alleles with intragenic recombination is not the same
as the theory that assumes no intragenic recombination.

DISCUSSION

It has been demonstrated that intragenic recombination can significantly
affect the number of neutral alleles and their distribution in a finite population.
The requirements are that the rate of recombination be equal to or greater than
the mutation rate, and the mutation rate be at least the same order of magnitude
as the reciprocal of the population size. For example, when 4/Np — 4 and r = 10y,
the effective number and the mean number of alleles are approximately twice
as large as would be expected if there were no intragenic recombination. In addi-
tion, the variance of the number of alleles and the variance of the homozygosity
are at least twice as large as would be expected.

By comparing data from natural populations to the results from the Monte
Carlo simulation and the analytical theory developed in the preceding sections,
1t is possible to decide whether or not this process plays an important role in
natural populations. Therefore, it is necessary to compare known intragenic
recombination rates to mutation rates and also to show that 4/Npu, for at least
some loci, is large enough for intragenic recombination to have an effect.

The rates of intragenic recombination have been estimated in several organ-
isms. Data available for Drosophila should be representative. For the rudimen-
tary locus, CarLsoN (1971) has estimated that recombination varies between
7.6 X 10~* to 5.2 X 10~ depending on which alleles are being used. At the rosy
locus, CHOVNICK, BALLANTYNE and HoLm (1971) found that the recombination
rate for null alleles varied between 1.2 X 10-¢ and 7.2 X 10-¢. (Since both experi-
ments recovered only wild-type mutants, the recombination rates given here are
twice those rates given in the two papers.) Estimated mutation rates vary between
10~* and 10-*°; and for visible mutations at representative loci in Drosophila the
rate varies between 105 and 10 (Doszmansky 1970). Therefore, the rate of
intragenic recombination is large enough to be a significant process in deter-
mining the number and distribution of alleles, as long as 4Ny 1s greater than one.

Using either the number of alleles or the homozygosity to estimate the value
of 4Ny, intragenic recombination should be an important factor in generating
variation at loci such as esterase-5 and xanthine dehydrogenase (the rosy locus)
in Drosophila, and the HLA A and B loci in man. In populations of Drosophila
pseudoobscura (not including Guatemala and Bogota), the homozygosity and
number of alleles of esterase-5 vary from 0.20 to 0.32 and from 4 to 10, respec-
tively (calculated from Table 26; LewonTtiN 1974); and for xanthine dehydro-
genase from 0.16 to 0.61 and from 4 to 9, respectively (Sinem, LEwonTIN and
Ferron 1976). Among the 146 genomes from all 12 populations, there were
37 alleles of xanthine dehydrogenase detected. In man, for HLA A and B, the
number of alleles are at least 15 and 16, respectively, with corresponding homo-
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zygosities of 0.15 and 0.11 for European caucasoids (Boomer, CANN and Prazza
1973).

The data on the rate of intragenic recombination and the value of 4/Vu imply
that intragenic recombination plays a significant role in determining the distribu-
tion of neutral alleles in finite populations. In particular, the number and dis-
tribution of alleles at the xanthine dehydrogenase structural locus should be
influenced by intragenic recombination and therefore any test of neutrality
based on Ewens’ sampling scheme would be inappropriate for this locus.

We would like to acknowledge an anonymous reviewer for helpful comments.
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