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ABSTRACT

Formulae are developed for the distribution of allele frequencies (the
frequency spectrum), the mean number of alleles in a sample, and the mean
and variance of heterozygosity under mutation pressure and under either
genic or recessive selection. Numerical computations are carried out by using
these formulae and Warterson’s (1977) formula for the distribution of allele
frequencies under overdominant selection. The following properties are
observed: (1) The effect of selection on the distribution of allele frequencies
is slight when 4Ns < 4, but becomes strong when 4/Ns becomes larger than
10, where N denotes the effective size and s the selective difference between
alleles. Genic selection and recessive selection tend to force the distribution
to be U-shaped, whereas overdominant selection has the opposite tendency.
(2) The mean total number of alleles in a sample is much more strongly
affected by selection than the mean number of rare alleles in a sample. (3)
Even slight heterozygote advantage, as small as 10-5, increases considerably
the mean heterozygosity of a population, as compared 1o the case of neutral
mutations. On the other hand, even slight genic or recessive selection causes a
great reduction in heterozygosity when population size is large. (4) As a test
statistic, the variance of heterozygosity can be used to detect the presence of
selection, though it is not efficient when the selection intensity is very weak,
say when 4Ns is around 4 or less. A model, which is somewhat similar to
O=nta’s (1976) model of slightly deleterious mutations, has been proposed to
explain the following general patterns of genic variation: (i) There seems to
be an upper limit for the observed average heterozygosities. (ii) The distribu-
tion of allele frequencies is U-shaped for every species surveyed. (ii1) Most of
the species surveyed tend to have an excess of rare alleles as compared with
that expected under the neutral mutation hypothesis.

HE selectionist vs. neutralist controversy over the maintenance of genic
variation in natural populations has now continued unabated for ten years
(see LEwonTIiN 19745 NE1 1975 for reviews). What is needed to resolve this
controversy is a theory by which the statistical properties of a population under
the joint effect of mutation, selection and random drift can be examined thor-
oughly. Only by so doing can one evaluate the relative importance of these three

* Dedicated to SEwarL WricHT for his pioneering work on the stochastic distribution of multiple alleles.

Genetics 90 : 349-382 October, 1978.



350 W-H. LI

factors in the maintenance of genetic variation or construct suitable statistics for
testing hypotheses. Actually such a theory can be developed by using WricHT’s
(1949a) formula for the joint distribution of multiple alleles, but only very
recently have workers begun to do so. Using this formula, WarTERSON (1977)
has developed a statistical theory for the case of symmetrical overdominance
among multiple alleles, and I (Lx 1977) have developed a similar theory for the
cases of genic selection and recessive selection; Warrerson (1978) has later
studied more general cases. In L1 (1977), however, I have presented only a short
summary of some of my findings. Here I present a detailed account. In Section I,
I derive formulae for the distribution of the mean number of alleles at different
frequencies or the frequency spectrum, and formulae for the mean number of
alleles in a sample. Numerical computations are carried out by using these
formulae and that of WaTtTersoN (1977) to see how selection changes the shape
of the distribution of the mean number of alleles at different frequencies. Numeri-
cal computations are also carried out for the expected number of alleles whose
sample frequency is equal to or less than ¢, 0 < g < 1. In Section II, I develop
formulae for the mean and variance of heterozygosity. These results, together
with that of Warrterson (1977), are applied to study how the average heterozy-
gosity of a population changes with population size. The present result is also
used to examine the effect of selection on the variance of heterozygosity. In
Section ITI, T discuss the implications of the present findings for the maintenance
of protein polymorphism.

DISTRIBUTION OF ALLELE FREQUENCIES

One of the most useful methods of describing a population is the distribution of
allele frequencies or the frequency spectrum, which is conventionally denoted
by ®(x). Actually, ®(x) is not a distribution in the probabilistic sense, but has
the meaning that ®(z)dx represents the expected number of alleles whose fre-
quency is between x — dx/2 and z + dx/2. Although a more precise term for
& (z) is the distribution of the mean number of alleles at different frequencies,
I follow the convention of calling ®(z) the distribution of allele frequencies. The
distribution ®(z) for the case of neutral mutations has been studied by WricHT
(1949b), Kimura and Crow (1964), Karrin and McGrecor (1967), and NEI
and Lx (1976), while that for the case of overdominant selection by WATTERSON
(1977). Here, I study the cases of genic and recessive selection. Before this, I
review WricHT’s (1949a) formula for the joint distribution of multiple alleles,
which is essential to this study.

Consider a random-mating population of effective size N. Let the number of
possible allelic states at a locus be K, and let A; denote the 7th allele and x; its
frequency. Let the selective value of genotype A;A; be w,;, which is assumed to
be constant over time, and let W (z, . . . ,zx) be the mean fitness of the popula-
tion. Assume that in each generation A; mutates to A; with probability v,
j % i. In practice, it is likely that v;; is a function of both 4; and A;, but no solu-
tion seems to have been obtained under this general condition. However, for the
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special case where v;; = v; for all j 7 i, WricaT (1949a) has obtained, using
some heuristic arguments, the following formula for the equilibrium joint proba-
bility density for the first L = K — 1 gene frequencies:

_ K ;-1
‘;b (1'1, L 7xL) = CWZN 11—11 Xy 9 (1)
where a; =4Nv; and 2x =1— 2, — ... — x5. A formal mathematical proof of

this formula has later been provided by Kimura (1956), Warterson (1977)
and L1 (1977), independently. Note that the mutation rate per gene per genera-
tion from A; to all other alleles is v, + ...+t vyt v+ ...+ vk or u—v;,
where u=uv,+...+v; +...+ vx. If v; is the same for all 7, then u—v; =v
and v; = v/L for all i. This symmetrical case has been known as the K-allele
model (Wricar 1949b; Karriny and McGrrcor 1967; Kimura 1968). The
normalizing factor C in formula (1) is determined by the relation

j...-[k ¢(x1,...,x[,)dx1...dxl,=1, (2)
where the integration is over the region defined by
R: 051z <1, b S o S B

This multiple integral may be evaluated by following WarTtERsoN’s (1977)
method, if the w;;’s are given explicitly.

The form of formula (1) is amazingly simple. Thus, to determine the joint
probability density, we need only know the mean fitness of the population and
the mutation rate (v;) to 4;. This makes formula (1) also applicable to the case
where A; denotes a class of equally fit alleles instead of a single allele. To see
how this works, we consider the following simple example. Suppose that the last
(K — j) allelic states are equally fit and let us regard them as a single class Bj ;..
Let B;=A;,i=1,...,]. Let ¥; be the frequency of B; and u; be the mutation
rate to B;, i=1,...,j+ 1. This implies y; =2; and u; =v;, i=1,...,7];
Vigr=2Zj41 ... F2g and w4 = vj4y + ...+ v Obviously W(zy,...,zx)
can be written as W (¥4, . . ., ¥j+1). Then, formula (1) says that the joint distri-
bution of 4, .. . , ¥ is given by

j+1  4Nu -1

$(rs, -5 y) =CW 1L y;

This can be verified by following the simple proof procedure of formula (1)
given by L1 (1977) (see also Kimura 1956; WarTeRsoN 1977). In particular,
it is easy to see that when j = 1, this formula becomes identical with that for the
diallelic case where the mutation rate from B, to B, is v, and that from B, to B,
is 1, (WricHT 1949a).

Genic Selection

We begin with the general case. We assume that the mutation rate, v =u — v;,
per gene per generation is the same for all alleles so that ; = 4/Nv/L = a for all 1.
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We use the notations: ¢ = 4Nv = La and # =4Nu = 0 4 «. Let the selection
coefficient for the ith allele be a; so i}}at the relative fitness of genotype A;A; is
given by wi; =1+ a; +a;. Then W =1+ 2a,2, + ...+ 2axrx and

_ K a-1
(21, ... 2L) =CW? oz , (3)

n,+a-1

=cC, 2 (=l 2r 3 n [ =i /], 3

where (2¥ ) is the binomial coefficient and the summation E) is over all vectors
(n) = (n17 ..., ng) of non-negative integers such that n, + ...+ ngx = n. Using
the Dirichlet integral formula (Jonnson and Kotz 1972) and the relation given
by (2), we find that
2y E _ m,
ct =3 (2711f’)n!2" 5) I [a; T(n; +a)/n!]/T(n+6).

To derive ®(x), we focus our attention on a particular allele, say A;, and com-
pute the probability, ¢;(z;)dz;, that the frequency of A; in the population is in
(z; — dx;/2, x; + dx;/2). Note that ¢;(x;) is the marginal probability density
{or x;, and therefore

¢;(x;) = S . .jR ¢ (2, ... xn)ydry .. dxydrjpe ... dg, (4)
where the integration is over the region

R: 02, <1 —z; St; £1—a, i7].
Use of the transformation
zi:xi/(1_—xi)9 1#77

enables us to apply the Dirichlet integral formula to evaluate the multiple
integral of (4) and we obtain

K
¢i(x;) =C z LI 3 [T(n—n; +0)7 I 9" Dy + a)
1;) n”
X (aj”j/n,-!)x,-"1+“"1(1 - xi)"‘"ﬁo"].
Since there are K allelic states,
K
2(z) = 3, 6:(2) - (5)

The subscript of z is now dropped because we are concerend with the mean
number of alleles at a given gene frequency class, not any particular allele or
alleles. Note that without losing generality, we can assume ax = 0, and formula
(5) is simplified to some extent.

Formula (5) is general but it is useful only when K or the magnitude of the
4Na;’s is small; otherwise it becomes computationally intractable because, for a
large n or K, there are too many possible alternatives of the n;’s to be considered.
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In order to make detailed computations feasible, we consider the following
models.

