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ABSTRACT 

Two two-locus models of the population dynamics of the segregation dis- 
tortion (SD) polymorphism of Drosophila melamgaster are described. One 
model is appropriate for understanding the population genetics of SD in nature, 
whereas the other is a special case appropriate for understanding an artificial 
population that has been extensively analysed. The models incorporate the 
general features of the Sd and Rsp loci which form the core of the SD system. 
It is shown that the SD polymorphism can be established only when there is 
sufficiently tight linkage between Sd and Rsp. An approximate treatment, 
valid for tight linkage, is given of all the equilibria of the system and their 
stabilities. It is shown that the observed composition of natural and artificial 
populations with respect to the Sd and Rsp loci is predicted well by the model, 
provided that restrictions are imposed on  the fertilities of certain genotypes. 
Highly oscillatory paths towards equilibrium are usually to be expected on 
the basis of this model. The selection pressures on inversions introduced into 
this system are also investigated. 

EGREGATION distorter (SD) chromosomes were first discovered in 1956 in 
'a natural population of Drosophila melanogaster in Madison, Wisconsin (see 
HIRAIZUMI and CROW 1960). Since then, they have been found to be at a fre- 
quency of 1-3% in most natural populations throughout the world (reviewed 
in HARTL 1975a). 

SD chromosomes are of interest because, in males, they violate the Mendelian 
rule of segregation; males that are heterozygous for naturally occurring SD 
chromosomes produce progeny among which 95% or more carry SD. The 
mechanism of distortion is the dysfunction of a large fraction of sperm that carry 
the genetically normal homologue of SD (reviewed in HARTL and HIRAIZUMI 
1976). Recent evidence suggests that the sperm dysfunction involves a defect 
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during spermiogenesis in the normal transition from relatively lysine-rich 
somatic histones to relatively arginine-rich sperm histones ( KETTANEH and 
HARTL 1976, TOKUYASU, PEACOCK and HARDY 1977). 

Genetically, SD chromosomes carry two mutations flanking the centromere 
of chromosome 2. The mutation on the left arm is called Sd (for segregation 
distorter), that on the right arm is called Rsp (for responder). Wild-type alleles 
are denoted Sd+ and Rsp+. The loci interact in such a way that segregation dis- 
tortion in favor of Rsp occurs in Rsp/Rsp+ heterozygous males unless the males 
are also homozygous for Sa+. Thus, Sd+ behaves formally as a recessive sup- 
pressor of the non-Mendelian segregation involving Rsp ( HARTL 1974). Males 
homozygous for Sd Rsp have extensive sperm dysfunction, leading to severely 
reduced fertility (HARTL 1973). 

From the standpoint of population genetics, segregation distortion is of interest 
because it is associated in nature with a coadapted system of inversions and 
modifiers of distortion held in strong linkage disequilibrium (SANDLER and 
HIRAIZUMI 1960; KATAOKA 1967; WATANABE 1967; HARTL 1970a, 1975a, 1977a). 
Modifiers of distortion enhance or suppress the segregational effects of segrega- 
tion distortion, and they are found on the X chromosome and on both major 
autosomes (KATAOKA 1967; HARTL 1970a; TRIPPA and LOVERRE 1975). Despite 
these complexities, it seems likely that the core of the system is the pair of loci, 
Sd and Rsp; other features of the system seem to be secondary responses to 
natural selection at these two loci. Indeed, HARTL and HARTUNG (1975) have 
shown that naturally occurring second chromosomes that are insensitive to dis- 
tortion by Sd Rsp are largely Sd+ Rsp in genotype. Since Sd+ Rsp chromosomes 
attain high frequencies both in nature and in laboratory populations (HARTL 
1977b), the bulk of second-chromosome suppressors also have at their core the 
interactions between Sd and Rsp. 

Segregation distortion therefore comprises a two-locus system of meiotic drive. 
Two-locus models of meiotic drive in which one of the loci is assumed to be an 
otherwise selectively neutral modifier of the segregation ratio have been exten- 
sively analyzed recently and have generated extremely interesting theoretical 
results (PROUT, BUNDGAARD and BRYANT 1973, HARTL 1975b, FELDMAN and 
KRAKAUER 1976; THOMSON and FELDMAN 1976) Unfortunately, the Sd locus is 
not a selectively neutral modifier; it modifies the segregation ratio, to be sure, 
but it also interacts with Rsp to impose fitness effects of its own. 

Our purpose, in this paper, is to develop models of the population dynamics of 
Sd and Rsp that incorporate features of the whole system as they are currently 
understood. Because segregation distortion occurs only in males and recombina- 
tion occurs only in females, gametic frequencies in the two sexes are not neces- 
sarily the same and have to be treated separately. For a reasonably realistic 
model, moreover, a number of fertility parameters and parameters measuring 
departures from Mendelian segregation must be used. We show here that, with 
biologically realistic parameter sets, the system can be fairly well understood, 
and that predictions of the model can be related to known features of the pattern 
of variation at the Sd and Rsp loci in natural and artificial populations. 
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BASIC MODELS A N D  ASSUMPTIONS 

Hereafter we denote Sd by S and Rsp by R and assume that there are two 
alleles at each of the loci-S/-t and RI+-giving four gametic types: + f, 4- R, 
S+, and SR.  These will be denoted by the indices 1, 2, 3, and 4, respectively. 
Let the frequency of gamete type i among the functional sperm in a given gen- 
eration be xi (i = 1, . . . ,4) and let the corresponding frequency in eggs be yi .  
The means of these frequencies are written as zi = % (xi f yi) for i = 1, . . . ,4. 
The S and R loci are assumed to affect only male fertility and segregation ratios, 
and male fertility is assumed to be affected in such a way that the fertility of 
each genotype can be measured by a fixed relative fertility parameter. This is 
reasonably realistic since the segregation distorter system controls the amount 
of functional sperm produced and there is no scope here for mating interactions 
between male and female genotypes. There is normally no crossing over in males 
of D. melanogaster; the frequency of recombination between the S and R loci 
in females is denoted by c. 

For compactness of notation, let kij (i # i )  be the proportion of functional 
sperm bearing gamete type i among all functional sperm produced by a male of 
genotype ij. For convenience put ki:, = i / .  Let uij be the relative fertility of a 
male of genotype ii. Letting wti = 2kiiupj (i, i = 1, . . . , 4) provides a set of 
“fitness” parameters that measure the relative contributions of males to the pool 
of functional spenn. For i f i ,  % Wij represents the relative frequency with 
which an ii male contributes i gametes to the functional sperm pool; % wji 
represents his relative contribution of i gametes. These two quantities summarize 
the effects of segregation distortion and fertility reduction for the genotype 
in question. For homozygous males of genotype ii, wii simply measures the 
reIative fertility of the genotype. 

