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ABSTRACT 

A theory is given that allows inbreeding coefficients to be calculated exactly 
for populations with overlapping generations. Emphasis is placed on providing 
equations well suited for computer iteration. Both monoecious and dioecious 
populations are considered and family size is not restricted to being Poisson. 
One-locus and two-locus inbreeding coefficients are evaluated, although the 
reader may omit the two-locus sections. The exact treatment is shown to be 
preferable to approximate treatments in that it applies to both early and late 
generations for all population sizes. Inbreeding effective numbers found by the 
exact treatment are compared to various approximate numbers, and the 
approximate values are found to be generally very good. 

B Y  studying inbreeding levels in populations with overlapping generations, 
we hope to quantify the effects of age structure in altering the genetic prog- 

ress of populations. We know that, relative to populations of the same size with 
just one age class, inbreeding and hence homozygosity is delayed in populations 
with several age classes. We also know that the continued presence of individuals, 
generally females, over several years in breeding programs can delay the spread 
of favorable genes. In another direction, we recognize that human populations 
do not have discrete generations and that this should be reflected in models of 
these populations. Our study offers some novel features and presents some new 
results for models of populations with overlapping generations. 

Most previous work has concentrated on the evaluation of inbreeding and 
variance effective numbers. Previous authors include MORAN (1962), KIMURA 
and CROW (1963a), NEI (1970) , NEI and IMAIZUMI (1966) , GIESEL (1969) , 
TURNER and YOUNG (1969), FELSENSTEIN (1971), CROW and KIMURA (1972) 
and HILL (1972a,b). Effective numbers offer a very convenient one-parameter 
description of the mating structure of a population. As such they are often used 
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as a basis for comparison of different populations. In  populations other than 
idealized ones, however, effective numbers are defined as limiting values (over 
time) of rates of increase of inbreeding or drift variance. Most populations do 
not maintain the same characteristics for such long time periods, and in breeding 
programs interest is likely to be centered on early generations. For this reason 
we concur with JOHNSON (1977) in concentrating on inbreeding levels in early 
generations, rather than in limiting values of rates of change of inbreeding. We 
differ from JOHNSON, however, in restricting attention to exact inbreeding levels. 

We also broaden the scope of some previous inquiries by considering both 
monoecious and dioecious populations, and not restricting attention to Poisson 
family size. In this we follow HILL (1972b). The study of different gametic 
sampling plans points out another restriction in exclusive concentration on eff ec- 
tive numbers. It has been shown (KIMURA and CROW 1963b; COCKERHAM 1970) 
that populations that avoid early inbreeding may have high final rates of 
inbreeding. The ranking of populations on the basis of such final rates may be 
opposite to a ranking on the basis of early inbreeding. 

In other matters, such as the assumptions of constant overall population size 
and stable age distribution, we follow conventional models. We allow age-specific 
birth and death rates. 

The one entirely new feature of this work on overlapping generations is the 
treatment of inbreeding at two loci. The treatment is based on the general 
methodology of WEIR and COCKERHAM (1969). In the absence of linkage dis- 
equilibrium and selection, the two-locus inbreeding coefficient evaluated here 
allows two-locus genotypic frequencies to be studied. Under the same conditions, 
as might hold in control populations, we have recently shown (WEIR and 
COCKERHAM 1977) how the two-locus inbreeding coefficient is used in the pre- 
diction of means and variances of quantitative traits. Work similar to that 
presented here allows the evaluation of other two-locus parameters that can be 
used to predict linkage disequilibrium (COCKERHAM and WEIR 1977). 

We recognize that the two-locus analysis may be of more limited interest than 
the usual one-locus study of inbreeding. Accordingly, the paper has been struc- 
tured so that the two-locus sections may be omitted by the reader. 

MONOECIOUS DIPLOIDS 

Mating scheme 

classes. There are ai individuals in the ith class, and n classes, so that 
In all years t the population consists of individuals belonging to various age 

n 

k 1  
r, cJvi=dv. 

Age is measured in years. Each year AI newborn are added to the population 
and all a,, n-year-olds die, while a random sample of Ai - a,+, of the i-year- 
olds die. 

The mating scheme is random union of gametes and is specified by two sets of 
parameters. Sampling between age classes is accommodated by parameters pi,  
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where pi  is the probability that a random gamete received by the newborn indi- 
viduals in any year came from the ith age class in the previous year. 

n 
z p c = 1 .  
i=1 

Within age classes, we allow arbitrary distributions for the numbers of gametes 
from individual members of the class. The usual approach is to assume that these 
numbers, or family sizes, are independently Poisson distributed subject to the 
numbers adding to the total gametic output f rm  that class. The set of Ai 
gametic numbers from the ith age class are then multinomially distributed. We 
will return to an analysis of the different distributions in the DISCUSSION, but 
note here that we have already (CHOY and WEIR 1977) discussed such schemes 
as “minimum” and “maximum” inbreeding for recurrent selection schemes. At 
present, we will assume that the gametic numbers have the same distribution 
for every member of an age class, and we work with gametic sampling 
probabilities (WEIR and COCKERHAM 1969) Pz(i) and P”(i). These are the 
probabilities that two gametes from age class i are from one or two individuals, 
respectively, within that age class, and 

P“i) + P ( i )  = 1. 