Suppose that there are three classes of alleles, within each of which there are
a number of equally fit alleles. Let the number of allelic states for the first,
second, and third classes be I, M, and Q =K — I — M, and let the selection
coefficient be s, for the first-class alleles, s, for the second-class alleles, and 0 for
the third-class alleles; s; and s, can be positive or negative. ®(z) can be obtained
by putting these conditions into formula (5), but this creates the same compu-
tational difficulty as that of formula (5). The following approach overcomes this
difficulty. Let

yi=xt+...+x, u,=Iv/L, 6, = 4Nu, = le,
Yo =Zrer+ ... Trim, u, = Mv/L, 6, = 4Nu, = Ma,
y3:1‘_ y'l_yz, U3:QU/L, 63': 4‘NU3:Q(¥,

where y; is the sum of the frequencies of the 7th class alleles and w; is the sum of
mutation rates to the 7th class alleles. Note that formula (5) now becomes

®(x) =I¢:1(x) + Moryi(x) + Qdx(x). (6)

Note also that we may alternatively let the selection coefficients for the first-,
second-, and third-class alleles be 0, ¢., and ?;, or 4, 0, and r; so that W can be
expressed in terms of the y;’s in three different ways:

W =1+ 251571 + 2852 (7a)
= (14 2s,) (1 + 2292 + 24:75) (7b)
= (1+2s,) (1 + 2ryyy + 2r3y5) (7c)

where #,= (s,~—s5,) /(1 +281), ts=—s51/(1 +281), r1= (51— 52) /(1 +2s,), and
rs=—s,/(1+2s,). To evaluate ¢,(x,), we consider the joint distribution of

Ziy -+ - yXra,Y2) 3, and write W as (7b). As mentioned in the remark on formula
(1), this distribution can be written as

¢(I1, . ,1'1_.1,:)’2,}’3> = C1P(a)-l(1 + 212:}/2 + 21‘3}’3)”
I
X g0y 051 1} zie (8)

where C, is the normalizing constant. Using multinomial expansion and the
Dirichlet integral formula, we find that

2N n|2n t2n1t3"2
Cl—l = 3 (2N) ) I‘(nl _I_ 02)I‘(n2 + 03).
n=0 nC Tn+6) ™ nln!
From formula (8), we obtain
$:(2) = O (@77 (1 — 2)# 3 () —o (1 — )
' ' =0 " n’ T(n+9)
x s B n G 4 0,)T (s + 65). (9)

() nllngl
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(To keep the notation simple, we have written here and shall write ¢;(x;) as

¢:(x) when it creates no ambiguity.) On the other hand, to evaluate ¢;41(2741),

we consider the joint distribution of y1,71 11, - - - »Zr4-1,)'s, and write W as (7c).
S (VisZrt1y « v « $Trpar-1,Ys) = CoT (@) M (1 + 2ryyy + 2rays)2¥

1+M

X bty gt 1-}1;[1 zi* T, (10)
b1 (@) = Cal(a) iz (1 — 2)00 3 () 2
=0 n" T(n-+0)
X (1—2)" 3 202 1(n, + 0,)T(m, + 05). (11)
@) !
2N 1on LY AL
C2~1 = 3 (2N) n.2 T173Ts I‘(nl + 01):[‘(112 + 03)-

n=0 "n T(n460) ™ nmln!
In the same manner, we obtain

¢(}/1,}’2711+M+2, PP ,.Z'K) — Csl‘(a)‘o(i + 2S1}"1 + 2\5'2}’2)2N

K

X y101—1y202—11+}{1+1 xia—l’ (12)
ox(z) = il (@) iz (1 — 2)02 5 () — 2" (4 — gy
=0 "»" PM(pn-+4)
Xz S22 by 40T (n, - 6,), (13)
=) n,ln,!

C—l:zg (=) nio» . §1M8 "
3 n=0 "% I‘(n+9’) O 1,1n,!

Putting together (6), (9), (11), and (13), we have

T(n+ 68,)T(n. + 6).

-1 — -1 2N 19n
q;(x):ii__f)__zg (2N)__’f£’___(1__x)n s 1
T{l+a) = * T(nt+0) ™ nyln,!
X [alc1t2”1t3”2r(n1 _!— GZ)P(nz + 03) + 02C2r1"1r3”2I‘(n1 + BI)I‘(nz + 63)
+ 030351”152"2I‘(n1 + 01)I‘(n2 + 02)]. (14‘)
If |4Ns;) << N, i=1,2, formula (14) may be approximated by
a—-1 — -1 2N —_ n
@(x):x (1—2x S 1—2 1

Tl+a) = T(n+6) ™ nln!
X [0:C, Ty T g% (ny + 0:)T (12 + 6;) + 0,C.R™BR™T (1, + 6,)T (122 1 65)
+ 05C:8,™S%T (ny + 0,)T(n: + 6,) 1, (14%)
where S; =4Ns;, T; = 4Nt;, R; = 4Nr;, and

2N
C;l :ngo P(n + 0’)_1 (Z) T2"1T3”2I‘(n1 + 92)F(n2 + 03)/(711!”2!),
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2N
Cz—l =n§01“(n +6)? (%) RymBsmI (ny + 61)T (ne + 05) / (mulnsl),

2N
C;l =3 T(n+6¢) (%) 8178,%T (1 + 0.)T(n, + 0,) / (my!ns!).

The same approximation applies to all of the following formulae, but will not
be repeated (see L1 1977). However, all numerical computations of this study
are carried out under this approximation.

The key difference between formulae (5) and (14) is that in the latter for
every n only the possible alternatives of n, and n, are to be considered, i.e., the
summations E are now univariate summations over ry = 0, 1 2 el n, with

n, =n-—n. Slnce this is true for any K, the limiting case of infinitely many
alleles is just a special case. Indeed, to apply formula (14) to the model of infinite
alleles (WricaT 1949b; Kimura and Crow 1964), we simply put « =0 and
¢’ = 6. This remark applied to all the following results.

The mean number of alleles in a population is given by

_ 1
A =L/4N<I>(x)dx,

assuming that the effective population size, IV, is equal to the actual size. (We
use 1/4/V instead of the conventional value 1/2N as the lower limit of integration
because it allows a continuity correction.) When X is finite,

n= ﬁ ®(x)dz — j:/w &(x)dx

{1/4N

=K— = 2(x)dg,

in which the last integral represents the mean number of alleles that are not
present in the population.

We now study the mean number of alleles in a sample. We consider only the
case of infinitely many alleles, since the result for this case is somewhat simpler
in form and numerical computations are usually carried out under this condition.
Omra (1976) shows that the mean number of alleles whose sample frequency
is less than or equal to g is given by

[i,1 51 . .
el 2m 4 R 2m—~1
ng=23 . Cemzi(1 — x)* e (x)dx,

where 2m is the number of genes sampled, i, = 2mgq, and [#,] denotes the integral
part of Z,. (If we define r, as the mean number of alleles whose sample frequency
is less than ¢, then [i,] = 2mqg — 1 if 2mgq is an integer, and [7,] = the integral
part of 2mgq if otherwise.) We assume that IV >> m so that the lower limit of
integration can be replaced by 0 with a good approximation. Using the relation

Cm—i+1);

L N2 =)t =)t (U — e = S o
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where (a); =a(a+1) ... (a+i—1), we find that
2N 1on [é,1 — .
= vy M2 T @moitl), o 4
n=0 %" T(n+6) = i2m+nto—i); ™ mln,!
X [91C1t2"113”2T(n1 + 92)1‘(722 '—l— 03) + 92027‘1”17‘3"21‘(711 '{— 01)T(n2 + 03)

+ 930381"182”2P(n1 + 01)F(n2 + 02)]. (15)

If g =1, the above formula can be simplified by noting that[Z,] = 2m and

2m —_— . m—1
T @m—i+1); :2.2 _1— (16)
=1 i2mtnt0—1); =0 n4+0+1

The same substitution applies to the case of recessive selection below (formula
(24)).When g = 1, formula (15) represents the expected total number of alleles
in a sample of 2m genes, and it reduces to formula (11) of Ewens (1972) if all
mutations are neutral.

The formulae for the case of (k> 3) classes of alleles can be written down
immediately by analogy, but computer computation soon becomes impracticable
as the number of classes increases. On the other hand, the case of two classes of
alleles is just a special case of three classes of alleles. Since this case is of particu-
lar interest, because of its simplicity, we consider it in some detail. Let the
selection coefficient be s for the first-class alleles and 0 for the second-class alleles.
This is equivalent to assuming that s; = s and s, = 0. Since there are no third-
class alleles, 6; = 0. Putting these conditions into formulae (14) and (15), we
obtain

q)(x) :_x—a—l(j___x)&—l 2;;’ (2N 275(1__x)'n
(1 +a) n=0 n" T(n-+46)
X [6,C:"T (n + 6,) + 0,Cos"T(n + 6,) ], (17)

2N n
n,= 3 (*%) ———2—— [0.Cit*T(n + 6,) + 6,Cos"T'(n + 64) ]
n=—=0 n I‘(n + 0)
[i,] @m—i+1),
X = ,
= g2m+n+60—1);

(18)

Cr=73 () @) T(n+ 6)/T(n+0),

Cr=3 () (2)"T(n+ 0,)/T(n+9),

where t = — 5/(1 -+ 2s5). Recently, WarTErson (1978) has also studied the case
of two classes of alleles under genic selection and has obtained an approximate
formula for ®(z), assuming that § = 4/Vs is very small. Incidentally, formula
(6) of L1 (1977) contains a typographic error: 4, should have been 6, — 1.