Assuming random mating and infinite population size, it is straightforward to 
derive recurrence relations for Yi and y;, the values of xi and yi in the next 
generation. It is, however, convenient for  our purposes to deal in terms of average 
gametic frequencies in the sexes and deviations from the averages. Accordingly, 
let xi zi + S i ,  yi == zi - Si. Define wl. = z z3wzj; G = 1/2 Z B (x,yj + xjyi) wij; 
D = z ~ z ~ - z ~ z ~ ;  A* = S1S4 - 626,. Noting that i/z (x,yj + xjyi) =zizj - SiSj, we 
obtain 

3 

z i j  (2: + Si) =ziwi - Si BGjwij (la) 

Z { - S ; = Z ~  c D T C A *  (1b) 
3 

where the sign of cD is negative fo r  i = I, 4 and positive for i 
In order to obtain meaningful detailed results with this system of equations, 

it is necessary to specify the wij’s further. Actually, we must consider two 
models. The parameters of the first one, called model 1, are shown in Table 1. 
This model is appropriate for a long-term artificial population containing S and 
R, which was established by Y. HIRAIZUMI and extensively analyzed by HARTL 

2 , 3 .  
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TABLE 1 

Parameterization of male fertilities and segregation ratios in model 1 

+ +  + R  S +  S R  
Fertility Segn. ratio Fertility Segn. ratio Fertility Segn. ratio Fertility Segn. ratio + +  1 - l-s, 1/2 1 1/2 l-s, k 

Wl1= 1 wl,= l-s, Wl3= 1 w,,= 2(1-k) (1-s,) 
= l-K, 

+ R  l-s, 1/2 I-s, - l-s, k l-s, 1/2 
wzl= l-s, w,,= l-s, w2,= 2k(l-s,) wz4= 1-3, 

= l+K, 

s +  1 1/2 l-s, k 1 - l-S, k 
w,,= 1 w,,=2(1-k) (1-5,) w33= 1 w3,=2(1-k) (1-s,) 

= l-K, = l-IC, 

S R  l-s, k l-s, 1/2 l-s, k 1 -s5 - 
w41= 2k(l-s,) w&= l-s, wq3= 2k(l-s2) w4,= l-s, 

= 1+K, = 1+K, 

This model is appropriate for certain artificial populations segregating for S and R. The param- 
eter k is the fraction of functional R-bearing sperm produced by R/R+ males in which segregation 
distortion occurs. For each genotype i j  (i # j ) ,  wij is equal to twice the product of the fertility 
and the fraction of functional i-bearing sperm produced by the genotype. 

(1977b). As far as possible, the parameters in Table 1 are based on known fea- 
tures of the S and R alleles segregating in this population. S R/+ + males produce 
about 85% S R-bearing functional sperm and have a reduction in fertility. The 
parameter k (k > %) measures the haction of S R-bearing sperm among func- 
tional sperm produced by SR/++ males, and sz measures the reduction in 
fertility of this genotype; these features define w14 and wA1. Homozygous S R 
males have drastically reduced fertility (HARTL 1969). s5, which measures this 
effect, is such that sa >> 0;  s5 specifies wa4. With respect to segregation distortion 
and male fertility, S + and+ + seem to behave equivalently in combination with 
S R (HARTL 1974; HAUSCHTECK-JUNGEN and HARTL 1978) ; these equivalences 
define w,, and w43. Genotype S +/+ R produces a fraction k of + R-bearing 
functional sperm and appears to have a corresponding reduction in fertility 
(HARTL 1974; HAUSCHTECK-JUNGEN and HARTL 1978); thus w,? and w3, are 
defined. S R/+ €2 males have Mendelian segregation but reduced fertility 
(HARTL 1969; HIHARA 1974); sq measures this fertility reduction in the defini- 
tion of wza and w4,. Cytological studies of spermatogenesis by HAUSCHTECK- 
JUNGEN and HARTL (1 978) have shown abnormalities, principally in spermatid 
nuclear elongation, in 3- R/+ 4- genotypes and even more in -I- R/+ R geno- 
types, though S +/S f and S +/+ + are normal; thus, we set wll = w13 

w31 = wS3 = 1, wlZ = wzl = 1 - s,, and w2, = 1 - s3, where s1 and s3 measure 
the fertility reductions realized in + R/+ + and + R/+ R males, respectively. 
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Model 2, defined by the parameters in Table 2, is similar to model 1, but 
generalized somewhat to account for the segregation distorter system as it exists 
in natural populations. Naturally occurring S R chromosomes usually carry a 
strong enhancer of distortion near the tip of the right arm of the chromosome 
( SANDLER and HIRAIZUMI 1960) and polygenic enhancers distributed along the 
whole right arm (MIKLOS and SMITH-WHITE 1971). The segregation ratio of 
S R/+ + males is 95% or more, a ratio denoted in Table 2 by k,. Naturally 
occurring 3. R chromosomes are not completely insensitive to such strongly dis- 
torting S R chromosomes; thus, S R/+ R males produce about 80% S R-bearing 
offspring (HARTL 1977a). This segregation ratio is denoted k,. For chromosomes 
from natural populations, the segregation ratio of + R/S + males is not known, 
but it is probably about 60% in favor of + R (HARTL, unpublished). In Table 2, 
this segregation ratio is denoted k,, and the relative fertility of + R/S + males 
is denoted 1 - sG. Other than these modifications in wZ3, w3,, wz4, and w,,, models 
2 and 1 are identical. 

When k ,  = k,, sG = s,, and k ,  = 1/2, then model 2 reduces to model 1. These 
conditions amount to setting K ,  = K,, K ,  = K,, and K ,  = - K ,  = sq. Although 
the focus of our analysis is on model 2, we prefer to treat the models as distinct 
because they apply to very different situations. Moreover, certain aspects of the 
analysis can. be pushed farther for model 1 than for model 2. 