It is common (e.g., JOHNSON 1977) to restrict attention to the case where any 
output gamete from an age class is equally likely to have come from any indi- 
vidual within that age class. In this “equal-chance” case, 

P“i) = l/Ai. 

There is a need in two-locus models for trigametic and quadrigametic sampling 
probabilities, in addition to these digametic probabilities. 

One-locus case 
We wish to determine the average inbreeding coefficient F l ( t )  of members 

of age class 1 in year t. This is the average of the probabilities of identity by 
descent of pairs of genes drawn from individuals in the previous year, and each 
member of a pair has probability pi of coming from an i-year-old, so that 

The gametic set measure qlii ( t )  is the probability of identity by descent of a gene 
from age class i and a gene from age class j in year t ,  and it will be necessary 
to establish transition equations for these gametic set measures. 

When two gametes are from the same age class, there is a chance that they are 
both from one individual in that class, and genes on the gametes may be copies 
of the same gene in that individual. Identity by descent is then assured, and to 
keep track of such cases it is helpful to define the average coancestry 8, (t) as 

$ 3  
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the probability of identity by descent of a gene from a random member Zi of age 
class i and a gene from a random member J j  of age class j ,  both in year t. The 
measure is averaged over all Zi and 1,. 

If primes denote distinct individuals in the same age class then, 

glii(t+l) =Pz(i) elr * I  I (t+l) + P ( i )  el, 4 %  (t+l),  1 5 i I n (2) 

qlij(t+l) = 01, ( t+l ) ,  1 I i < j 5 n, ( 3 )  
I j  

and there are the obvious symmetries 

$lij (t> = $lji (t> 7 ' , f , J ,  ('1 = '1 J I ( t> * 
J <  

Now an individual of age i in year t + 1 was of age 1 in year t - i + 2, so that 
gametes from such individuals descended from parents in year t - i + 1. Identity- 
by-descent relations in equations (2) and ( 3 )  are preserved if we write them as 

qlii (t+l) =P'(i) O l f r  (t-i+2) +P1I( i )  elf I ,  (t-i+2), 1 5 i I n (4) 
1 1  1 1  

$lij(t+l) = e l f J  (t-i+2), 1 I i < j 5 n . 
1 J-C+l 

Genes from individuals in age class 1 may have descended from any of the age 
classes in the previous year, and two genes from the same individual are equally 
likely to be copies of the same gene or of different genes received by that indi- 
vidual. We have then 

n n  

e1 (t-i+2) = 2=1 ,x j=1 z pipj $lii (t-i+l) (7)  

(8) 

'1'1' 

n 

8, (t-i+2) = k=i z prcql k,i-i (t-i+l), 1 I i < j 5 n . 
I l J j  -&+I 

Equations (2) to (8) may now be combined to give the desired transition 
equations for gametic set measures: 

These equations allow the determination of gametic set measures, and hence 
inbreeding coefficients, in all years, but are not in a particularly convenient form 
for computing as they require the storing of measures for the previous n years. 
This is in contrast to the situation with discrete generations, where we always 
obtain sets of measures that rest only on values in the previous generation. We 
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can rearrange equations (9) and (IO); however, to obtain equations which do 
span just consecutive pairs of years: 

I n  the case of equal-chance gamete formation, this set reduces to that given by 
FELSENSTEIN (1971) and is an exact alternative to the set given by JOHNSON 
(1977). 

Equations (1 1) through (14) are in a form that is highly suitable for com- 
puter programming. Exact treatment of inbreeding in situations as complex as 
those considered in this paper of necessity requires a numerical approach. Our 
hope is that readers with specific cases of overlapping-generation populations 
will find equations (1 1) through (14) of help in their numerical studies. 

If there were only one age class per generation, n = 1, equations (1 1 ) through 
(14) provide 

or 

which is the usual result for discrete generations. 

initial values of our measures are 
If all initial individuals (year 0 )  are not inbred and are unrelated, then the 

1 
$Iii (0) =-P"i) , 2 
$lii (0) = 0 7 

F ,  ( 0 )  = o  
and then equations (1) and (1 1) through (14) provide 

1 I i I n 

I l i < j l n ,  
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Later values will generally require numerical iteration of equations (9) and 
(IO) , or (1 1 ) through (14), but this is also a feature of approximate treatments 
such as those of JOHNSON (1977). 

It is common to compare populations on the basis of effective numbers. The 
inbreeding effective number is related to the asymptotic rate of increase r of 
Fl ( t )  . This rate is the limiting value, as time increases, of 

where F1(w) = 1. Since r = 1/(2N) for an ideal molnoecious population of size 
N ,  we set 

This is the annual inbreeding effective number. Note that we would obtain the 
same rate of inbreeding and effective number if we took 

This ratio uses the complement of the inbreeding coefficient, Fo = 1 - F,, and 
F , ( m )  =o.  