The above model of two classes becomes identical with that of WricHT (1966)
when there is only one allelic state in the first class, i.e., I = 1. WricHT called the
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first allele the type allele and gave an estimate for the mean number of deleterious
alleles present in the population. He assumed that each gene mutates at the rate
of v per generation and that the rate of backward mutation from all other alleles
to any allele is v,. This is equivalent to the assumption that the number of allelic
states is K = v/v; + 1. He obtained the following approximate formula for the
mean number of deleterious alleles in the population, assuming S large.

e (K —1)[1 5((5;(“; (QN)] (19)
z(Kﬁi)[i—(Sz_Nl)a I‘(11—f—a):| . (197

The general formula for n is obtained by integrating the second term of (17)
from 1/4N to 1 and by noting that ¢, = « and 9, = 4.

=K—1— 4 2N » I‘(n+a)
ma= Kt T(1+-a) e ( ) (25) T(n+6)
Xj.:/w e (1 — x)nté-dx . (20)

Formula (20) applies to any values of V and s, but it is more complicated than
Wreicnt’s (1966) formula. It is therefore interesting to find the condition under
which WricHT’s formula holds approximately. WricHT considered v; = 0.25 X
10-° and 0.25 X 10-°, and found that 74 is almost the same for both values of v,
if v=10"° s> 10", and IV = 10°. Since the approximation is more accurate
when v, is larger, I have used the smaller value v, = 0.25 X 10-'° in computing
Table 1. It is seen from this table that WricaT’s formula holds approximately
when § is larger than 10 and that formula (19’) gives a close approximation to
formula (19).

Recessive Selection

We consider two classes of alleles and assume that the number of allelic states
is I for the first class and M = K — I for the second class. Let the relative fitness
of genotype A;A; be 1 — 2s if 7,j > I, and be 1 otherwise. This means that the
second-class alleles are completely recessive. The joint distribution of zy, . . . .2z
and y; is

TABLE 1

Mean number of deleterious alleles in a population of size N

4N 4X 104 8x10t 108 2X 108 3X108 4X 108

4Ns 4 8 10 20 30 40
formula (20) 0.58 1.16 1.29 1.65 2.47 3.31
formula (19) 0.32 0.64 0.80 1.60 2.39 3.18
formula (19") 0.33 0.65 0.81 1.60 2.39 3.19

Note: v =106, p, == 0.25 X 10-20 and s = 10-%,
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1
¢ (21, - -+ Xr1,y2) = Cil'(@) (1 — Q.syz) 2Ny 0,71 111 x:-l , (21)
O ZEN (ZN) (_23)” I‘(2n + 02) ,
1 n=0 n I‘(Qn + 0,)
from which we obtain
2N
951(1‘1) = C1r(a)‘1n§0 (2:) (—2.5‘)” f\_ﬁz_z_l%_xfl(l — I1)2"+9‘1 .

Similarly we obtain
K
& (F1oXrpay -« - oZx) = CoT ()M (1 + 251y, + 252;/2;) ZNyffl HI_I1 x:_"‘l , (22)

s $1™M8,"T (ny + 2n, + 01)
™ mInT(n, -+ 2n, + 6)
X I;I(_l(j. R _Z'K)”1+2"2+9_1 .

2N
¢K(xK) - CZI‘(a)‘lngo (25)71!2”

b 81"15‘2”2I‘(n1 + 2n2 + 01)
® mn!T(ny -+ 2n, + 6)
where s, = 2s/(1 — 2s), s, = —s/(1 — 2s5). Thus,

&(x) = I10,(z) + Moy (x)

2N
Cl=3z (*)ni2n
2 n=0 n

B TR
DT a) e T gy (7

+ 0,Comlgn 3 S5l In + 61)
™ nIn,!T(n, + 2n, + 6)
The formula corresponding to formula (15) is
2N [is] — g
ng= 0:Ce 3 (2) (—2s)" T(2n+6,) S @em—1i-+ 1)1'
n=0 - n T2n+6) = (Cm+2n+0—1);
s S1"1.S‘2”2I‘(n1 + 2722 + 01)
® mn!T(n, +2n, + @)
(3,1 — .
% '3 Cem—1i+1); -
=oi2mt o+ 2n 4+ 0 —1);

(I —z)mtem] (23)

2N
+0,C, 3 (M)ni2»

(24)

As in the case of genic selection, WricHT (1966) gave an approximate formula
for the mean number of recessive deleterious alleles in the population, assuming
that there is a type allele. This formula is similar to formula (19), except that
4N \/2us is to be substituted for S. The general formula for this number can be
obtained by integrating the second term of formula (23), i.e., M¢g(z), from
1/4N to 1, and by noting that 6, = a and 6, = . Numerical results indicate that
Wright’s formula again holds approximately if S is larger than 10. Note, how-

ever, that formula (19’) is applicable only if 4V \/2us is larger than 1.
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Numerical Examples

(A) Distribution of allele frequencies: Before considering numerical results,
let us examine analytically the form of the distribution of allele frequencies
under various types of selection. The distributions of allele frequencies for the
cases of genic and recessive selection are given above, while that for the case of
symmetrical overdominance is given by

o(z) = 02 (1 — 2) e W (o (1 — 2)%,0) /W (a,0), (25)

W) = X 5 (—o)"Cinf'/T(2n+0),

where ¢ = 2Vs (WaTtERsoN 1977). This formula is derived under the assump-
tions that the relative fitness is 1 for all heterozygotes and 1 — s for all homozy-
gotes, that the number of allelic states is infinite, and that |2/Vs| << N. The C; ,
constants can be computed by use of the following recursive formula: ‘

" Ciney (2= 1)
Ci+1,n_'j51 1 j‘ N 0,0_17

starting with C;, = (2n — 1)!/n! (STEWAaRT 1976; WaTTERSON 1977). We note
from formulae (5), (14), (23), and (25) that regardless of the type of selection
all the distributions under the model of infinite alleles have the common factor
z1(1 — z)#*, as does the distribution for the case of neutral mutations:

&(z) =0x(1 — )8 . (26)

Thus, in all cases the value of ®(x) at =1 is infinite if § < 1, finite if § =1,
and 0 if § > 1, while that at z = 0 is always infinite. It is also easy to see that
®(z) given by (26) is U-shaped if § < 1 and L-shaped if § > 1. By continuity,
the distribution under very weak selection pressure should be of the same shape
as that for the case of neutral mutations; numerical results indicate that the
shape of ®(x) is not much affected if s < 1/N. These few properties are all that
can be inferred analytically. To have a deeper understanding, numerical compu-
tations are necessary. A particular effort to be made is to see under what situation
a U-shaped distribution can be obtained, because this shape of distribution is
universally observed in nature for protein loci (unpublished studies of CHAKRA-
BORTY, FUuERST and NEI).

In all examples in this section, the model of infinite alleles is used. The
examples given in Figures 1a and 1b are intended to show the effect of selection
on the shape of the distribution of allele frequencies. The selection intensity is
4Ns; == 20 and 4/Vs, = 10 for the case of three classes of alleles under genic
selection, 4Vs = 20 for the case of two classes of alleles under recessive selection
and 2/Vs = 10 for the case of overdominant selection. In the case of genic selec-
tion, @ is divided into 6, = 0.016, 8, = 0.094, and ¢, = 0.909; /2 = 2Nv repre-
sents the number of new alleles appearing in each generation, of which 4;/2 =
2Nu; belong to the ith class. In the case of recessive selection, §; = 0.016 and
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6, = 0.996. In Figure la, § = 0.1 for all cases. The curve for neutral mutations
is U-shaped, as expected. The curve for genic selection is also U-shaped but there
are fewer intermediate- and low-frequency alleles and more high-frequency
alleles as compared to the case of neutral mutations. To avoid crowding, the
curve for recessive selection is not shown in Figure 1a, but it is U-shaped. The
curve for overdominant selection has a peak at x =0.41 and is far from being
U-shaped—there are more intermediate- and low-frequency alleles and fewer
high-frequency alleles as compared to the case of neutral mutations. Thus over-
dominant selection and genic selection have opposite effects on the shape of the
distribution of allele frequencies. The mean heterozygosities for the cases of
overdominant selection, neutral mutations, and genic selection are 0.485, 0.091,
and 0.012, respectively. In Figure 1b, § = 1. Now only the curve for genic selec-
tion is U-shaped. However, the curve for recessive selection is nearly U-shaped
and shows a similar tendency as that for genic selection. The curve for over-
dominant selection is again far from being U-shaped. As expected, the curve for
neutral mutations is L-shaped. The mean heterozygosities for the cases of over-

GENIC, 3 CLASSES

0 -5 1
GENE FREQUENCY

Freures 1a and 1b.—Distribution of allele frequencies under various types of selection. The
ordinate denctes ®(x), which has the meaning that & (z)dx represents the expected number of
alleles whose frequency is between z — dz/2 and z -} dz/2. In Figure la, ¢ = 0.1 while in
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dominant selection, neutral mutations, recessive selection, and genic selection
are 0.697, 0.500, 0.238, and 0.114, respectively. The bearing of the above findings
on protein polymorphism will be discussed later.

Figure 2 shows the effect of population size on the distribution of allele fre-
quencies for the case of three classes of alleles under genic selection. The param-
eters used are s; = 1075, 5, =5,/2, v =1.12 X 10-%, 2, = 0.02 X 10-%, 1, = 0.1 X 10-5,
and u;=10° When 4N =4 X 10°, the curve is U-shaped. This is expected
because 6 = 0.448 is smaller than one. The curve for 4N =15 X 10° has a peak
at x=0.95, but there are now fewer intermediate-frequency alleles and more
low-frequency alleles than those for the previous case. As expected, ®(x)
becomes 0 at x =1 since 6 is now 1.68. When 4/V increases to 30 X 10°, the peak
becomes higher and moves to the left. This tendency will continue as population
size increases—when NV becomes infinite, all alleles will be concentrated near
z = 0. Although the three curves for 4N =4 X 105, 15 X 10°, and 30 X 10° look
different, they yield very similar mean heterozygosities: 0.268, 0.250, and 0.269.