TABLE 2 

Parameierizaiion of male fertilities and segregation ratios in model 2 

+ +  + R  S +  S R  
Fertility Segn. ratio Fertility Segn. ratio Fertility Segn. ratio Fertility Segn. ratio 

+ +  1 - I--sl 1/2 1 1/2 I-s, k ,  
wll= 1 Wl2= 1-s, wl,= 1 Wl4= 2(1-k,) (1-s,) 

1-K, 

+ R  1-s, 1/2 1-s, - 1-S, k ,  f-s, k ,  
WZt=  I-s, wz2= I-s, w2,= 2k2(l-sz) w2,= 2(1-k,) (1-s*) 

= l+K, = 1-K, 

s +  1 1/2 1-s, k, 1 - 1-s, k ,  
wax= I w3,= 2(1-kz) (14,) w3,= 1 w,,= 2(1-k1) (1-sz) 

- =1-K, - I-Zi, 

- S R  I-s, k ,  I-S, k ,  1-s, k, 1 -s, 
w41= 2k,(1-s2) w4,= 2k,(l-s,) wq3= 2k.,(l--s,) w44= 

= l+Kz = 1+K, = 1+K2 

This model is appropriate for natural populations containing S and R. We define k, as the 
fraction of functional S R-bearing sperm produced by S R/+ + or S R/S + males, k, as the 
fraction of functional + R-bearing sperm from + R/S + males, and k, as the fraction of func- 
tional S R-bearing sperm from S +/+ R males. The wi3's are as def ied in the legend of Table 1. 
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ESTABLISHMENT O F  THE SEGREGATION DISTORTER POLYMORPHISM 

Ancestral populations of D. melanogaster were presumably homozygous + +, 
and contemporary populations are known that are apparently free of all the 
components of the segregation distorter system (HIRAIZUMI, SANDLER and CROW 
1960; HARTL 1977a). It is therefore of interest to consider the conditions under 
which a wild-type population can be invaded by the components of segregation 
distortion as a result of the occurrence of mutations to the S and R alleles in the 
same population. Let E ~ ,  and e4 be the frequencies of f +/+ R, + +/S +, and 
4- +/S R zygotes, respectively. It is assumed that these are initially very rare. 
Equations (1 ) and the parameters of model 2 then yield the following difference 
equations: 

c E4 

2 
&; - E 3  = - 

These equations are derived by adding ( la)  and lb), and neglecting second- 
order terms in the ei  and ai. The S R gamete type can therefore increase in 
frequency asymptotically if and only if K, > c, i.e., if 

Since + +/S R males have substantially reduced fertilities, it seems likely that 
the segregation distorter system could not have evolved by this sort of dynamics 
unless the recombination fraction between S and R were less than some critical 
value given by equation ( 3 ) .  Because of our ignorance of the segregation ratio 
and fertility reduction of the hypothetical original S R/+ + genotype, no precise 
value can be set for this critical value of c. From considerations set out in the 
discussion, it seems likely that it is of the order of 10-15 map units at most. In 
fact, the S-R distance is about 1 map unit (HIRAIZUMI and NAKAZIMA 1967). 

It is of interest in this context to note that, because of the absence of crossing 
over in male D. melanogaster, it is theoretically possible from expression ( 3 )  for 
a segregation distorter polymorphism to arise with c = 0.5, given a sufficiently 
low value of s2. With free recombination in both sexes this would not be possible. 
The establishment of a polymorphic system with the S and R loci on separate 
chromosomes would be impossible even in D. melanogaster. If the recombination 
fraction between S and R in males is denoted r, then equation (2c) becomes 

When r = c = 0.5 this reduces to 
negative. 

- e4 1 ( e 4 / 4 )  (K2 - 2), which is always 
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EQUILIBRIA WITH SMALL C VALUES 

Understanding of systems with small c values can, by continuity, be obtained 
by studying the c = 0 case (cf., KARLIN and MCGREGOR 1972). For sufficiently 
small c, the dynamics will closely resemble those of the corresponding c = 0 
case. Since the c value between the S and R loci is known to be small, results 
based on the c = 0 case will provide a good approximation to reality. The rest 
of this section will be based largely on this fact. 

The system can be simplified further by noting that the S + gamete type will, 
with most realistic parameter sets, be at a severe selective disadvantage because 
it is distorted in combination with both + R and S R. Hence with c = 0, only the 
three-gamete systems composed of the other gamete types need be considered 
in detail, and with small c values the frequency of S + can usually be neglected. 
In APPENDIX 1, we show that, when c = 0, there can be no stable polymorphism 
with all four gametes present except with special parameter sets, and that all 
equilibria with S + are unstable. Numerical calculations of exact population 
trajectories when c = 0.01, close to its real value, show that S 4- is always rare 
(< 0.005). Three-gamete systems can conveniently be represented by a tri- 
angular barycentric coordinate system in which each gametic frequency corre- 
sponds to the length of the perpendicular erected from the appropriate margin 
of an equilateral triangle (e.g., LI 1955, p. 47). 

In the remainder of this section, we consider the existence and stability prop- 
erties of the various possible equilibria with c = 0 and then compare the analytic 
results with some exact computations of population trajectories with arbitrary c 
values. Some general properties of c = 0 equilibria will first be mentioned. 

General properties of c = 0 equitibria: From equation (Ib) we see that at 
equilibrium 64 = 0 for each i. At equilibrium, therefore, gametic frequencies 
are equal in eggs and functional sperm. This generalizes the result of DUNN 
and LEVENE (1961). Adding equations (la) and (Ib) gives the equilibrium 
equation 

A 

E =  3 3 Z j D j  D+ (4) 

where the subscript i runs over the indices of the gametes present in the equilib- 
rium population. 

Equations (4) have obvious analogies with the standard equations for 
equilibria at multi-allelic loci (CROW and KIMURA 1970), but are not identical 
because, here, w J ~  # wji. 

The fact that & = O  means that, in the neighborhood of equilibrium, a 
linearized stability analysis can be carried out by ignoring terms in 8:. We obtain 

( 5 4  2 Z* 2; = 24 (Wi  + Z*) 

2 Z* a;= 2; (Wi - E*)  

where E* = 8 ziwi. 
a 
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It follows from this that the local stability analysis can be conducted solely in 
terms of the zi; the stability of system (5a) is sufficient for that of (5b). 

These general results can now be applied to the various equilibria possible 
under equations (4). Except where otherwised stated, the results will be given 
for the more general Model 2. The results for Model 1 can be obtained by setting 
k ,  = k ,  = k, k, = %, K,  = K,, K ,  = K ,  and K,  = - K ,  = s4. 