The generation length L for the population is defined as the average age of 
the parents of newborn individuals 

and the generation inbreeding effective number Ng is rV,/L. 
Several authors (e.g., FELSENSTEIN 1971; HILL 1972a, 1972b; JOHNSON 

1977) have given analytical expressions that approximate Nv or N g .  Exact values 
in specific cases can be obtained by iteration of the transition equations above, 
but in any real situation interest is more likely to center on early generations 
when the concept of effective numbers is of less relevance. 

One-locus numerical results 
We illustrate the evaluation of one-locus inbreeding coefficients in monoecious 

populations by considering a papulation with four age classes ( n  = 4 )  , each with 
four individuals (ai = 4, i = 1,2,3,4). Equal-chance gamete formation is 

assumed. We set each of the mating probabilities pi equal to -, and each of the 
probabilities P2 (i) of drawing two gametes from the same member of an age class 

also equal to -. 

1 
4 

1 
4 
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Equations (1 1) through (14) become 

j = 2,3,4 

i = 2,3,4 

1 4  
$llj (t+l> = - 4 iZ1 $1+1 ( t )  ’ 

$lii (t+l> = $1$-1,$-1 ( t )  9 

$lij = $li-l,j-l (t> 7 2 1 i < j 5 4  

so that there are ten distinct-valued measures to evaluate each year. These equa- 
tions utilize the equalities gli7 = glli , but it may be more convenient for com- 
puting purposes to work with all 16 possible measures glil ( i , j  = l,2,3,4) as a 
two-dimensional array. The inbreeding coefficient in any year is the average of 
all gametic set measures in the previous year 

In Table 1 we display the one-locus inbreeding coefficients for this popula- 
tion and compare them with values obtained by the method of JOHNSON 
(1977). This appronimate method, designed for early generations, assumes that 
( 2 A i  - 1 ) / 2 A i  1. In effect, JOHNSON’S method linearizes the inbreeding 
coefficient, so that his effective number Nv is such that 

The inbreeding rate r shown for the approximate Fl values is therefore the limit- 
ing value of the differences between F,  values in successive years. 

TABLE I 

Inbreeding coeficients for monoecious populations: 
Four individuals in each of four age classes, one-locus case 

1 
(Year) 

0 
1 
2 
3 
4 
5 

10 
15 
20 
50 

100 

0.0000 
0.0313 
0.W7 
0.0607 
0.0794 
0.1010 
0.1872 
0.2665 
0.3380 
0.6423 
0.8718 

0.0OOO 
0.0313 
0.0449 
0.0614 
0.0810 
0.1041 
0.20125 
0.3025 
0.4025 
1.0025 
2.025 

r 0.0203 0.0200 
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Twa-locus case 
For inbreeding at two loci, we need to consider the identity status of two pairs 

of genes. If a,a’ and b,b’ are two genes at  the A and B loci, respectively. the gen- 
eral identity measure _X(ab,z’b’) has four components according to the identity 
relations at  each locus. 

Component Identical genes 
X l l  a=:, b = l f  
X l ,  a=: 
XO, b = P  
xoo none 

When ab,a‘h‘ are uniting gametes. the measure is written as _F and the one-locus 
inbreeding coefficients, assumed to be the same at each locus, are F ,  = F,,  f F , ,  = 
F, ,  f Fvl.  If ab,a’b’ are gametes taken from age classes i and j in year t ,  the 
measure_X(ab,db’) is written as + i g  ( t ) .  so that - 

n n  

This vector equation is analogous to (1 j, and adding the first and third rows 
of (15) in  fact gives (1). Two other gametic set measures are needed: 

y i  ; jh: ab,d,b’ on three gametes from age classes i,j,k, respectively; 
- Q i j  ;kl: a,b,d,b’ on four gametes from age classes i,j,k,l, respectively. 

Just as in the one-locus case, whenever more than one gamete is drawn from 
a single age class, there is a chance that two or more gametes may originate from 
one individual in that age class, and an accompanying chance of identity by 
descent for genes at  each locus on those gametes. Hence we need two-locus average 
individual measures (WEIR and COCKERHAM 1969), and here we define the 
digametic measure. We let i denote age class i ( i  = 1.2, . . . ,n) and I ,  denote a 
random member of age class i ( I t  = 1,2, . . . A,). Measures are averaged over 
all such random members. 

j,,.,]: ab,db‘ on two gametes from individuals Z,,J, ,  respectively. 

Determination of the inbreeding measure requires an  evaluation of gametic set 
measures, and hence of average individual measures. A general procedure has 
bten cstablished (WEIR and COCKERHAM 1969). and we give details here for 
the digametic measures. As before. primes denote distinct individuals within age 
classes, and subscripts i,j,k,l,s range over the integers 1 to n. 

Gametic sampling probabilities are needed to express gametic set measures as 
average individual measures. The analogs of equations (2) , ( 3 )  are 
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(16) - $,%(t+l) =P'(i> e,LIL(t+l) + P ( i )  eIb,;(t+l) , 1 I i I n 

~ / ~ , ~ ( t + l )  - =eiLj7(tt-1) , 1 I i < j I TZ . (17) 

Expression of average individual measures a s  gametic set measures involves the 
mating scheme uia the probabilities p ,  as in the one-locus case, but also involves 
recombination between the loci. We allow the loci to be linked to an arbitrary 
extent h, where I 1). 