1]
15 ||| 4Nv=1
113 .
it} "
i : ———— OVERDOMINANT !
”| ............... NEUTRAL :
1 ———— RECESSIVE i
Lo ity O\ e GENIC, 3CLASSES ,'
!| ]
_ i
!

GENE FREQUENCY

Figure 1b, 6 = 1. Overdominant selection: ¢ = 2Vs = 10. Recessive selection: 4/Vs —20, 6, =
0.01¢, and 6,=0.996. Genic selection: 4Ns, = 20, 4Ns, =10, 6, = 0.01¢, 9, = 0.096, and
6, — 0.96.
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15 T :

i

i ———— 4N= 4x10°

|| —_————- 4N = 15x1()5

i 4N = 30x10°

]

1 NEUTRAL,e= .35
104 i

il

i

iy

0 =g
0

GENE FREQUENCY

Freure 2.—The effect of population size on the distribution of allele frequencies under genic
selection. The ordinate denotes ®(z), which has the meaning that ®(z)dz represents the
expected number of alleles whose frequency is between z — dz/2 and z -+ dz/2. Mutations are
divided into three classes with z, = 0.02 X 10-6, 1, = 0.1 X 106, and u, = 10-8, s, == 10-5, and
s, = 5,/2. The neutral case is for comparison. For details, see text.

Let us now consider a hypothetical population in which mutations are strictly
neutral, but the mean heterozygosity H at equilibrium is about the same as those
of the above three populations, say H = 0.26. From this H, we obtain § = 0.35 by
using the relation H=0/(1+46) (Kmmura and Crow 1964). Using this § value
and formula (26), we obtain the curve for the case of neutral mutations (Figure
2). This curve is very similar to the first curve, but different from the other two
curves. Thus, the distribution of allele frequencies may be used to detect weak
selection in large populations where the effect of random drift is relatively weak.
One general property is that for a given level of mean heterozygosity there is an
excess of rare alleles in the case of genic selection compared with the case of
neutral mutations. On the other hand, in the case of overdominant selection the
number of rare alleles tends to be small, while the number of intermediate-
frequency alleles tends to be large compared with the case of neutral mutations.
For example, the mean heterozygosity for the case of overdominant selection
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given in Figure 1a is 0.485, which is close to the value of 0.500 for the case of
neutral mutations given in Figure 1b, but there are fewer rare alleles and more
intermediate-frequency alleles in the former case than in the latter (note the
difference in scale for the ordinates). It should be noted that in this method of
comparison the distribution for the model of neutral mutations is computed by
using § = H/(1 — H). Here, H is the expected heterozygosity for the population
under study, while in practice it refers to the observed average heterozygosity.
If the number of rare alleles for the population under study is larger (smaller)
than that for the model of neutral mutations, then we say there is “an excess
(deficiency) of rare alleles.” This terminology is used in this sense throughout
the present paper.

In Figure 3 we plot the distribution of the mean number of the third-class
(most disadvantageous) alleles at different frequencies for the three cases of
genic selection shown in Figure 2. It is seen that when 4/NV =4 X 10° and
4Ns; = 4, the third-class alleles are spread over the whole range of gene fre-

15
4N = 4x105
AN=15x10°
AN =30x10°
10
I
|
i
i
|
5 o !
|
I
I
I
/
/
“‘-__— —’//
0 1 | . |
.5 1

GENE FREQUENCY

Freure 3.—Distributions of the number of the third-class (most disadvantageous) alleles
under genic selection. The ordinate denotes ®,(z), which has the meaning that ®,(z)dz repre-
sents the expected number of the third-class alleles whose frequency is between x — dz/2 and
z -+ dz/2. The parameters used are the same as those of Figure 2.
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quency, including the fixation class. But when 4/V increases to 15 X 10° so that
4Ns, = 15, virtually none of the third-class alleles have a frequency higher than
0.3. As the population size increases more, the third-class alleles are pushed
further down to lower frequencies. Thus, slightly deleterious mutations are able
to spread over the whole population when NV is of the order of 1/s or smaller, but
are kept in low frequency when N is one order larger than 1/s, where s is the
selection coefficient against these mutations.

A property of prime importance emerges from the above results: the higher
the potential for mutations to persist in the population, the lower the probability
for ®(z) to be U-shaped. (The potential is determined by N and the selective
values of the mutations.) This is because the sum of allele frequencies must be
one, and therefore the probability for any of the allele frequencies to be close to
one becomes small when the number of alleles becomes large (cf., Fig. 1b).
Obviously the distribution ®(x) cannot be U-shaped if there is no allele with
frequency close to one. The distribution also cannot be U-shaped if there exists
a peak at an intermediate frequency. Such a peak can arise if there is a force to
keep some alleles at intermediate frequencies (cf., Fig. 1a). It can also arise
because of the accumulation of a large number of low frequency alleles (cf.,
Fig. 2).

In the light of the above findings, the property of the distribution of allele
frequencies under various situations can be recapitulated as follows: (1) For
neutral mutations, there is no selective force to retain alleles in the population,
but there is also no selective force to eliminate them so that alleles can become
extinct only through random drift or mutation. Thus, the distribution is U-shaped
if new alleles arise at a rate lower than one In every two generations, i.e.,
6 = 4Nv < 1, but it becomes L-shaped if new alleles arise at a higher rate,
le., 0 2 1. (2) Balancing selection not only has a high potential to retain alleles
in the population, but also has a tendency to produce a peak at intermediate
frequencies. Thus, a U-shaped distribution is unlikely to be observed under this
mode of selection, unless the population size is very small so that random drift
is strong and selection becomes ineffective. Numerical computations based on the
model of symmetrical overdominance show that even if 2/Vs is as small as 5 the
distribution is non-U-shaped, because of the existence of a mild peak in the
middle, if 4 is 0.1; when 6 becomes smaller this peak gradually becomes less
conspicuous and the distribution tends to become U-shaped. One may argue that
when the assumption of symmetry is removed the population will have a lower
potential for holding alleles. However, it should be stressed that even severely
deleterious alleles can accumulate in the population if they enjoy heterozygote
advantage or minority advantage. The best example of this is the sickle-cell
anemia gene in Africa; despite its lethality in homozygous condition, the fre-
quencies of this gene in some African populations are as high as 0.15, sometimes
even 0.20 (Avrrison 1961). Therefore, if balancing selection is prevalent, then
even severely deleterious mutations may persist in the population for a long time
and the distribution would soon become non-U-shaped as the population size
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increases. (3) “Purifying” (or “negative”) selection, which includes genic selec-
tion, recessive selection, etc., tends to force the distribution to be U-shaped, for
it is rather effective in eliminating disadvantageous mutations or in keepng them
in low frequencies. Under this type of selection, the distribution is U-shaped if
6 < 1. When 6 becomes larger than one, ®(z) becomes 0 at x = 1, but has a peak
at a high gene frequency (see Figure 2). The location of this peak depends on
the intensity of selection as well as the magnitude of 6. If it is close to x = 1, the
distribution, when plotted as a histogram, may become U-shaped. For example,
the histogram for the curve with ¢ = 1.68 in Figure 2 is U-shaped if the range of
gene frequency is divided into ten equal intervals. This example shows that by
incorporating even tiny selective differences such as s; = 10-% and s, = 10-%/2
into the model of selective neutrality, a U-shaped histogram can be obtained even
if 6 is substantially larger than 1. In natural populations a U-shaped histogram
may be obtained for an even larger ¢ value, because the majority of mutations
are perhaps more deleterious than s = 10-°. Note also that in practice only a finite
number of genes are sampled from the population, so that low-frequency alleles
are less likely to be observed than high-frequency ones. This sampling effect tends
to move the aforementioned peak closer to z = 1. Numerical computations show
that this effect increases the chance of cbserving a U-shaped histogram, though
only to a small extent. Thus, under purifying selection the observed distribution,
which is generally plotted as a histogram, can be U-shaped even if 6 is consider-
ably larger than one, say of the order of 10. However, it is unlikely that a
U-shaped distribution can be observed if ¢ is much larger than one, say of the
order of 100 or larger, unless an overwhelming majority of mutations are very
deleterious so that they are quickly eliminated from the population or kept in
exceedingly low frequencies.

(B) Number of alleles in a sample: Table 2 presents the mean number, rn, of
alleles with sample frequencies less than or equal to ¢, when m individuals or 2m
genes are randomly chosen from the population. The parameters are specified in
the table. For each § value, we consider three cases: (1) neutral mutations, (2)
two classes of alleles under genic selection, and (3) three classes of alleles under
genic selection. The third-class alleles of case 3 correspond to the second-class
alleles of case 2, while the first- and second-class alleles of case 3 represent a
further subdivision of the first-class alleles of case 2. The population size for the
three cases with 6 = 3.36 is 7.5 times that for the three cases with 6 = 0.448.
When there are two or three classes of alleles, the first value in parentheses
denotes the number of alleles from the first class, the second value from the
second class, and so on. A number of interesting properties emerge from this
table. (1) For a given 0 value, the mean number of rare alleles, defined as alleles
whose sample frequency is less than or equal to 0.01, is almost the same for the
two cases of genic selection and also for the case of no selection, particularly when
the sample size is large. On the other hand, the expected total numbers of alleles
in a sample for the two cases of genic selection differ considerably from that for
the case of no selection. This finding supports Net's (1977) contention that, for
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estimating mutation rate, it is better to use the number of rare alleles rather than
the total number of alleles, for the former is much less affected by selection than
the latter. (2) A great majority of the alleles in a sample are in low frequencies,
i.e., around or less than 0.01, and are largely due to mutations of the second or
third class. (3) The n, value is larger for case 3 than for case 2 when S, = § =4,
but the situation is reversed when S; =8 = 30. A simple explanation for this
phenomenon is as follows. In case 3, only a minority of mutations, less than
2 percent, belong to the first class. Therefore, when S; = 4 there is a high proba-
bility that the first-class alleles are in very low frequencies or even absent from
the population (see the first values in parentheses for case 3 with 6 = 0.448).
Compared with case 3, there should be more first-class alleles in case 2 because
about 10 percent of the mutations belong to this class. Consequently, selection is
weaker in case 3 than in case 2, so that n, is larger for case 3 than for case 2. On
the other hand, when S, = § = 30, selection becomes effective, so that the sum of
the frequencies of the first-class alleles is high even in case 3. Now selection is
stronger in case 3 than in case 2 because more alleles are selected against, and
thus 2, is smaller for the former than for the latter.