The 4- +/S R marginal equilibrium: This equilibrium corresponds to the one 
usually considered in standard one-locus, two-allele models of meiotic drive 
(e.g., HIRAIZUMI, SANDLER and CROW 1960). We have z2 = z3 = 0 and, from 
equations (4), 

This equilibrium exists and is stable to perturbations on the + +/S R margin 
if and only if (iff) K ,  > 0 and s5 > K,. An equilibrium that is stable on the 
margin is unstable to the introduction of + R iff 

P=K2 ( K 1 - K K , )  +SI (KI-sSg) > O  . (6) 

This inequality is satisfied for most realistic parameter values. 
The marginal equilibrium obviously cannot exist if c # 0, but there will be a 

nearby internal equilibrium if the c = 0 equilibrium is stable to the introduction 
of 4- R. 

The + +/+ R marginal equilibrium: This equilibrium will not ordinarily 
exist. It exists and is stable to perturbations on the margin iff s1 < 0 and si < sa. 
It is unstable to the introduction of S R iff 

y = K2 (sa- si) - s1 (sl + K 6 )  > 0 . (7) 

The S R/+ R marginal equilibrium: Here, equations (4) yield 

2 4  - s3 + K g  

s5 -K5 ' 

The equilibrium exists and is stable on the margin iff s3 > - K6 and s5 > K,. A 
stable marginal equilibrium is unstable to the introduction of + + iff 

(Y = - K6 ( K ,  - K 5 )  - s3 ( K ,  - s,) - (SS - K,) > 0 . ( 8 )  

The corner equilibria: The + + corner is unstable to S R iff K2 > 0, but is 
stable to + R when s1 > 0 or s, = 0 and s3 > 0. The S R corner is unstable to -t 4- 
iff s5 > K,, and it is unstable to + R if s5 > - K,. The + R corner is unstable to + 4- iff s3 > s,, and it is unstable to S R iff s3 > - &. 

The interior equilibrium: Solving the equations wI = w2 = w4, we obtain 

= a/B,  zZ = p/B, z4 = y / B  , (9) 

where B = (Y + p + y ,  and (Y, p and y are as defined above. 
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An interior equilibrium exists if either 

or 

a, 8, Y < o  * (lob) 

Considering the biologically relevant range of parameter values, it is reason- 
able to assume that s3 2 si and s1 + K ,  < 0. Thus > 0, and the relevant interior 
equilibrium is that existing under conditions (loa).  Conditions (loa) correspond 
to conditions (6) ,  (7) and (8), which guarantee the instability of all three 
marginal equilibria to the missing gamete type. 

The effects of varying the selection parameters on the composition of the 
population at the interior equilibrium are shown in Table 3. All the equilibria 
displayed are locally stable, using the criteria of APPENDIX 2, and the range of 
variation in the parameters is close to that suggested earlier as being realistic. 
Data from natural populations indicate that, if present at all, S R gametes gen- 
erally have a frequency of 0.01-0.03 (HARTL 1975a) ; in the only natural popu- 
lation so far studied extensively for the frequency of + R, the value was about 
0.5 (HARTL and HARTUNG 1975). It should be mentioned here that the presence 
of inversions on naturally occurring S R chromosomes reduces the recombination 
fraction between S and R to about 0.001 and thus makes our c = 0 approximation 
a very good one. Naturally occurring S R chromosomes usually carry recessive 
lethals, too, but this has virtually no effect on the equilibrium frequency of S R 
owing to its low frequency in the first place. Inspection of Table 3 shows that 
equilibrium frequencies of the order found in natural populations are produced 
only when si and s3 are quite small, certainly much less than 0.1. 

Equations (10) are considerably simplified when Model 1 is appropriate. I n  
full they become 

zi = [s, (Ki - s,) - s3 (Ki - sg) - ~1 ( ~ 5  - sq)]/B = a /B  

zz = [ K ,  (Ki - ~ 4 )  + si (KI - s 5 )  ] / B  = P/B 

2 4  = CK, (ss - s1) - s1 (Si - d I / B  = y / B  , 

(11a) 

( l i b )  

(1lc) 

where B = (s3s5 - s:) + KIK, + 2 s2 (sq - s3)  - s1 [s, + 2 (s5 - 
$4 - s,)] = ff + p + y. 

We can be fairly sure that s3 2 s1 and sq > si, so that y, and hence (Y and p, 
must be positive. As before, this guarantees that all three marginal equilibria 
are unstable to the introduction of ihe relevant missing gamete type. 

Representative values of the equilibrium gamete frequencies are shown in 
Table 4. Analysis of Hiraizumi’s artificial population, for which this model 
seems appropriate, has yielded equilibrium frequencies of 0.12 for S R and 0.79 
for -k R (HARTL 1977b). In  order to approximate these values, we must again 
have rather small values of si and sB, though not nearly as small as those required 
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TABLE 4 

Composition of the equilibrium population for realistic parameter values in model 1 when c = 0 

HIRAIZUMI’S artificial population has z2 z 0.8 and z4 z 0.12. To achieve comparable values in 
the model, small values of s1 and s3 are required, although these values must be considerably 
larger than those necessary to account for the gametic frequencies in natural populations (cf., the 
values of sI and s3 in Table 3) .  All cases in the table have k, = 0.85 and s6 = 0.80. 

to account for gamete frequencies in natural populations. Why s1 and s3 must 
be small can be seen from equations (1 1 ) in the case s1 = 0. Then 

zz - K1--4 1 <- 7 
- - ~  
z4 s3 s3 

and, if s3 is not too large, 

z4 M s3/K1 2 s3 , 
neglecting second-order terms in the fertility effects. 

Local stability of the internal equilibrium: The equations describing the sta- 
bility properties of the internal equilibrium point are given in APPENDIX 2. The 
conditions for stability in general are too complex to be analyzed fully, but one 
general point is worth noting. Equation (A.2.4a) implies that det is positive if 
B > 0. This condition corresponds to instability of all the marginal equilibria 
with respect to the introduction of missing gamete types (see above). Hence. 
from condition (A.2.la) we can conclude that such instability of the marginal 
equilibria, if they exist, is necessary for the stability of the interior equilibrium. 
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In order to obtain fuller insight into the stability of the internal equilibrium, 
we have carried out a complete analysis of Model 1 with the special condition 
s1 = 0. The details are given in APPENDIX 2: the results, taken together with the 
conditions for  the existence and stability of the marginal and corner equilibria, 
are presented in the next two sections. Although these conclusions have been 
derived for the c = 0 case, they are valid for small c, and the numerical illustra- 
tions have been calculated with c = 0.01, which is close to the true value in an 
S R chromosome lacking inversions. The general properties of this specialized 
case undoubtedly extend to more complex situations. 

