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ABSTRACT 

A population with two alleles at one locus is considered. It is assumed 
that there is random mating of adults and that matings in which a particular 
pair of genotypes is involved may have a different mean number of offspring, 
or fecundity, than other types of matings. There is assumed to be no other 
selection. It is shown that the genotypic frequencies that maximize the mean 
fecundity of the population are not necessarily the same as the stable equilib- 
rium frequencies. Thus, examples can be found for which the mean fecundity 
decreases from one generation to the next, and one such example is presented. 
An example in which there is no stable equilibrium, and the mean fecundity 
oscillates, is also given. 

IT. is likely that selection for fecundity plays a role in the evolution of popula- 
tions. Evidence that this role may be of some importance in human populations 

has been given, for example, by FISHER (1958), BAJEMA (1963) and CAVALLI- 
SFORZA and BODMER (1971 ) . Nevertheless, most of the available theory of selec- 
tion deals with a situation in which generations do not overlap, individuals of 
different genotypes may have different probabilities of survival between zygote 
formation and adulthood, and adults mate at random. BODMER (1965) seems to 
have been the first author to have set up a general model for  a population with 
two alleles in which there can be selection for fecundity as well as viability. 
Most of his paper, however, deals with the special case in which the fecundity 
of mating is a product of two, possibly sex-dependent, factors, one being associ- 
ated with each of the mates. In this case the calculations are equivalent to those 
that arise when fecundities are the same for all types of matings and there is 
viability selection, with viabilities possibly differing in the two sexes. 

A particular consequence of the equivalence of the two theories is that if the 
fecundity factors are not sex-dependent, the mean, among zygoltes, of the products 
of relative viabilities and fecundity factors associated with individuals increases 
between one generation and the next. At the end of his paper BODMER conjectured 
that if P, Q and p,  g are the gene frequencies of A and a among gametes produced 
by females and males, respectively, and a, h and b are the relative viabilities of 
AA, Aa and aa, then the mean viability 
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T = apP + h ( p Q  + Pq) + bqQ 

also increases with each generation of selection. This is, however, not always true, 
as shown by a counterexample given by KEMPTHORNE and POLLAK (1970). 

Recently, HADELER and LIBERMAN (1975) have considered a situation in 
which there is selection only for fecundity in a population with two alleles and 
the fecundity of a mating is not necessarily factorizable. These authors made a 
detailed study of the existence and number of equilibria and their stability in the 
special case in which matings involving A A  individuals do not differ in output of 
offspring from Corresponding matings in which aa individuals play a role. Roux 
(1977) has studied a general model with any number of alleles and discussed 
particular cases resulting in fecundity functions factorizable into male and female 
contributions. He also has considered the genetic structure and equilibrium 
behavior if the fecundity of a mating is the sum of two terms, one attributable 
to each mate. 

The authors of both of these papers are aware that the mean “fitness” does not 
necessarily increase when there is fecundity selection, but in neither olf the papers 
is this explicitly studied. My object is to show that with selection only for 
fecundity, the mean fecundity need not increase. Examples in which the mean 
fecundity steadily decreases or oscillates will be given. Unlike in the counter- 
example of KEMPTHORNE and POLLAK (1970), it will not be necessary to 
assume that there is viability selection, as well as selection for  fecundity. 

THE MODEL 

Let us suppose that the fecundity is influenced by two alleles, A and a, at one 
locus. The genotypic array among adults in generation t may then be written 
in the form PtAA + 2QtAa 4- Rtaa. 

If we label genotypes AA, Aa, and aa by 1, 2, and 3, respectively, we may 
define Fi j  to be the mean number of offspring, or fecundity, of a mating of a 
male of type i and a female olf type j .  Thus, for example, F,, will denote the 

TABLE 1 

Frequencies, fecundities and offspring distributions of the mating types 

Mating type 
Male Female 

AA X AA 
AA X Aa 
AA x aa 
Aa X AA 
Aa X Aa 
Aa X aa 
aa X AA 
aa x Aa 
aa X aa 

Frequency Fecundity 
Offspring distribution 

AA Aa aa 
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mean number of offspring of a mating of type AA male x aa female. We now 
assume that there is no selection for viability, adults mate randomly, and the 
proportions of various genotypes among the offspring of any particular mating 
are Mendelian. In addition, the expected proportions of male and female offspring 
per mating will be assumed to be the same far any mating, so that the genotypic 
arrays of male and female offspring in any particular generation will be identical. 
The consequences of the foregoing definitions and assumptions are summarized 
in Table 1. 