The sampling property of allele frequencies can be used to detect the pres-
ence of selection. To see this, we consider the following example. Cases 3 with
6 = 0.448 and ¢ = 3.36 are equivalent to the cases of 4V =4 X 10° and 4N =
3 % 10¢ in Figure 2, respectively. As noted earlier, the mean heterozygosities for
these two cases are virtually equal: 0.268 and 0.269. If we assume that the hetero-

zygosity of a population is completely due to neutral mutations and use H=0270
to estimate 6, then we get § = 0.37. The values of n, for neutral mutations with
¢ = 0.37 are given in the last column of Table 2. It is clear that the differences
in these values between the cases of genic selection and neutral mutations are
negligibly small if S; =4 and S, = 2, but very large if §; =30 and S = 15. In
particular, 7,0, for the case of genic selection with §; = 30 and S, = 15 can be
more than eight or nine times that for neutral mutations. We shall discuss the
implication of this finding for protein polymorphism later.

MEAN AND VARIANCE OF HETEROZYGOSITY

Let H and J denote the heterozygosity and homozygosity of a locus. Under
random mating,

J=xz2+ ...+,
so that

_ K
T=E() =3 Bz,
K K K
E(/*) =2 Exi+ 3 3 Elzées] .

The variance of J is given by V(J) = E(J?) —J% Since H=1—J, H=1~-17
and V(H) =V (J). We shall determine the mean and variance of H by studying
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the moments of J. When there is no selection, the following results agree with
those for the case of neutral mutations obtained by Kimura and Crow (1964),
StEwART (1976), WarTERsSON (1974) and L1 and Nex (1975).

Genic Selection

In the general case, the joint probability density of gene frequencies is given
by formula (3’) and

K
E(J)=C _{ .. .Liix;%(xh. «oxp)dry ... dxg

2N n!zn K
=C3 () —-"— 3 S (i t+a),
n:o(n)r(n+2+gl> (n) [{izl( a) }
K Ay
x 1 2 I‘(nr{-a)] . (27)
=1 ni!

2N n]zn K
EJH)=C:= (¥)————mm— 3 3 (m+a).
( ) n:0<n) I‘(n+4~+0') {n) |:{i:1 ( 0()

S

K K K n,
+ 3= = (ni-l-a)z(nj-l—a)z} I T(n + a) ] (28)
i=1 jsi =1 .l

n;
In the case of three classes of alleles, it is simpler to derive J from the distri-
bution of allele frequencies given by formula (14).

E() =, e (z)dz
ni2» . 1
T(n+2+6) ™ nln,!
X [6,C1tMt5% T (1, + 0,)T (112 -+ 03) + 0,Cor1™rs™
X T'(ny + 0.)T(n, + 05) + 05Ce5,™s,"T(ny + 6)T(n, -+ 62) ], (29)

=+ 3,60

in which the C;’s are the same as those in formula (14). To compute E(J?),
we notice that
E(J?) = IE(x,*) + ME(z, ) + QE(zx*)
+I(I— 1)E(222) + M(M — )E(z, 2.2, 7)) +Q(Q— 1)E(z}z})
+ 2IM E (2%, 2)) + 2IQE(z22%) + 2MQE(z, 2 x%).

U141 1+1"K

From the joint distribution of xi,...,77.1,y., and y; given by formula (8)
we obtain

2N n!2n s t2”1t3"2

E() =Cula)y 2, €D T(n+4+6) ® nlny
E(z222) = o*(a + 1)?E(22) /(a) s

T(n,+ 6,)r(n, + 6s),
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From formulae (10) and (12), we obtain

E(z 4)=Ca), 3 () — % TS (o 62T (s -+ 05),
It n=0 Cnl T(n4-440) @ nln,
E(x, 7z, 2) =& (a+1)°E(z, 2)/(a)s
2N 1On g Ny
E(2%) = Cy(a)y 5, (%) —2 5 22 p(n, + 0)T (n + 62),

P T(n+4+6) ® pind
E(x}z}) =a*(a+1)?E(zt) /(a) s
To evaluate E(22 z, 1), we consider the joint distribution of zi, z:, zr41, . . .

Zr+u-1, and ys, where z; =y, — z,, and find that

¢(x1,z1,x1+1, “en 71‘1+M_17y3) - C4I‘(0£)_M(1 + 27’11'1 + 27'1Z1 + 273}’3)2N
I+u
X xoizgfralydyt I go-t
1 1 3 I+1 i

2N |2n Ty Py B

E(z’z *) =Cuala+1) 3 () i s [T

1 It+1 =0 Mt 44+6) W nylnin!
><I‘(n1+01‘—a)1‘(n2+Gs)r(n3+2+a),

C-1 = 2§’ (o ni2n ™Ry ™s

tom=0 n D (pt¢) ™ nlnlng!

X I‘(nz + 93)I‘(n3 + a).

I‘(n1+01’_a)

In the same manner, we obtain

¢(x1,z1,y2,xl+M+2, e ,IK) = C5I‘(0[)_Q(1 -+ 2811'1 + 231Z1 + 252}’2)2N

K
X xa—l zol—a—lyo I xa—l

2 I+M+1 i

19n N g Moo By
E(xzxz) =Csa(a+1) 2 (21") n!2 5 Sty
"= T(n+44+6) ™ nlnlng

X I‘(n1+ al—a)I‘(nz‘l‘ 02)I‘(ﬂ3+2+a),

ni2r §1™8,"28: "
C_1 - E ZN) E 1 2 1
=0 n P(n+6) ™ nlnln!

T'(ny+ 60, —a)T(m, + 0,)T(ns + a),
and

(}5(}/1,.1'[+1,Z2,1'1+M+2, P ,JCK) = CGI‘ (a)'9(1 + 26‘1}’1 -+ 2521'1_}.1 + 23222)2N

K
X y" lxet gfel T get
I4+1 2 I+M+1 4
nl2n» $1™185™S,™s
E(x 2 xz) = Ceala+1) 2 (2N) s 1272
I+1 T'(n+4+ 6) ™ nyln,lng!
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X I‘(n1 + 01)1‘(712 + 02— a)I‘(ng + 2 + CY),

1 — 25 v nl2» $1™18,™28,"s

6 =0 " Tp+6) ™ plnlng!

X T(n, +‘a)9

T(Ih + 01)]:‘("2 + 62 - a)

where z, = y; — 2. 1. By using these results, E(J?) can be obtained. In the case
of infinite alleles, it becomes
2w ni2" 1
E(J?) = 3 (¥ 3 61(6 + 0,) Cyto™ts™
TR T e ey @ e O RGEM

X I‘(nl + 92)1‘(722 + 03) + 02(6 + 62)027'1"17'3"2 I‘(n1 -+ 91)T(n2 + 03)

pad 1on
+ 93(6 + 93) 0351"132"2 P(Tlx. + 01)1‘(’1«‘2 + 02)] +2 ”io (2::7) _I‘—(—I_”L-%:“‘—'i‘—b—)
X & —M [010202,-1"1-}-"3,.37»21\(”1 + 01)1‘(722 + 93)
) n1!n2!
+ 01030331"1+”382”2P(n1 -+ 91)]:‘(722 + 02) -+ 02930351n152n2+n3
X T(ny+ 0,)T(n.+6,)], (30)

because I C,— 6,C,, I Cs— 6,C,, and M Cs— 8,C; as K — .
The corresponding formulae for the case of two classes of alleles are

E()=(1+a) 3 (NOCIT(n+ 6:)
+0.CT(n+ 6)]/D(n+ 2+ #) (31)

E(g) =3 () — 2

-_ 01 6‘1‘0101"I‘ +02
G Tt BOTWGHT(rE)

n+1

n,!

+ 65(6 + 8,)Cos™T (4 61) + 26,0:C,s™ (%“) T(n.+6,)]. (32)

where C, and C, are given in formula (16). Note that formula (32) is written
under the condition of K = %, but formula (31) holds for any K.

Recessive selection

We consider two classes of alleles and use the same notations as those of
formula (23). The formulae corresponding to (31) and (32) are

r@n+2+¢)

+ 020272'27” s §1 189 2P<n1 + 2”2 '+" 01) )
™ !0 (n 20,2+ 6)

E(J)=(1+a) :E; (ZnN) [6.C1(—2s)™

(33)
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E(J2) =
T(n +4+¢)

(2”) [0:(6 + 0,)Ci(—28)"

+ 02(6 + az)czn!ZH s Sl'”lsz”zr(n]_ + 2722 + 01) ] (34)
™ !t (n, 4 2n,+ 4+ 6%)
N — n !
+20,0,C; 3 (* (=25)"(En)! (1) T 02) 559
n= ren+446) (2") n,!

in which the last summation 2 is over all vectors (2n) = (ni,n,) of non-

negative integers such that n;, + n2 =2n.