For simplicity we restrict attention to the fourth, double nonidentity, com- 
ponent of all measures. The one-locus inbreeding coefficient then allows other 
components of the inbreeding measure to be recovered, as for example 

To preserve double nonidentity, genes in two gametes from a single individual 
must have descended from genes in the two gametes received by that individual, 
but there is no restriction for genes in gametes from different individuals. 
GameteJ received by age class I may be from any of the age classes in the 
previous years: 

is one minus twice the recombination coefficient (0 I 

Fi, = F o o  + 2Fi  - 1. 

The transition equations for the digametic set measures now follow from 
combining equations (1 6) to (20) : 

1 5  i 5.n (21) 

l l i < j l n .  (22) 
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Just as in the one-locus situation, numerical work will require the storing of 
measures for n years when equations (21) and (22) are used. Unlike the one- 
locus case, however, we cannot rearrange things to arrive at a set of equations 
that span only pairs of consecutive years unless the sampling probabilities P2 (i) 
are the same for every age class. This can be the case when every age class is 
the same size. Equal P2 (i) values for i = 1 , . . . ,n lead to 

and the cases for i = 1 follow directly from (21) and (22). 
Further sampling probabilities are needed for the evaluation of trigametic and 

quadrigametic measures. These probabilities all refer to the origins of gametes 
taken from age class i: 

P3 (i) three gametes from one individual 
Pz l ( i )  two gametes from one individual and one from a different 

individual 
P1ll (i) one gamete from each of three different individuals 
P4(i) four gametes from one individual 
P”(i) three gametes from one individual and one from a different 

individual 
Pzz ( i )  two gametes from one individual and two from a different 

individual 
PZ1l(i)  two gametes from one individual and one from each of two 

different individuals 
Pllll (i) one gamete from each of four different individuals. 

Following the general procedure of WEIR and COCKERHAM (1969) , trigametic 
and quadrigametic set measures are first expressed as average individual meas- 
ures, which in turn are expanded back to gametic set measures. We now list 
the resulting set of transition equations for gametic set measures in the special 
case of equal age-class sampling probabilities 

P2((i) = P 2 ( l )  for 1 5 i S n . 
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Since we assume equal inbreeding at each locus, the following equalities hold 
- 

v O o i ; j k  - vooi ; k j  , 1 5 i,j$ 5 n 
- - - 

c o o i j ; k l  - cooil;,j - c00kj;il - 5 ' o o k l ; i j  

- - c o o j i ; , k  - - c O o z i ; j k  - - c o o j k ; l i  - - 5 ' 0 0 1 k ; j i  9 1 5 i,j,k,l 5 n 

so that equations (21) to (35) are sufficient for all (not distinct) n2 digametic, 
n3 trigametic and n4 quadrigametic measures. The numbers of distinct measures 
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are n(n + 1)/2 digametic, n2(n + 1)/2 trigametic and n(n3 + 18n2 - 13n 4- 18)/ 
24 quadrigametic. 

In the discrete generation case, n = 1, only equations (24) , (30), and (21) 
with i 1 1 are needed. These reduce to the equations given previously (WEIR 
and COCKERHAM 1969). 

Two-locus numerical results 
The smallest population for which all possible types of two-locus measures 

are required is the one of four age classes, each with four individuals. This is the 
example we considered to illustrate the one-locus case, and we retain the values 

of pi =- P"(i) = -. The other probabilities needed have the values, for 

i = 1,2,3,4, 

1 1 
4 '  4 

3 1 9 
16 16' 4 P " ( i ) = - ,  P"(i> =- p"(;) =- 

In Table 2 we display two-locus inbreeding coefficients F,, ( t )  for this popula- 
tion for a range of linkage values. For X = 1, the values have already been dis- 
played as F ,  ( t )  in Table 1. In Table 2 we also show the identity disequilibrium 
coefficients vll ( t )  = Fll ( t )  - [ F ,  ( t )  ] for X = 0. These small values represent 
the identity association between unlinked genes caused by the mating system. 

TABLE 2 

Inbreeding coefficients for monoecious populations: 
Four individuals in each of four age classes; two-locus case 

0 
1 
2 
3 
4 
5 

10 
15 
20 
50 

100 

0.0OQO 0.0000 
0.0156 0.01 66 
0.0193 0.0.213 
0.0231 0.0263 
0.0272 0.0316 
0.0317 0.0373 
0.0547 0.0620 
0.0880 0.094-9 
0.1286 0.1347 
0.41 77 0.4200 
0.7606 0.7613 

0.0000 
0.01 95 
0.0825253 
0.0330 
0.0406 
0.0486 
0.0783 
0.1116 
0.1501 
0.4263 
0.7624 

0.0000 
0.0944 
0.0336 
0.0441 
0.0558 
0.0684 
0.1133 
0.1537 
0.1935 
0.4496 
0.7674 