Margins and corners all unstable (Model I with s1 = 0 ) .  From the analysis 
given in the APPENDIX, it follows that the condition s5 > K,, which guarantees 
the existence of the ++/S R marginal equilibrium, and condition ( G ) ,  for the 
instability of this equilibrium to the introduction of + R, are sufficient for the 
existence and stability of the internal equilibrium. Condition ( 6 )  here reduces 
to the simple form s4 < K,. Moreover, if the + R/S R equilibrium exists and is 
stable on the margin, its instability to the introduction of ++ is guaranteed by 
condition ( 6 )  when s5 > K,. The f +/+ R equilibrium is nonexistent when s1 = 
0. The existence and instability towards 4- R of the + +/S R marginal equilib- 
rium in this case, and it implies the instability of the other marginal and corner 
equilibrium when they exist. 

These conditions might well have held in the original segregation distorter 
polymorphism before the evolution of the system of modifiers on chromosome 2 
that enhance the distorting effect of S R (SANDLER and HIRAIZUMI 1960; MIKLOS 
1972). As shown in APPENDIX 2, there may easily be complex eigenvalues asso- 
ciated with the stability matrix, which cause damped oscillations in the neigh- 
borhood of a stable interior equilibrium. Numerical solutions of the stability con- 
ditions suggest that this is usually true under more general conditions than those 
analyzed in detail here. 

Figure 1 shows the kind of population trajectory that is generated with an S R 
chromosome having a high k value. As can be seen. there are violent oscillations 
that result in the almost complete loss of S R chromosomes for a substantial time. 
With lower k values, such as would probably have characterized a population 
evolving the SD polymorphism de novo, before the establishment of enhancing 
modifiers of segregation distortion, the oscillations tend to be less marked, 
although the general pattern is similar. 

The oscillations are basically due to selection for  the S R chromosome generat- 
ing an advantage for  the insensitive + R chromosome. When + R reaches a high 
frequency, S R becomes deleterious and declines in frequency, resulting in a net 
disadvantage to the + R chromosomes, which then declines in frequency, allow- 
ing an increase in the frequency of S R to occur again. 

The S R corner is stable to + + (Model 1 with s1 = 0 ) .  This situation is prob- 
ably less realistic than the others and is of interest in the present context only if 
the other marginal and corner equilibria, where existent, are unstable. This is 
the case if K ,  > s5, but the other instability criteria are satisfied (i.e., if s3, ss >s4 
and condition (8) hold, or if 0 < s3 < s4 < s,). The results below are based on 
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+R 

+ +  
FIGURE 1 .-Population trajectory in model 1 showing violent oscillations in gametic fre- 

quencies in the early generations. Here we assume c = 0.01 and s, = 0.025, s 2= 0.3, sq = 0.05, 
sq = 0.25, s5 = 0.9, and k = 0.9. Smaller k values reduce the amplitude of the oscillations, but 
the qualitative pattern remains the same. Analysis of the eigenvalues in model 1 are presented 
in APPENDIX 2. The stars represent the positions of the two nontrivial equilibria; the arrows indi- 
cate the general direction of changes in gamete frequencies. The population started close ta fix- 
ation for + +. 
the analysis of the s, = 0 case. but qualitatively similar results are obtained with 
0 <s, < sa. 

(a) s, < s4. There is always an interior equilibrium. If s4 is sufficiently close 
to s5, analysis of equation (A.2.1) shows that the interior equilibrium is unstable. 
Since inequality (A.2.2) implies the existence of complex eigenvalues in this 
situation, and since none of the corner or marginal equilibria are stable to all 
perturbations, it seems likely that a stable limit cycle or some other form of 
indefinitely oscillating behavior will result when the interior equilibrium is 
unstable (c.f.,  OSTER 1976). Numerical evaluation of the eigenvalues of the sta- 
bility matrix indicates that they are generally close to the unit circle centered 
at -1, SO that the amplitude of oscillations in the final state might normally be 
very small. Computations of population trajectories indicate that this is the case, 
SO that the interior equilibrium is effectively stable, although the systan may 
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oscillate rather violently for a long time. Furthermore, the amplitude of the oscil- 
lations on the approach to the final state i s  sensitive to the value of c.  For c close 
to zero, the amplitude is very large. 

(b) ss > s4. Her.? the stability behavior is more regular. Again when s1 = 0,  
a stable interior equilibrium exists if the S R/+ R marginal equilibrium is 
unstable to + +. This suggests that if the S R/+ R marginal equilibrium is stable, 
the population will eventually come to equilibrium there; if unstable, the popu- 
lation will converge to the interior equilibrium. This proposition has been con- 
firmed by numerical examples. 

SELECTION FOR INVERSIONS 

The existence of strong linkage disequilibrium in populations at interior equi- 
libria, implied by the rarity of S + gametes, suggests that there may be selection 
for reducing c (cf. ,  THOMSON and FELDMAN 1974; FELDMAN and KRAKAUER 
1976). Probably the simplest way to study this process is to consider that fate of 
an inversion introduced into one of the gametic types, which has the effect of 
completely suppressing crossing over between the S and R loci when heterozy- 
gous, but which has no effect on fitness of its own (NEI 1967; DEAKIN 1972; 
CHARLESWORTH and CHARLESWORTH 1973). The mathematics of this process in 
the present case closely resembks that for more conventional two-locus systems. 

Consider an inversion introduced into an S R gamete. Let the frequency of 
inversion-bearing gametes be z;. averaged over both sexes. The system includ- 
ing the invmsion is described by equations (1 ) and (12) below, where the su.n- 
mations run up to i and j equal to 5.  (Note that w5% = w4) and wi5 = wt4.) 

These equations can be used to investigate the conditions for a new inversion 
to spread and the type of equilibrium finally attained by the population. Small c 
values are again assumed. 

Spread of a new inversion: The inversion is assumed to be introduced into a 
population at a stable interior equilibrium. Neglecting terms in 8; and z', we 
obtain 

Az: = zj (6, - E)/2 E . 

Now; the equilibrium form of equations (1) , neglecting terms in 8; gives 
A 

(G,-$)/2W= C f i / 2 E 4  

For small c we can approximate D by z1z4, where z1 and 2.' can in turn be: 
approximated by equations (9). Hence, finally, we have for small c, 

AZ, s Z ~  (13a) 
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where 

1 ,  
s=-cz1 . 

2 

For an inversion introduced into a + + gamete we have a similar result, but 
with 

1 s=-  c24 . 