Nurnerical examples

(A) Mean heterozygosity: Table 3 shows the mean heterozygosity of a popu-
lation under various types of selection. The parameters are specified in the table
and the footnotes of the table. In all cases, the model of infinite alleles is used.
The mean heterozygosity for the case of overdominant selection is computed by
numerical integration of formula (25), while those for the other cases are com-
puted by using the above formulae. The case of neutral mutations is given for
comparison. A number of interesting properties are observed. (1) Overdominant
selection increases considerably the amount of mean heterozygosity, even if the
heterozygote advantage is as tiny as 1075, (2) In large populations, the mean
heterozygosities for the cases of genic and recessive selection are much less than
those for the case of neutral mutations. Thus, in large populations even slight
purifying selection causes a great reduction in heterozygosity. This is particularly
so in the cases of genic selection and confirms OnTa and Kimura’s (1975) result

by simulation. (3) The H value for the case of neutral mutations is somewhat

TABLE 3

Mean heterozygosity under various types of selection

4N 4X10* 108 2X108 4% 108 108 2% 108 3X108 4% 108
g = 4Nv 0.04 0.1 0.2 0.4 1 2 3 4
Neutral mutations 0.0385 0.0909 0.167 0.286 0500 0667 0.750 0.800
Overdominant selection* 0.0405 0.1038 0208 0.384 0.636 0.765 0.820 0.850
Recessive selection:
Case 1 0.0389 0.0928 0.168 0.257 0354 0435 0489 0541
Case 2 0.0385 00911 0.167 0273 0322 0360 0380 0.398
Genic selectioni:
Case 1 (2 classes) 0.0383 0.0893 0.153 0208 02456 0308 0361 0407
Case 2 (2 classes) 0.0385 0.0907 0.165 0.259 0207 0204 0212 0219
Case 3 (3 classes) 0.0384 0.0904 0.163 0253 0237 0220 0227 0.234
* The heterozygote and homozygote fitnesses are 1 and 1 — s, where s = 10-5,
+ Case 1: ¢, =0.16, 9, = 0.99, s = 10-5; Case 2: 6, == 0.016, 9, = 0.99¢, s =10-5.
1 Case 1: 6, =0.16, 6,=09¢, s =10-5; Case 2: ¢, = 0.016, 6, = 0.999, s = 10-5; Case 3:

6, = 0.01s,

8, = 0.096, 6, = 0.96, s, = 105, 5, = 5,/2.
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smaller than those for the cases of recessive selection if 4/V is about 2 X 10° or
less. This seems peculiar but may be explained as follows. If mutations are
neutral and /V is small or intermediate, there is a high probability that the popu-
lation is monomorphic at the time of observation. In the case of recessive selection,
on the other hand, there exists some sort of mutation-selection balance because
unfavorable mutations are only slightly selected against, and they occur more
often than favorable mutations. This balance reduces slightly the probability of
being monomorphic (see L1 1977) and, consequently, increases the mean hetero-
zygosity to a small extent. As an example, when 4V = 10°, £(0.99) is 6.373 for
the case of neutral mutations, but 6.339 for the case of recessive selection with
6: = 0.16 (case 1). Note that this balance is strongly affected by random drift, so
that there is a high probability that the first-class alleles will become very rare
or even absent from the population, if the proportion of favorable mutations is
very small, say 1% or less. This explains why the A value for the second case of
recessive selection is very close to that for the case of neutral mutations, if 4V
is about 2 X 10° or less. This also explains why H is larger for the second case of
recessive selection than for the first case of recessive selection when 4V is around
4 X 10°, However, as the population size increases, the H value for the second
case becomes smaller than that for the first case, because selection becomes
effective and the proportion of unfavorable mutations is larger in the second case
than in the first case. (4) In the cases of recessive selection and the first case of
genic selection, H increases with increasing IV, but in the second and third cases
of genic selection H first increases, then decreases and then increases again as N
increases.

The following is a simple explanation for this phenomenon. When /V is small,
selection is not effective and all alleles behave almost as neutral alleles, so that
even unfavorable alleles contribute significantly to heterozygosity. But as NV
increases, unfavorable alleles are selected against and their contribution to
heterozygosity is diminished while favorable alleles increase their contribution.
Whether or not H increases with increasing /V depends on whether or not the
increase due to favorable alleles can compensate for the decrease due to selection
against unfavorable alleles. In the case of recessive selection, the compensation
seems always more than enough; a number of other parameter values were tried,
but no contrary result was obtained. In the case of genic selection, the compen-
sation is not enough if the proportion of favorable mutations is much smaller
than that of unfavorable mutations and /V is small or intermediate, but it will
eventually become more than enough as N becomes large. (5) H is smaller for
the first case than for the second case of genic selection when NV is small, but the
situation is reversed when NV is large. That is, when the proportion of favorable
mutations is reduced from 109 to 19, H increases if IV is small but decreases if
N is large. In the third case of genic selection, the first and second classes repre-
sent a further subdivision of the first class of case 1. It is interesting to note that
the H value for case 3 always lies between those for cases 1 and 2. These obser-
vations can again be explained in terms of the interaction between selection and
random drift.
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TABLE 4

Mean heterozygosity under genic selection when there are 1 optimal states

4N 4X10% 2% 105 4% 10% 10¢ 2% 108 3X108 @

Two classes* I=1 0.0388 0.166 0.260 0.202 0.190 0.190 0.190
I=2 0.0392 0.165 0.246 0.204 0.205 0.212 0.595
I=10 0.0420 0.167 0.225 0.254 0.309 0.356 0.919
Three classes} I=1 0.0388 0.164 0.255 0.236 0.208 0.208 0.208
I=2 0.0391 0.164 0.246 0.230 0.223 0.230 0.604
I=10 0.0420 0.167 0.232 0.270 0.323 0.369 0.921

* Two classes: s = 10-5, the mutation rate to slightly deleterious alleles is 10-%, and the muta-
tion rate to an optimal state is 10-8,
Three classes: s; = 10-5, s, = 0.5 X 10-5, the mutation rate to the third class of alleles is
09 X 1(;—(;} the mutation rate to the second class is 0.1 X 10-¢, and the mutation rate to an optimal
state is 10-8,

Table 4 shows the mean heterozygosity for the case where the number, /, of the
first-class allelic states is small rather than infinite. The first-class alleles are
called the optimal alleles. In all cases the mutation rate from all other alleles to
an optimal allele is 10-8, In the case of two classes of alleles, the number of allelic
states of the second class is infinite with u, = 10-%, In the case of three classes of
alleles, the numbers of the second- and third-class allelic states are infinite with
u, = 107 and u; = 9 X 10-". The mean heterozygosity for N = « is computed by
using a deterministic model. Namely, in the case of two classes of alleles, the sum
of the equilibrium frequencies of the second-class alleles is ¢ = u,/s = 10-%/
103=0.1, and the alleles of this class do not contribute to homozygosity. The
frequency of an optimal allele is (1 — ¢)/I, so that the homozygosity of the
population is J=1[ (1 — ¢) /I1*= (1 — ¢)2/I and the heterozygosity is H =1—1J.
The heterozygosity for the case of three classes of alleles for NV = ® is computed
in a similar manner. It is seen that, if I = 1, the mean heterozygosity reaches the
deterministic value when 4/Vs is 20 or larger. This means that the effect of
random genetic drift is negligible when 4/Vs is of this order of magnitude. On the
other hand, if 7 > 2, the mean heterozygosity is still far from the deterministic
value, even if 4/Ns=30. This is because the optimal alleles are neutral with
respect to each other and their frequencies are much affected by random genetic
drift. Note that in the two cases of I = 10, H always increases with increasing N,
while in the other four cases & first increases, then decreases and then increases
again. The explanation is similar to that given above.