0.0000 
0.0146 
0.01 73 
0.0194 
0.0209 
0.0215 
0.0197 
0.01 70 
0.0144 
0.0051 
0.0009 

r 0.0401) 0.0399 0.0395 0.0380 
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The limiting inbreeding rates, r ,  also given in Table 1 are defined in terms 
of the double non-identity measure: 

with F O 0 ( W )  = 0. The homogeneous form of the transition equations shows that 
Boo can eventually be written as 

with s ( A )  the largest eigenvalue of the system of equations. The limiting inbreed- 
ing rate is evidently 1 - s ( A ) .  These final rates at which double non-identity 
is decreasing give a better picture of the population than with rates defined in 
terms of F,,(t). These latter rates would be functions of both s(A) and s ( l ) ,  
which tends to obscure the effects of linkage. As mentioned above, both ap- 
proaches give the same result for h = 1,  the one-locus case. 

DIOECIOUS DIPLOIDS 

Mat ing  scheme 
We now consider a diploid population which consists olf 4 males and '3 

females, with m male and f female age classes. We use "age class i" to refer to 
male age class i if 1 5 i 5 m and to female age class i- m if m f  1 5 i I m f f .  
The sizes of age classes are written as Ai and 9i for males and females respec- 
tively, so that 

m m+f 
4i=4, i=m+l I: %='3. 

i=1 

Each year A(,+ 9m+l newborns enter the population, while death claims all a,,, m-year-old males, all C?m+r f-year-old females, and a random sample of 
Afi - di+, ( 1  I i I m-1) i-year-old males and gm+i - 9m+i+l (1 I i I f-1) 
i-year-old females. 

Since newborn males and females may have different parental age distribu- 
tions, sampling of gametes between age classes is accommodated by two sets of 
parameters plj,p,n+l,i where p i j ( i  = l ,m+l; 1 5 j I m+f) is the probability 
that a random gamete received by a newborn individual in age class i in any year 
came from the jth age class in the previous year. Because half of the genes for 
an individual came from its mother and half from its father 

For sampling of gametes within age classes, we will assume a combined 
sampling plan (WEIR and COCKERHAM 1969). This means that any set of 
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gametes from a given age class are a random sample from the total gametic 
output from that class. Two gametes have the same chance of coming from the 
same individual member of the age class whether they each go to male or female 
offspring for example. Failure to assume the combined sampling scheme would 
require us to identify gametic sampling probabilities and gametic set measures 
according to the age classes that receive the gametes as well as those that give 
them. In this treatment then we can use the same type of sampling probabilities 
P ( i )  within age classes as we used in the monoecious case. 

One-locus case 
The average inbreeding coefficient Fli (t+l), i = 1,m + 1, for members of age 

class i in year t + 1 is defined as the probability of identity by descent of genes 
on pairs of gametes from year t received by group i. These pairs of gametes are 
chosen at random subject to the condition that one must be from a male and one 
must be from a female. Given that a random gamete received by age class i 
(i = 1,m + 1) is male, there is probability 2pij, 1 I j 5 m, that it is from male 
age class j .  Given that such a gamete is female there is a probability 2 p i ~ ,  
m 3- 1 i k 5 m + f, that it is from female age class k, so that 

The calculation of F2 (t) now rests on the establishment of a set of transition 
equations for the gametic set measures qlrj ( t )  . As before these set measures refer 
to random gametes from age classes i and j .  The simplest situations are those for 
which the measures refer to gametes from different age classes. A gene from an 
individual in age class 1 of either sex may have descended from any age class 
in the previous year, while identity relations for a gene from any other age class 
may as well be made about genes from the one-year-younger age class in the 
previous year: 

$ ~ ~ ; ~ ( t + l )  =$li-l,j-l(t), 2 S i , j i m + f ;  i,j#m+l; i # j  . (39) 

As in the monoecious case, we can take equation (39) back until members of the 
first age class in either sex are involved. For example 

l l i < j < m  

but it is probably more convenient to use (39). 
Two gametes from the same age class require the introduction ob average indi- 
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vidual measures again. Corresponding to equations (2) and (4)) we have 
$ l i i ( t + ~ )  = ~ y ( i )  el, I (t+i)  + ~ y i )  elr,I ,(t+i), I 5 i 5 m+f (40) 

= ~ y i )  elr .I .(t-i+i*+i) + ~ y i )  elI,r ., (t-i+i*+i), 
4 4  $ 6  

4 4  , I  

l < i < m + f  
where, from nolw on, we use 

i * = l  if l < i l m  
=m+l  if m + l l i l m + f .  