Inversions introduced into S -t or + R chromosomes are selected against. 
Since the chance of establishment in a large population of a gene with selection 

coefficient s is approximately 2s (HALDANE 1927), and since the chance that an 
inversion O C C L I ~ S  in a given gametic type is proportional to the frequency of that 
gamete, the overall chance of establishment of an inversion in  the segregation 
distorer system is. by equatioiis (13), the same for inversions introduced into 
-!- + and S R gametes, and it is equal to c.Z,ẑ ,. 

Computations of population trajectories confirm that equations (1 3) provide 
a sufficiently accurate description of the progress of a rare inversion. 

Equilibria with an  invet sion present: Without loss of generality, we can con- 
fine ourselves to the case of an inversion in gametic type 4 (S R) . It is shown in 
APPENDIX 3 that the only possible equilibria with the inversion present are those 
in which, to order c2 at most, the frequencies of zl, z2. 23, and z4 3- 2 5  are equal 
to the corresponding values for the original two-locus equilibrium with c = 0; 
zlz4 -- zzz3 equals zero in the inversion-containing equilibrium, however. In the 
cases discussed earlier in which z3 = 0 in the c = 0 equilibria, this implies that 
z ,  = 0, i.e., the inversion will have completely replaced the noninverted S R 
gamete. (A corresponding and analogous result holds when the inversion occurs 
in the + + gametes.) 

The local stability of the inversion-containing equilibrium can be examined 
using the method of CHARLESWORTH ( 1974). (Note the correction made by FELD- 
MAN and KRAKAUEK 1976). The details are omitted here. The conclusion is that 
the inversion-containing equilibrium is. for sufficiently small c, stable under the 
same conditions as the correspond equilibrium population into which the inver- 
sion was originally introduced. Taken together with the other results, this strongly 
suggests that an inversion introduced into S €2 or + + gametes in a population at 
a stable interior equilibrium will spread to an equilibrium that is identical to the 
former equilibrium with the same parameters and c = 0, except that the inversion 
completely replaces the corresponding noninverted gametic type. Computations 
of population trajectories confirm that this is the case. 

'DISCUSSION 

The analysis of the conditions for the establishment of the SD polymorphism 
suggests that it can occur only if the amount of recombination between the Sd 
and Rsp loci is less than some critical value. The close linkage observed between 
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the two loci is therefore probably no accident; variation at the Sd and Rsp loci 
would not have been detected in the absence of the polymorphism, and the poly- 
morphism would not have arisen if the genes were not closely linked. It seems 
that constraints on the tightness of linkage may be involved in the evolution of 
other examples of closely linked polymorphic loci. SHEPPARD (1 959) and 
CHARLESWORTH and CHARLESWORTH (1975) have suggested this sort of explana- 
tion for the mimicry supergenes of Papilio species, and it may also be valid for 
the sex chromosomes of higher plants ( CHARLESWORTH and CHARLESWORTH 
1978). BODMER and PARSONS ( 1962) gave the first mathematical analysis of this 
process. 

It is difficult at present to be very sure about the value of the critical recom- 
bination fraction in the SD polymorphism, since the fertilities under natural 
conditions are not known. The laboratory data of HARTL, HIRAIZUMI and CROW 
(1967) is probably the best information available. Averaging over all the het- 
erozygous SD lines listed in their Table 4, one obtains an estimate of K ,  of 0.14; 
from inequality (3) ,  this is equal to the critical recombination fraction. How- 
ever, the measured value of K ,  was obtained under conditions in which. as far 
as possible, the number of offspring produced by a mating was limited by the 
number of functional sperm transferred by the male during copulation. (Had 
theoretically ideal conditions been achieved, K ,  would have been zero.) In 
nature, it seems unlikely that the number of functional sperm transferred will 
be as strongly limiting a factor on the effective fertility of SD males, since a 
female may well die before exhausting her supply of sperm. On the other hand, 
multiple matings and sperm displacement in nature may tend to reduce K,. In  
D. pseudoobscura, the X-chromosome meiotic drive factor “sex ratio” induces 
dysfunction of Y-bearing sperm in males that carry it in a way similar to the 
dysfunction of wild-type sperm in SD males. POLICANSKY (1974) has shown 
that the effective fertility of sex-ratio males in nature is close to one-half normal, 
which is similar to that obtained by laboratory brooding experiments of the type 
used in the SD system. While it is obviously dangerous to draw conclusions across 
species and genetic systems, this suggests that there is a real possibility that SD 
males may have substantially reduced fertilities. Unfortunately, the SD system 
is less amenable to the experimental methods used by POLICANSKY, but it might 
be worthwhile to attempt to obtain similar data. Finally, we may note that what- 
ever the value of the critical recombination fraction, equation (2c) implies that 
a closely linked pair of genes will have a higher initial rate of increase in fre- 
quency than a loosely linked pair, and so in all probability a higher chance of 
establishment, thus creating a sieve for closely linked mutations. 

Further implications of this work arise from the equilibrium gamete fre- 
quencies given by equations (9) and (11). In the first place, these show that 
the insensitive Sd+ Rsp chromosomes can rise to quite high frequencies even if 
the Sd Rsp chromosome itself is rare. HARTL and HARTUNG (1975) report a high 
frequency of Sd+ Rsp (45% of non-Sd Rsp chromosomes) in a population from 
North Carolina. Furthermore, HIRA~ZUMI, SANDLER and CROW (1960) initiated 
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a population cage with 50% Sd Rsp and 50% Sd+ Rsp+; within about 20 gen- 
erations they found a significant frequency of insensitive chromosomes. HARTL 
(1977b), in examining a similar population cage, has shown these insensitive 
chromosomes to be Sd+ Rsp  in genotype. The trajectory plotted in Figure 1 
shows how these results can be understood in terms of the present model; 
Sd+ Rsp  chromosomes are generated by recombination and quickly increase in 
frequency under selection. 

I t  should also be noted that our model predicts the sort of equilibrium fre- 
quencies found in natural and artificial populations only when s1 and s3 are non- 
zero and both small (see Tables 3 and 4). Although, as discussed above, there 
are great difficulties in obtaining satisfactory estimates of the fertility param- 
eters, this is a prediction that needs direct testing. Abnormalities in spermio- 
genesis found in 4- R/+ -I- males by HAUSCHTECK-JUNGEN and HARTL (1978) 
suggest that the prediction may hold. 

Another point of interest is the strongly oscillatory nature of the paths to equi- 
librium, which is suggested by o w  analysis of the dynamics of the system (e.g. ,  
Figure 1). Such behavior should be relatively easy to  detect in experimental 
populations. 