(B) Mean heterozygosity for many classes of mutations: So far we have con-
sidered discrete classes of mutations, but in reality the fitness spectrum of muta-
tions seems to be continuous (Crow 1972; King 1972; Boomer and CavarLi-
Srorza 1972). OuTa (1978) has recently studied the mean number of heterozy-
gous nucleotide sites per individual and the fixation probability of new mutations
for a case of continuous spectrum. Here I am concerned with the mean hetero-
zygosity. Theoretically, regardless of the shape of the spectrum, the mean
heterozygosity for the discrete case should approach that for the continuous case
as the number of classes increases. In practice, however, we can compute only a
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limited number of classes, as pointed out earlier. Thus, in order to get some idea
about the mean heterozygosity for the continuous case, we must make some
simplifications. We consider only genic selection. Let the relative fitness of the
best genotype be 1 and let s be the selection coefficient against any particular
mutation. It is clear from the above computations that genic selection causes a
great reduction in mean heterozygosity when s is considerably larger than 1/N
(see Tables 3 and 4). We therefore consider only mutations with selection
coefficient of 0 < s < 1/N. Assume that § =4Nv=0.1. We first make an effort
1o see how fast the mean heterozygosity for the discrete case approaches the value
for the continuous case as the number of classes increases. To this end, we use a
simple model in which the selection coeflicient of mutations is uniformly dis-
tributed over the interval [0,1/N]. If mutations are not divided into classes and
are assumed to be equally fit (neutral), then H =0/(1+ ) =0.091. Next, we
approximate the continuous model by a model of two equal classes of mutations
with 6,=60,=0/2. It is easily computed that the mean selection coefficient
against the first-class alleles is 1/(4/V) and that against the second-class alleles is
3/(4N). If we assume that the relative mean selection coefficient against the
first-class alleles is 0, then that against the second-class alleles is 1/(2/V). Putting
these parameters into formula (31), we obtain H = 0.0815. Third, we approxi-
mate the continuous model by a model of three classes of mutations with
6. =6,=6,=20/3. It is again easily computed that the relative mean selection
coefficients against the first-, second- and third-class alleles are 0, 1/(3/V) and
2/(3N). Using formula (29), we obtain H = 0.0796. For the models of four and
five classes of mutations, we obtain H =0.0789 and H =0.0786, respectively.
These results suggest that the mean heterozygosities for the discrete models
quickly approach a limit as the number of classes increases—the limit must be
larger than 0.0779, the value for the first of the two models given below. Since
the difference between 0.0786 and 0.0779 is small, we consider the model of five
classes of alleles a good approximation to the continuous model. We now consider
another two models of five classes of mutations. In the first model, 4, =68/15,
6,=26/15, . . ., 6,=56/15, and the selection coefficients against the five
classes are 0, 1/(5N), . .. 4/(5N). The mean heterozygosity for this model is
H =0.0779. In the second model, §, = 56/15, §,= 46/15, . . ., 8, = 6/15, and
the selection coefficients are again 0, 1/(5N), . .. ,4/(5N). The mean heterozy-
gosity for this model is H = 0.0827. Thus the H value is somewhat larger for the
case where the distribution of s is skewed toward 0 than for the case where the
distribution of s is skewed toward 1/N. In all cases, however, the H values are at
most 15 percent less than 0.091, the value for the model of strictly neutral muta-
tions with 6 =0.1. We note that the prevalent mode of selection in nature is
probably less effective than genic selection. We may therefore conclude that,
regardless of what the fitness spectrum of mutations may be, all mutations with
s < 1/N are capable of contributing significantly to the mean heterozygosity of a
population. Of course, the dichotomy between s < 1/N and s > 1/N is somewhat
arbitrary, but it will make discussion easier when we consider protein poly-
morphism later.
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(C) Variance of heterozygosity: This variance has been used by N1 and his
associates as a test statistic to test the neutral theory (NE1 1975; FuErsT, CHAKRA-
BorTy and NEer 1977). The procedure is as follows. Under the null hypothesis of
neutral mutations, ¢ is estimated by equating the observed average heterozygosity
to its theoretical expectation, H =6§/(1+ ). The § value is then used to compute
the expected variance of heterozygosity by using

VH)=20/[(1+6)2(2+0)(3B+)],

which is derived under the assumption of neutral mutations (cf., StEwarT 1976).
The expected variance is compared with the observed variance of heterozygosity
over the loci studied. If there is no discrepancy between the two variances, the
neutral mutation hypothesis is thought to be tenable; otherwise it is rejected. In
Table 5 we examine what selection intensity can be detected by this test pro-

TABLE 5

Variance of heterozygosity

s=s, 1 4 6 10 20
8 =0.05 ﬁl* 0.0473 0.0386 0.02564 0.01204 0.00589
V(H,) 0.0144 0.0114 0.00694 0.00229 0.00071
V(H,) 0.0144 0.0120 0.00815 0.00392 0.00194
212-]- 0.0475 0.0395 0.02336 0.01056 0.00544
V(H,) 0.0145 0.0118 0.00618 0.00180 0.00061
V(H,) 0.0145 0.0122 0.00746 0.00345 0.00180
ﬁsi 0.0478 0.0453 0.03714 0.02713 0.01933
V(H,) 0.0146 0.0136 0.01047 0.00659 0.00376
V(H,) 0.0145 0.0139 0.01154 0.00860 0.00621
8 =0.20 ITII* 0.1659 0.1415 0.10014 0.04804 0.02345
V(H,) 0.0393 0.0345 0.02442 0.00888 0.00277
V(H,)' 0.0394 0.0355 0.02744 0.01462 0.00748
i]z-[- 0.1663 0.1448 0.09289 0.04205 0.02166
V(H,) 0.0394 0.0354 0.02264 0.00700 0.00237
V(H,)' 0.0394 0.0360 0.02584 0.01295 0.00693
f_lsi 0.1670 0.1586 0.13147 0.09667 0.06949
V(H,) 0.0395 0.0374 0.03028 0.01977 0.01166
V(H,)' 0.0395 0.0382 0.03368 0.02668 0.02027
6 = 1.00 ﬁl* 0.4992 0.4743 0.41272 0.23710 0.11400
V(H,) 0.0417 0.0453 0.05083 0.03641 0.01216
V(H,) 0.0417 0.0440 0.04844 0.04729 0.03033
H,} 0.4997 0.4805 0.40661 0.20748 0.10544
V(H,) 0.0417 0.0448 0.05243 0.03026 0.01048
V(H,)' 0.0417 0.0435 0.04876 0.04458 0.02857
H e 0.5002 0.4839 0.42606 0.32220 0.23798
V(H,) 0.0416 0.0427 0.04418 0.03526 0.02353
V(H,) 0.0416 0.0432 0.04765 0.05077 0.04735

* Three classes of alleles: ¢, =0.01¢, §,=0.09¢, 9, =09¢, S, =S,/2.
1 Two classes of alleles under genic selection: 4, = 0.01¢, 8, = 0.994.
¥ Two classes of alleles under recessive selection: ¢, = 0.014, , = 0.996.
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cedure. The values of H; and V(H,;), i=1, 2, 3, are computed by using those
formulae given above, whereas V (H;)’ is computed from H by using NEr’s
(1975) procedure under the null hypothesis of neutral mutations; H, and V (H,)
refer to the case of three classes of alleles under genic selection, H, and V (H,) to
the case of two classes of alleles under genic selection, and H; and V (H,) to the
case of two classes of alleles under recessive selection. It is seen that in all of the
cases where 4Ns is 10 or larger, V (H;)’ deviates considerably from V (H;), par-
ticularly in the case of three classes of alleles under genic selection. Thus, it
seems that this test procedure is able to detect a selection intensity of this order.
On the other hand, if 4/Vs is around 4 or less, there is virtually no difference
between V (H;)" and V (H;). When 4Ns =6, two discrepancies are appreciably
large, while others are not. When 4/Vs is of this order of magnitude, the discrep-
ancy between V' (H;)’ and V (H;) depends on the mutation rate and the type of
selection. Notice that except for some cases with 6§ =1, V' (H;) is usually smaller
than V (H,)’. Since the majority of mean heterozygosities observed so far are less
than those for the cases with § =1, we may conclude that purifying selection
tends to reduce the variance of heterozygosity.

DISCUSSION

To emphasize the point that even slight selection has a drastic effect on genetic
variability when the effective population size V is large, all the above numerical
results were computed for small s values such as s = 1075, The results, however,
are also applicable to other combinations of /V and s, because the effect of selection
can be considered in terms of the product Vs when |4Ns| << N. For example,
the mean heterozygosity should be almost the same for both the case of s=10?
and N =102 and that of s =10~ and /N =10%, provided that Vv is the same for
both cases. Note, however, that when dealing with slight selective differences, we
may need to consider one additional factor—the random fluctuation of selection
intensities. This factor reduces the effectiveness of selection when the mean, §, of
s is larger than its variance V' (s). But, when V(s) becomes larger than §, it
increases the random fluctuation of gene frequencies and consequently reduces
the amount of genetic variability maintained in a population (WricHT 1948;
Kimura 1955; KarLin and Levikson 1974; Ner and Yoxovama 1976), though
under certain circumstances it may produce a stabilizing effect on gene frequen-
cies (JEnseEn and Porrack 1969; GiLreseie 1973; Karrin and LeEviksoN 1974;
and others).

In the present study all the statistical properties of the maintenance of genetic
variation are derived under the assumption that every mutation creates a new
allele—the model of infinite alleles. This model seems to be appropriate if allelic
variants are identified at the nucleotide or codon level. At present, however,
genetic variation is mostly studied by electrophoresis. At the electrophoretic
level, alleles (electromorphs) presumably mutate only to their nearby states so
that mutations are to some extent recurrent and back mutations may occur. Thus,
there are some differences between these two levels of detectability and caution
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should be taken when applying the present results to interpret polymorphism
data collected by electrophoresis. The distribution of allele frequencies at the
electrophoretic level has been studied only for the case of neutral mutations
(Kimura and Omra 1975). Kimura and OmTA’s results show that in this case
the distribution obtained under the model of stepwise change of electrophoretic
mobility is similar to that obtained under the model of infinite alleles when § < 1.
Presumably the previous statement that under balancing selection the distri-
bution tends to be non-U-shaped holds as well at the electrophoretic level. In the
case of purifying selection, it is not clear whether or not the distribution at the
electrophoretic level is similar to that under the model of infinite alleles. How-
ever, as in the latter model, it is unlikely that the distribution can be U-shaped
if ¢ is much larger than one, unless a special arrangement is made of the mutation
rates and selection coefficients for the electromorphs. The rate of increase of mean
heterozygosity with increasing population size is known, however, to be consider-
ably slower at the electrophoretic level than that predicted by the model of
infinite alleles, regardless of whether there is selection or not (Oxra and Kimura
1973,1975; L1 1976).

In applying the present results to data, we should also take into consideration
the effect of variation in mutation rate over loci. For neutral mutations, this
effect has recently been studied by Nex, CzaxraBorty and Fuerst (1976). Their
conclusions are that this effect reduces the mean of heterozygosity, but inflates
the variance, and that a U-shaped distribution can be obtained for a larger range
of (average) 4/Nv values than that for the case of constant mutation rate; how-
ever, it is a tilted U-shape if the mean of 4Nv over loci is larger than unity. Pre-
sumably these conclusions hold qualitatively for the cases of balancing selection
and purifying selection. It should, however, be stressed that this effect causes no
major change in the conclusions drawn under the assumption of constant muta-
tion rate.