When two gametes are drawn from one individual in the first age class of 
either sex, there is probability one-half that .[hey are copies of the same gene and 
so identical by descent, and there is probability one-half that they descend from 
two individuals of different sex in the previous year: 

There is no restriction though o n  parental age classes for genes from distinct 
individuals: 

Combining equations (40) to (42) gives the remaining gametic set measure 
transition equation 

m+f m+P 1 
j = l L = 1  3 1 3'k 2 + P"(i)  ,S, z p .*  p .  $lik (t.--i+i*) + - P ( i ) ,  

l < i 5 m + f .  (43) 
As in the monoecious case, simplification results when sampling probabilities are 
the same for  every age class. Then (43) is appropriate as it stands for i = 1, m + 1 
but otherwise can be replaced by 

$164 (t+l> = $li+, (t> - 
The set of equatiolns (37) to (39) and (43) generalize those of JOHNSON 

(1977) and in the discrete-generation case of m=f= 1 reduce to 
$l,,(t+I) = {P1(l) [$l,,(t> + $lzz (t)l +2$11, ( t )  + 2P2(1))/4 
$lZ2 ( t+l )  = (P"(2)  [$I,, ( t )  + $1z2 ( t )  1 + 2hl2 ( t )  + 2p2 (2) )/4 

$llz( t+~)  = [ q l l l w  + J G ~ ~ ~ ( ~ )  + wl1, (t)1/4 

with the usual equation for F,(t) = ql12 (t-1): 
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When the initial individuals, in year 0, are not inbred and are unrelated, the 
initial values of the measures are 

1 

qlii (0) = - P ( i )  , 15  i 5 m+f , 2 

qlii (0 )  = 0 , l < i < j < n + f ,  

Fi(0) = o  , i = l , m + l .  
Equations (36) to (39), (43) then provide 

Fl i ( l )  = O  , i = l , m + l  

Average inbreeding levels for the male and female in the same year can differ 
because of different parental age distributions for the two sexes. It is convenient 
to define an average inbreeding coefficient Bl( t j  for newborn in year t as a 
weighted average of the coefficients in each sex: 

An inbreeding effective number may be defined, as in the monoecious case, 
by reference to an idealized population without age structure. An ideal dioecious 
population of effective size Ne accrues inbreeding according to 

1 Ne-I 1 
&(t+l) +-FP,( t )  F,(t+2) = - 3- - 

2Ne 2Ne Ne 
which, for large t and Ne, leads to 

as in the monoecious case. Years and generations are the same here. 
In the present case then we define the per-year effective population size as 

" 

where r is the limiting value, as time increases, of 

For discrete generations this becomes 

1 - 1  [P2(1)  +P"2)] . x-7 
The generation length L is now defined to be the average age of parents when 
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progeny are born, averaged over the four parent-progeny types (male-male, 
male-female, female-male and female-female) . 

1 "  m+f 

2 2=1 j = m + l  L = - [ ,E i (pii + pm+l,i) + . 2 (j-m) (plj + pm+l,i) ] - 
One-locus numerical results 

To illustrate the progress of inbreeding for dioecious populations with age 
structure, we consider the situation present in a control flock of sheep at Massey 
University. In each year there are twenty individuals, in five equal-sized age 
classes. There is one class of males and four classes of females, so that m=1, 
f = 4  and 41 = 9i = 4, 2 5 i 5 5. We assume a multinomial distribution for 

progeny numbers, both between and within age classes ( ~ 4 ~  = 5, pij  = - for 

i = 1,2 and 2 5 j 5 5 while P(i)  = - for 1 5 i 5 5). All individuals in the 
initial ( t  = 0) population are assumed to be not inbred and unrelated. 

1 1 
8 '  

1 
4 

The transition equations (37) to (39) and (43) then provide 

In each year there are 15 distinct-valued measures, or a total of 25 measures, 
four of which contribute to the inbreeding coefficient in male or female offspring 

In Table 3 we show the one-locus inbreeding coefficient and the approximate 
values obtained by the method of JOHNSON (2977). 

Two-locus case 
Two-locus measures can be defined as in the monoecious case and the two- 

locus inbreeding coefficient found for newborn individuals in any year. Complete 
details are given by CHOY (1978) and are available from the authors. 

DISCUSSION 

We have given a general and exact treatment of the determination of inbreed- 
ing coefficients at one or two loci in populations with overlapping generations. 
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TABLE 3 

Znbreeding coeficients for dioecious populations: 
Four individuals in each of one male and four female age classes; one-locus case 

t 
(Year) 

0 
1 
2 
3 
4 
5 

10 
15 
20 
50 

100 

Fl(t) 
(Exact) 

0.0000 
o.o(M10 
0.0215 
0.0386 
0.0557 
0.0749 
0.1614 
0.2398 
0.3108 
0.6174 
0.8566 

F,W 
(Approx.) 

O.oo00 
0.0OOO 
0.0215 
0.0396 
0.0582 
0.0795 
0.1817 
0.2837 
0.3858 
0.9980 
2.01 84 

r 0.0194 0.0204 

Two types of identity measures are required. One type is defined for genes as 
they are located in sets of gametes and the other type for genes identified by 
the individuals from which they are drawn. In the one-locus case, only digametic 
measures are needed, but in the two-locus case we need digametic, trigametic 
and quadrigametic measures. 