The results noted above indicate that there is weak selection for an inversion 
suppressing crossing over between Sd and Rsp, and that an inversion is equally 
likely to establish itself in an Sd+ Rsp+ or Sd Rsp gamete, but cannot be selected 
in association with Sd+ Rsp. It is known that virtually all Sd Rsp  chromosomes 
are associated with a pencentric inversion that severely reduces recombination 
between Sd and Rsp (cf., HARTL 1975a), On the other hand, two Sd R s p  chromo- 
somes lacking a pericentric inversion have been recovered from natural popula- 
tions [SD (ROMA) and SD-51. This is at first sight in conflict with the results 
that predict that the inversion-bearing chromosome should replace the corre- 
sponding noninverted gametic type. There are some additional factors to be 
considered, however. In  the first place there may be other loci in the region 
subjected to interactive selection, and this might interfere with the progress of 
the inversion. Secondly, the Sd alleles found in natural populations appear to 
form a multiple allelic series that exhibits intracistronic complementation with 
respect to effects on male fertility (HARTL 1973). This will tend to generate a 
situation in which the heterozygotes for different Sd alleles will have higher male 
fertilities than homozygotes, and this will tend to maintain a variety of Sd alleles 
in the population. (It is important to note in this context that, because Sd+ Rsp 
chromosomes are maintained at high frequencies once the initial polymorphism 
has been established, new Sd Rsp  chrcmosomes may arise by mutation in Sd+ Rsp 
chromosomes, as well as from pre-existing Sd Rsp  chromosomes.) A small inver- 
sion arising in a given type of Sd Rsp  chromosome will be permanently asso- 
ciated with one Sd allele, and will probably be unable to replace all the 
noninverted Sd Rsp gametes. 

It may be useful to point out the differences between the present models and 
those of PROUT, BUNDGAARD and BRYANT (1973), THOMSON and FELDMAN 
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(1974, 1976), and HARTL (1975b), which involve a system of two loci, one of 
which is subject to meiotic drive and natural selection and the other of which is 
an otherwise neutral modifier of the segregation ratio at the first locus. With 
close linkage between the loci, equilibria with two predominant gametic types 
are created, in contrast to the present models where three gametic types occur 
at equilibrium. All models share the feature of selection in favor of closer link- 
age, though THOMSON and FELDMAN (1974) have shown that some cases of their 
model can generate selection for looser linkage. 

Finally, a word about the theoretical population genetics of non-Mendelian 
segregation is in order. Virtually all “general” principles of population dynamics 
are violated when segregation is non-Mendelian: average fitness is not maxi- 
mized at equilibrium in random-mating populations, even for a single locus 
(HIRAIZUMI, SANDLER and CROW 1960); the fundamental theorem of natural 
selection does not hold (HARTL 1970b); standard modifier theory (KARLIN and 
MCGREGOR 1974) is violated because linked neutral enhancers of distortion can 
increase in frequency and thereby reduce average fitness (HARTL 197513); stan- 
dard two-locus theory is violated because reduction of the recombination fraction 
between a distorter and a neutral modifier does not always lead to a greater 
average fitness at equilibrium and does not always reduce the equilibrium link- 
age disequilibrium (THOMSON and FELDMAN 1976). It makes one wonder 
whether there are any general principles of population genetics whose validity 
does not depend decisively on the supposition of Mendelian segregation. 
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APPENDIX I 

Exclusion of S + from c = 0 equilibria 
Several types of equilibria containing S + are possible. Here we show that, with biologically 

relevant parameters, these equilibria either cannot exist or, if they exist, are unstable to the 
introduction of new gametic types. 

( 1 )  The S +  corner (of the + + / f R / S  + / S R  tetrahedral simplex) is unstable to S R  
if K2 > 0 and unstable to + R if K ,  > 0. 

(2) An S + / S R  marginal equilibrium is unstable to the introduction of + R  if 
K,(K,  - K 5 )  + K ,  (sj - K,) > 0. In model 1, a necessary and sufficient condition for this 
inequality to hold is si > s+. 

(3) An S +/+ R equilibrium is unstable to the introduction of + + if K ,  > s,. A suffi- 
cient condition for this is s6 > s,. For model 1 the condition reduces t o  K ,  > sl, for which 
sa > s1 is sufficient. 

(4) An S +/+ + equilibrium is unstable to S R if K ,  > 0. 
(5) An equilibrium on the S +/S R/+ R face is unstable to the introduction of -I- -I- if 

K ,  > s,, as in case (3) above. 
(6) An equilibrium on the S +/+ R/+ + face cannot exist; its existence would require that 

Q 1- - 1 - slz, = Q3 = 1 - K,z,, which cannot be unless I{‘, = s,. For model 1 the condition 
for nonexistence of this equilibrium is simply K ,  # s,. 

( 7 )  An equilibrium on the S +/S R/+ f face can be shown to exist and be locally stahle 
on that plane iff s5 > K ,  and K ,  > 0. It is unstable to the introduction of + R if 
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(a) when K ,  > - s,, E,  ( K ,  - K &  + sI ( K ,  - s 5 )  > 0, 
or (b) when K ,  < - s,, K ,  ( K ,  - K,) - K ,  ( K ,  - s5) > 0. (A.l.1) 

Since there are no strong coupling-repulsion effects of the S and R loci (HARTL 1974), we 
expect K ,  to be fairly close to K ,  and certainly positive. Case (a) then obtains, and note that 
the condition is simply p > 0, which from (10) and (A.2.4a) is necessary for the existence of 
a stable + +/+ R/S R equilibrium. Such an equilibrium cannot, therefore, coexist with a + +/S +/S R equilibrium that is stable to the introduction of + R. On the other hand, with 
rather extreme parameter values, a + +/S +/S R equilibrium can exist and be stable to + R ;  
i f  this occurs, then, with a small amount of recombination, the equilibrium population would 
be expected to contain rather few + R chromosomes generated by recurrent recombination 
between + + and S R.  

(8) No equilibrium can exist within the + +/+ R/S + / S  R tetrahedron. The existence of 
such an equilibrium would imply that 0,, = 1 - z 2 K ,  - zqKl= 0, = 1 - z2sl - z4K, ,  which 
is impossible unless K ,  = sl, as in case (6) above. 

(9) Finally, we note that a stable 4- +/+ R/S  R equilibrium is stable to the introduction of 
S +. Around the equilibrium, zir, - 5 = z2 (s, - K 4 ) ,  so that S + cannot invade if K ,  > s,. 
This condition is the same as that in case (3) above. 