I now discuss the implications of the present findings for protein poly-
morphism. For ease of discussion, I first summarize the general patterns of genic
variation that have emerged from the huge amount of gene-frequency data
collected by electrophoresis (a compilation of available data has recently been
made by Furrst, CuakraBorTY and Ner 1977). (1) A very striking general
pattern of genic variation is that the observed distribution (histogram) of allele
frequencies is U-shaped for every species studied (unpublished result of CHARRA-
BORTY, FUERsT and NEr). (2) When the observed distributions are compared
with those expected under the model of selective neutrality, about one-third of the
140 species examined show a significant excess of rare alleles, but only one species
shows a significant deficiency of rare alleles (unpublished result of CHARRA-
BORTY, FuersT and Ner). (3) There seems to be an upper limit for the observed
average heterozygosities (LEwonTIN 1974 NEI 1975; unpublished result of Nex,
Fuerst and CaAKRABORTY). An hypothesis of the maintenance of genic variation
is tenable only if it can explain these observations at least reasonably well.
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Interestingly, none of these observations appear to be explicable by the
hypothesis of balancing selection. First, the general pattern of U-shaped distri-
bution is not expected under balancing selection (cf., Figures 1a and b). Second,
balancing selection should lead to deficiencies rather than excesses of rare alleles.
This has been shown for overdominant selection, but should also be true for other
types of balancing selection. Finally, the third observation has been taken by
LewonTIiN (1974) and by the selectionists (e.g., Avara 1972; MiLkman 1975)
as strong evidence against the neutralist view, but is actually more incompatible
with the selectionist view, for under balancing selection the average heterozy-
gosity should be larger than under selective neutrality. For instance, the numeri-
cal examples given in the previous two sections show that even very slight over-
dominant selection, as small as s =105, increases the average heterozygosity
considerably as compared to the case of no selection. Because of these difficulties,
we are reluctant to accept balancing selection as an important cause for the
maintenance of genic variation.

We now consider the neutralist explanation. The selectionists strongly main-
tain that the neutral theory is wrong because the average heterozygosities in the
Drosophila willistoni group (AYAvLa et al., 1974) and in Escherichia coli (MiLK-
MaN 1975) are much less than would be expected from the balance between
mutation and random genetic drift. While the neutralists believe that this diffi-
culty is resolvable, they disagree with each other to some extent on how to resolve
it. On the one hand, Omra (1974, 1976) thinks that some modification of
the original theory is necessary and has proposed a modified hypothesis—the
hypothesis of slightly deleterious mutations. On the other hand, Ner1 thinks that
no modification is necessary because the long-term effective size of these species
may be small or these species may have gone through a bottleneck in the recent
past (N1 1975, 1976; Ne1, Maruvama and CHAKRABORTY 1975).

Let us first examine NEer’s resolution. The general pattern of U-shaped distri-
bution strongly supports Ner’s view that the effective sizes of natural populations
are rather limited, because if the effective size is very large, a U-shaped distri-
bution is unlikely to be obtained under any hypothesis. However, to explain the
apparent upper limit of observed average heterozygosities by the neutral theory,
the 6 values for the species studied must be at most of the order of 0.6. This is
because the highest average heterozygosity observed so far is 0.309 (in Otior-
rhynchus scaber, SuomarAINEN and Saura 1973), from which we obtain § = 0.60
by using the formula H =1 — 1//1-+20 derived under the model of stepwise
mutation (Orra and Kimura 1973). (A somewhat larger 4 value is obtained if
variation of mutation rate over loci is taken into account (NE1, CHAKRABORTY
and Fuesst 1976).) Whether this condition is reasonable or not is difficult to tell
because we are unable to determine the long-term effective size of populations.
This hypothesis, however, can be tested by considering some other aspects of
genic variation, such as the variance of heterozygosity, the incidence of rare
alleles, etc. A detailed analysis of available gene frequency data shows that in
most species the observed variance of heterozygosity agrees reasonably well with
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that expected under the neutral theory (Fuerst, CHARRABORTY and NEr 1977).
The excess of rare alleles in the D. willistoni group has been taken by Omra
(1976) as an indication of the prevalence of slightly deleterious mutations. How-
ever, this observation is not necessarily incompatible with the neutral theory
because it is also explainable by recent population expansion (NE1 and L1 1976).

Next let us examine Oura’s hypothesis that the genic variation of a population
is mostly due to slightly deleterious mutations. The essence of Omra’s (1976)
theory is that in small populations slightly deleterious alleles behave just like
neutral alleles, while in large populations “the stable mutation-selection balance
is reached and this provides an upper limit to heterozygosity.” Onra (1976)
believes that her hypothesis can account for the relative uniformity of observed
average heterozygosities over various species (LEwonTIiN 1974) and the excess
of rare alleles in some species. The present findings seem to support her conten-
tions. However, her assumption (OmTa 1976) that large natural populations such
as the D. willistoni group species are at the stable mutation-selection balance
leads to the following two difficulties: (1) This assumption implies that the 6
values for these populations are very large. [OnTa (1976) seems to agree with
Avara et al. (1974) that the population sizes of the D. willistoni group are
extremely large, though she may not accept their estimate of § = 400 for these
species.] But a U-shaped distribution is unlikely to be observed if § >> 1. Thus,
under this assumption it is difficult to explain the general pattern of U-shaped
distribution. (2) Because of the stable mutation-selection balance, evolution is
supposed to stop in large populations, as Oura (1976) herself noted. In practice,
however, studies on genetic distance suggest that even in large populations such
as the D. willistoni species (Ayara et al., 1974) gene substitution has proceeded
continuously with time.

OnTA’s purpose in making the assumption of mutation-selection balance is to
explain why the observed average heterozygosity is relatively uniform over
various species surveyed (LEwonTiN 1974) and why there is an apparent upper
limit for average heterozygosity (Omra 1974, 1976). I believe that these two
problems can be resolved without making this assumption, but by simply assum-
ing that the genic variation of a population is mainly due to slightly deleterious
mutations. Consider the first problem. To simplify the argument, let us assume
that only genic selection is operating. In a population of effective size NV, muta-
tions can be divided somewhat arbitrarily into the following two classes: muta-
tions with selective disadvantage s < 1/N and mutations with s > 1/N. As seen
earlier, the mean heterozygosity due to mutations with s < 1/N is comparable
to the case of neutral mutations, but that due to mutations with s > 1/N is much
less than what is expected under selective neutrality. Obviously, as IV increases
the proportion of the first-class mutations decreases, though the proportion of the
second-class mutations increases. For example, if NV = 103 the first class includes
all mutations with s < 10-* but if V= 10* it includes only all mutations with
s <10-*. When N increases from 10° to 10%, the mean heterozygosity due to
mutations with s < 10~ increases, but that due to mutations with s > 10
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decreases. Therefore, the H values for N = 10* may not be much larger than
that for V = 102 The rate of increase of H with increasing NV depends on how s
is distributed, but should be much slower than that for strictly neutral mutations,
unless the distribution of s is very skewed toward 0. This conclusion should also
be qualitatively true for other types of purifying selection. Thus the first problem
1s resolved.

In the above model it is possible for H to become very large if N becomes
exceedingly large. Then why is there an apparent upper limit for the observed
average heterozygosities? My answer is that it is due to restricted effective sizes.
As mentioned above, this view is strongly supported by the general pattern of
U-shaped distribution. Ayara et al. (1974) estimate that the effective size for the
species of the D. willistoni group is about 10*° and » = 10-® so that 4/Vv is about
400. The fact that the distributions of allele frequencies for these species are
U-shaped strongly suggests that this is a gross overestimate. Although presently
the actual total size of each of these species may be large, it should be noted that
the effective population size in the long evolutionary history is generally much
smaller than the total size. (The human population is such an example.) As NEr,
Maruyama and CHAKRABORTY (1975) have emphasized, if a population occasion-
ally goes through a bottleneck the effective size is greatly reduced. It is interesting
to note that even the size of a laboratory population that is maintained at a
constant temperature and humidity fluctunates greatly (Nocuks 1977). For a
similar reason, MiLkmMaN’s (1975) estimate of IV = 10* for E. coli for the last
40 million years has been challenged by N1 (1976) and WiLsonw (1976). At
any rate, these estimates of effective sizes are highly speculative, since we do not
even know their present actual sizes.

The advantage of this modified version over OnTA’s original hypothesis is that
it removes the difficulties created by the assumption of mutation-selection
balance. In particular, it now can explain the general pattern of U-shaped
distribution at least as well as the original neutral mutation hypothesis and the
selectionist hypothesis, because purifying selection has the highest potential to
maintain a U-shaped distribution, as shown above. Furthermore, like OnTA’s
hypothesis, it can better account for the excess of rare alleles in some species than
the original neutral mutation hypothesis and the selectionist hypothesis. Hence
the present hypothesis seems to explain better the general patterns of genic
variation than other current ones.

However, the difference between Kimura’s and my hypothesis is very subtle.
Kivmura (1968) called an allele “almost neutral” when 2Ns << 1, This defi-
nition seems too strict. The present results suggest that a more reasonable
definition of almost neutrality is s < 1/N, for the effect of random drift remains
strong for mutations with selection coefficients of this order or smaller. I consider
my hypothesis equivalent to this extended form of Kimura’s hypothesis. My
modified version of the neutral mutation hypothesis is similar to Oura’s, but I
do not assume that large natural populations are at the stable mutation-selection
balance. I consider this balance unlikely to occur in nature because as the selec-
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tive difference becomes very small it is unlikely to stay constant and to play a
decisive role so as to maintain a stable balance.

I am greatly indebted to M. NEr for his constant help and valuable suggestions. I also thank
G. A. Warrterson, W. J. Scauwr, J. L. Kine and R. C. LewonTin for helpful comments and
P. Fuerst for showing me the electrophoretic data that he has compiled. This study is supported
by Public Health Service grant GM 20293 and National Science Foundation grant DEB 77-09120.
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