Linear transition equations between gametic set measures are established, 
and this suggests that standard matrix techniques could be employed to discuss 
the behavior of these measures, which include the inbreeding coefficients. In 
fact, the number of measures required is too large for analytical work [ n ( n f l  ) /2 
measures for the one-locus monoecious situation and (m+f) ( m f f f l )  / 2  for 
the one-locus dioecious situation], but it is a simple matter to code the transition 
equations for computer iteration. The formal elegance of approximate methods 
such as those of JOHNSON (1977) is thereby lost. In practice, however, the cal- 
culation of inbreeding coefficients by approximate methods also required numeri- 
cal treatment, so that there is no real loss. 

We suggest that the exact transition equations be iterated numerically if levels 
of inbreeding are required for populations with overlapping generations. This is 
particularly important in early generations, when values based on effective 
numbers are not appropriate. If the long-term behavior of such populations is 
required, then effective numbers may be sufficient and in some cases we may 
use approximate values of such numbers. We now turn to a consideration of 
exact and approximate effective numbers. 

Inbreeding eflective numbers for Poisson family sizes 
We have already demonstrated how the transition equations for gametic set 

measures lead to numerical values of exact inbreeding effective numbers. It 
would be desirable if analytical values for such numbers could be used, even if 
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they gave only approximate values. We can use our exact results here to check on 
such approximations. In particular we wish to investigate the following general 
rule of HILL (1 972b). 

“The effective sizes of random mating populations of constant size and 
sex ratio with overlapping generations are equal to the effective sizes of 
populations with discrete generations which have the same numbers of indi- 
viduals entering the population each generation and the same variance of 
lifetime family number.” 

This rule refers to generation effective numbers. 
For monoecious random mating populations, HILL (1972b) gives 

N g  = (4d1  - 2) L/(ui f 2) (44) 

when is the variance of lifetime family size (total gametic output per indi- 
vidual). Suppose! that the jth newborn in any year contributes gij gametes to 
newbarn individuals i years later (1 5 j 5 Al, 1 i i I n). The lifetime family 
size of the jth newborn in any year is then 

For “PoissoIn” lifetime family sizes, the gj’s are multinomially distributed, and 

so that 
Ng = A I L ,  NU = A i L 2  . 

When gametes are drawn with equal probabilities from each age class in each 
year, pi = l/n, we see that L= (n+l)/2, and 

(45) N g  = (n+l) d 1 / 2  , Nu = (n+l)2 Al/4 . 
Now equation (45) is for the case we have referred to as equal chance gamete 

formation. In our numerical example we set n = d l  =4,  so that (45) gives 
N y  = 25 while the exact result, from Table 1, is N = 24.62. There is a very good 
agreement between exact and approximate effective numbers for Poisson family 
sizes. These approximate results also follow from the work of FELSENSTEIN 
(1971). 

Inbreeding eflective numbers for constant family sizes 

The discrete generations result, HILL (1972b), provides 
Now consider the case where there is no variance among lifetime family sizes. 
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For exact inbreeding levels and effective sizes, however, it is not sufficient to 
consider only lifetime family sizes. We saw that the gametic set measure transi- 
tion equations required knowledge of within-age-class sampling probabilities, 
which means that we need to know annual family sizes. 

Some numerical cases €or small monoecious populations were considered by 
CHOY (1978). In  the examples, lifetime family sizes were set equal to two for 
every newborn individual in every year but annual contributions were varied. 
Mating schemes, admittedly extreme, can be constructed to give effective num- 
bers quite different from the approximate result (46). Overall however, provided 
random gametic union is preserved, result (46) is quite good and can be used 
with confidence provided it is remembered that effective numbers may not 
reflect actual inbreeding levels in early generations. 

Inbreeding eflective numbers for dioecious populations 

gives 
For dioecious populations with equal chance gamete formation, HILL (1972b) 

In  our numerical example, dl = g1 = 4 and L = 1.75 to give the approximate 
value N ,  = 24.50 while, from Table 2, we find the exact value N ,  = 25.77. Agree- 
ment is still good for Poisson lifetime family sizes. 

For fixed equal family sizes, HILL doubles the value in (47) and again points 
out that the approximate effective number depends on the lifetime family size 
and not on annual family sizes. The exact effective numbers however do not 
follow this rule, and depart from i t  as in the monoecious case. The departures 
were illustrated for some small populations by CHOY (1978). 

There is another possibility for dioecious populations. Family sizes may be 
Poisson in one sex but constant in the other. In a beef cattle selection scheme 
at North Carolina State University, the best son of each sire is selected so that 
males contribute exactly one gamete to male offspring per lifetime. Other gametic 
contributions need not be fixed, however, and we could envision situations where 
there were Poisson lifetime family sizes for female offspring from males and 
females. Annual family sizes for the cattle scheme though would generally be 
zero or  one for females. 

We pursue the North Carolina scheme to illustrate how constant family sizes 
can be handled. Because matings in this scheme were also made in such a way 
as to ensure minimum inbreeding, we will suppose for illustration that all indi- 
viduals give exactly two gametes per lifetime. 

For the control herd we further simplify matters by supposing that there are 
three age classes of males and four age classes of females every year. All these 
classes contain three individuals. The three oldest males mate each year and are 
replaced in the following year by one son each. Each of these breeding males 



OVERLAPPING GENERATIONS 61 1 

also leaves one daughter in the following year. The offspring for the three 
females born in year t are as follows: 

Offspring 
Female Number Son in Year Daughter in Year 

1 t + 2  t + 3  
2 t + 3  t + 4  
3 i f 4  t + 2  

In other words, males are mated three years after birth, and females mated at 
two, three and four years after birth. 