A P P E N D I X  I1 

The stability of the interior equilibrium with c = 0 .  
General considerations: It is convenient to introduce the variables XI = z2 and X ,  = zq. The 

stability of the system is determined by the 2 x 2 matrix A = {aii} = @ ( A  X , ) / a  X i }  where 
A Xi is the change per generation in Xi. The derivatives are evaluated at the equilibrium point. 
The standard necessary and sufficient conditions for stability (GOLDBERG 1961) are equivalent 
to the following expressions, where tr and det are the trace and determinant of A,  respectively. 

det > 0 (A.d.la) 
- ( t r  f det) > 0 (A.2.lb) 
4 -k 2 tr -I- det > 0. (A.2.1 c) 

tr2 > 4 det . (A.2.2) 
The necessary and sufficient condition for real eigenvalues is 

In  the present case we have 
all = z2 [ ( K ,  + K , )  z4 - (s, - SJ - ( K ,  + K , )  z q l / 2 ~  

= 22 [ (RI + K , )  (1 - ~ 2 )  - (K5 - SI) + ( K ,  + K ,  ~ 2 1 / 2 c  
az1 = z4 [ ( K ,  + K 2 )  z4 - ( -KG + K,) - ( E 5  + K , )  z,l/2rzl 
a 2 2  = z4 C ( K ,  + K2)  (1 - z , )  - ( K ,  + sj) f (K5 f K , )  z21/2E . 

(A.2.3) 

Considerable algebra yields a remarkably simple result: 
det = B zI z2 z,/4$ 
tr = - [ (s5 - K 5 )  zq - s1 z1]/2fi. 

(A.2.48a) 
(A.2.4b) 

Since the equilibrium gamete frequencies are known explicitly in terms of the selection and 
segregation distortion parameters, these expressions enable ready evaluation of conditions 
(A.2.1) for a given numerical case. It is not easy to express them in a simpler form, except in 
the special case of Model 1 with s, = 0, considered below. 

Model I with s, = 0. Stability condition (A.2.la) reduces, using (A.2.4a) and equations (9) 
to conditions (6) and ( 8 ) ,  since y > 0 by virtue of the assumption that s1 = 0. If sj > K , ,  it 
can easily be seen that condition (8) is satisfied whenever condition (6) holds. If condition 
(A.2.la) is satisfied, a necessary condition for (A.2.lh) to hold is tr < 0. In  the present case, 
we have 

tr - z4 (ss - s , ) /2w (A.2.5) 
SO that sj  > sq is necessary for stability. Condition (A.2.lb) in full reduces to 

(A.2.6) 
If s5 2 IC,, a sufficient condition for (A.2.6) to hold is 

2 (sg - s,) ( B  - s:,K,K,) - K ,  ( K ,  - s,) .det  > 0 .  

2 ( B  - s ~ K , K , )  > B + K,s, - K,K2 - s ~ K ,  . 
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Given condition ( 8 ) ,  this is satisfied if B > s3K,K2,  which holds under conditions (6) and (8). 
If s5 < K ,  and s4 < s,, it  can be seen by inspection that condition (A.2.6) may be violated 

if s, is sufficiently close to s,. Under these circumstances, therefore, the equilibrium exists but 
is unstable. If s, < K ,  and s3 > s4, however, it  can be shown as follows that condition (A.2.6) 
holds given conditions (6) and (8). We have in this case K ,  (s, - s3) < s5 (sa - sQ), so that 

det < (s3s5 - s4z) + s, (s, - s3) = s4 (s5 - s4) . 
A sufficient condition for (A.2.6) is thus 

which can be shown to hold given conditions (6) and (8). 
It remains to consider condition (A.2.1~). If the necessary conditions det > 0, tr < 0 are 

satisfied, this holds if ltrl < 2. This can be shown to be satisfied in all cases of interest, but the 
details will be omitted here. 

2 B - 2 s3K,K, - s4K2 ( K ,  - s4) > 0, 

In conclusion, we note that condition (A.2.2) for real eigenvalues reduces to 
s3 (s5 - s,) [(s, - s 4 )  - 4 ( K ,  - s,)] - 4 ( K ,  - s 4 ) 2  (s4 - s3) > 0 .  (A.2.7) 

When s3 < s4 and K ,  > s5, this condition can never be satisfied. If s3 < s4 and K ,  is close to s5, 
as will normally be the case for high k values, the same is true. With s3 > s,, the second term 
of (A.2.7) is positive, so that there will be situations when it is satisfied. Even when condition 
(A.2.6) is violated, the moduli of the imaginary parts of the eigenvalues will be less than in the 
corresponding situations with s3 < sq, implying oscillations of smaller magnitude. 

APPENDIX I11 

Equilibria with an inversion present 
The equilibrium version of equation (12b) gives 6, = 0. Equation (Ib) implies 

6, = 6, == c ( D  - A*) 
S z =  a 3 =  - 6, 

so that A* = 0. This implies that either 

or 
6, = 0, D = 0 

6, = c D # 0 .  

G=w,. 

8 ( z ,  + 6,) = z4w4 - s, z 6 .w ' . 

6,=0 

Equations (12a) and the fact that S5 = 0 imply 

Similarly, 
4 

3=1 3 43 
From (A.3.2), this implies that either 

or  
4 

w4 = - Z 6 .W . = - c D (wql f w~~ - w , ~  - w ~ ~ )  . 
3 43 

(A.3.la) 
(A.3.lb) 

(A.3.2) 

(A.3.3) 

In the first case, equations (A.3.1) imply that all the Si are zero. In the second case, the 
parameterization of the wii  in Tables 1 or 2 gives 

Iw4i f w44 - w42  - Wqal < 2 .  
Equation (A.3.3) therefore implies IcDI > w4/2, or 

C > 2 W 4 .  (A.3.4) 
Unless w, is of order c, this inequality cannot be satisfied, in which case the equilibrium must 

have all Si  = 0 and D = 0. Since populations with small c are of primary interest here, the 
possibility that (A.3.4) holds can safely be discounted, since it implies high sterility of the 
equilibrium population. Even if it is satisfied, analysis of the conditions for  equilibrium for  the 
other gametic types in the equilibrium population shows that 

wi - 8 = 0 (cz), i = 1,. . . ,4. 
Thus, to terms of order cz, the population is at an equilibrium with Si = O;z,, zz, and 

z4 + z5 are given by the same equations as the equations for z,, z2, and z4 with no inversion 
and c = 0. If inequality (A.3.4) is violated, on the other hand, then the result is exact. 