As we now need to keep a strict accounting of annual gametic contributions, 
the sampling probabilities P ( i )  and gametic set measures are not appropriate 
and we use another type of individual measure. For the one-locus case it is 
sufficient to define the digametic measure 

as the probability of identity by descent of a gene from the jth member of age 
class i and Zth member of age class k in year t. The notation is deliberately differ- 
ent from that used previously to emphasize that + is different from the digametic 
measures 6 and t/. We retain F l ( t )  for the inbreeding coefficient in year t .  

Every breeding male (age class 3 )  in year t gives one gamete ta the male off- 
spring and one gamete to the female offspring. In female age class i (5 I i I 7 )  
female i - 4 gives a gamete to the male offspring and female if (= [3i2 -37i -1- 
116] /2)  gives a gamete to the female offspring. Male and female gametes com- 
bine at random. The inbreeding coefficients for newbom males and females are 
written as Fl1( t )  and F,, ( t )  , respectively. 

The required transition equations are as follows: 

2+( l7 i ;1 , i ) t+1=I  + F l , ( t + l )  , 1 S i 5 3  

2+(4, i ;4 , i ) f+1 = 1 + F,, ( t + l )  , 1 5 i I 3 

3 7  

k=1 z=5 
+ 2  2 +(3,k;Z,Z-4)t , 1 I i <  j l 3  
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3 7  

k=1 z=5 
+ z B [+(3,k;I,Z+), + +(1,2--4;3,k)t] , 1 5 i,j I 3 

In Table 4 we display the inbreeding coefficient F l ( t )  = F1,  ( t )  = F,, ( t )  for 
this system. The inbreeding rate r = 0.0048 shown-there leads to an annual 
inbreeding effective population size of 103.97. The generation length is L = 3  
years, so that HILL’S approximate effective size is 108. Good agreement is again 
found, although as we have stresssed and as JOHNSON (1977) suggests, inbreeding 
coefficients based on N,= 108 will be misleading in early generations. Such 
approximate values are also shown in Table 4. 

As the examples considered by CHOY (1978) show, the onset of inbreeding 
may be delayed by various non-random mating schemes. This is at the expense 
of higher later inbreeding and effective population sizes which are markedly 
lower than the approximations. For this reason it is important to remember that 
HILL~S result is derived and stated for random mating situations. 

TABLE 4 

One-locus inbreeding coeficienis for dioecious population: 
Three individuals in each of three male and four female age classes; 

Two gametes per individual per lifelime 

i 
(Year) 

W )  
(Exact) 

F l ( t )  
(Based on N, = 108) 

0 
1 
2 
3 
4 
5 

10 
15 
20 
50 

100 

0.0000 
0.0000 
0.0000 
0.OGQO 
0.0231 
0.0231 
0.0461 
0.0679 
0.0903 
0.2128 
0.3814 

0.a00 
0.0046 
0.002 
0.0138 
0.0184 
0.0229 
0.0463 
0.W72 
0.0886 
0.2071 
0.3713 

r 0.0048 0.004fj 
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Variance effective numbers 
If genetic drift is of more interest than inbreeding, the variance effective num- 

bers should be used. The simplest way of obtaining these numbers, and the 
variance in gene frequencies due to drift, is by use of group coancestry coefficients 
(COCKERHAM 1969). If 01 is the group coancestry coefficient of a population, 
then COCKERHAM showed that the variance of the sample gene frequency p* when 
the population frequency is p (so that has an expected value of p )  is 

U; = 01 p(1-p) 

Furthermore, if gametes unite at random every pair of gametes received by the 
group carries genes with the same probabilities of identity by descent. The group 
coancestry and inbreeding coefficients are the same, as are the inbreeding and 
variance effective numbers. The annual change of gene frequency variance 
f 0110 ws : 

We refer to COCKERHAM (1969, 1970) for cases such as maximum avoidance 
of inbreeding where the group coancestry and inbreeding coefficients are 
different. 

CONCLUSION 

The study of inbreeding in populations with overlapping generations has 
always stopped short of an exact treatment, probably because of the apparent 
complexity. We have shown in this paper that very general equations can be 
written that allow inbreeding coefficients to be determined. The equations are 
well suited to computer iteration, and we recommend that they be used in cases 
where inbreeding coefficients or variances of gene frequencies are required. 

In large populations, or in very long-term situations, it appears that published 
approximate values of inbreeding or variance effective numbers may be used 
with fair confidence. For small populations and in early generations, however, 
we caution against their use and again recommend an exact treatment. Exact 
treatments should also be used when union of gametes is not random. 

We are very grateful to D. L. JOHNSON for providing us with a copy of his paper prior to 
publication. A. L. RAE and J. STREET of Massey University provided information on the sheep 
selection scheme. E. U. DILLARD of North Carolina State University provided information on 
the beef cattle selection scheme. 
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