By making use of the entries in the table we obtain the recurrence equations 

PtPt+i = P: Fii  i- PtQt (Fm 4- Fzi )  + Q: Fzz , 
2FtQt+i = PtQt (Fiz + Fzi) + PtRt (F13 + F31) + 2Q:F22 ( 1 )  + QtRt ( F 2 3  + F3z) 7 

RtRt+i = QfFzz + QtRt (F23 + F32) + Rf F33 7 

where Bt is so chosen that Pt+l + 2Qt+, + Rt+l = 1. Equations ( 1 )  can be 
simplified if we set Gij = (1/2) ( F i j  + F j i )  = Gji and Gt = pt.  We then obtain 

Gt Pt+i = P," G n  i- 2PtQtGiz + Qi Gzz 7 

2Ct Qt+i = 2PtQtGiz + 2PtRtGu f 2QiG22 i- 2QtRtGzs , ( 2 )  

Gt Rt+i = Q," G2z i- 2QtRtGm f R," G33 , 
where the mean fecundity in generation t is equal to 

F - G  - 
t - t - P: Gn + 4PtQtGiz + 2PtRtGi3 

(3) + 4QiGzz 4QtRtGz3 + R",33 
We now ask whether is maximized when the frequencies P, 2Q, and R are 

stable equilibrium values. If this were true, we would have hope of showing that 
as (Pt, 2Qt, R t )  tended toward a stable equilibrium (P*,  2Q*, R*)  as t increased, 
Gt would steadily increase toward a value @. 

To answer this question, we will find the stationary point of 

G= P2GG,, f 4PQGI2 3- 
(4) + 4Q2Gz2 + 4QRGZ3 + R2G3, 

subject to the constraint 

P + B Q + R = l .  ( 5 )  

L=E-22h(P+2Q+R- 1 ) .  (6) 

This is the same as the stationary point of 

Thus, if we take partial derivatives of L with respect to P, Q, and R and then set 
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them equal to 0, we find that the associated values of P, Q, and R satisfy the 
equations 

PGij + 2QGzj + RGZj = A, i = 1,2,3 . 

A=A(P+2Q+R) = e .  (8) 

(7)  

It is evident from ( 4 ) ,  ( 5 ) ,  and ( 7 )  that 

If the frequencies satisfying (7) are the same as the equilibrium frequencies 
obtained by setting Pt+l = Pt = P*, Q t f l  = Qt = Q* and Rt+l = Rt = R* in ( 2 ) ,  
it follows from ( 2 ) ,  (7) and (8) that 

P*R*G,, = (Q*)2G22 . (9) 

Expression (9) shows that if (P*, 2Q*, R*)  is to be both an equilibrium point 
and a stationary point of 6, the values of G,, and G,, are subject to constraint. 
If, for example, P*, 2Q*, and R* are to be positive, G,, and G,, would both have 
to be positive. This suggests that it may be possible to find Gij values for whichz  
is not maximized when the population is at a stable equilibrium. Consequently, 
it may be possible to choose Po, 2Q,, and R, is such a way that ct steadily 
decreases as t increases. An example of this type will be given in the next section. 

An example in which Gt steadily decreases 

from (2)  and ( 3 )  that 
Let G12 = 4, G,, = 8,  and the other Gij  values be equal to 0. It then follows 

Gt = 16PtQt + 3249 = 16Qt(l - Rt) ,  

8PtQt 4- 1642, 
- 1/2 7 

Qt 

2Qt+1 = 16PtQt + 3242, - 

Rt+i = - - 
SQ2, 

16Qt(l-Rt) 2(1-Rt) ' 

for t = 0, 1 , .  . . . Hence 

and 
Gt =4(1-Rt) , 

for t = 1, 2, . . . . At equilibrium Rt = Rt+l = R, 

8 R 2 - 8 R + 1 = 0 .  

( 1 1 )  

where 

The roots of this quadratic equation are ( 2  f d')/4. Since the larger root is 
inconsistent with having 24  = 1/2, the equilibrium is given by 

R = ( 2  - d 2 ) / 4  = 0.14645 , 
2Q = 1/2 7 

P = dZ/4 ~ 0 . 3 5 3 5 5  . 
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Expressions ( I O )  and ( 1  1 )  indicate that if it is possible to find a sequence of 
values R,, R,, . . . such that Rt is increasing toward R = ( 2  - d 2 ) / 4 ,  then et 
will steadily decrease as t increases. We now examine whether this can occur. 
Thus, we write Rt = R + dt .  Then, by ( I I ) ,  

1 1 -  1 
8(1-R) + dt+i = 8 (1-R-dt) 8 ( I -R)  [ I--cEt/( l -R)]  

and 

Clearly, [d t+l l  = 8R21dtl < Idt/ when dt is small, so that the equilibrium is 
locally stable. Also, if dt  < 0, 

O>- 8R2dt > dt,, > 8R2dt > dt . 
1 +8R2 

Hence, if Rt < R, then Rt < Rt+, < R and gt > Gt+, > c=4(1-R) .  In addition 
Rt -+ R and ct -+ e as t -+ W. Thus, for example, if R,  = 0, 4Q0 = 1 ,  we have 

0 2 3 4 

4 3.5000 3.4286 3.4167 3.4146 3.4142 
r;, 0 1;s 1/7 7/48 6/41 (2-;2)/4 

G 
An exrrmpie in which Gt oscillates 

HADELER and LIBERMAN (1975) have given an example where, in addition 
to the two trivial equilibria with only one gene present, there is only one poly- 
morphic equilibrium, and all three equilibria are unstable. This implies that, at 
least if does not assume a minimum value at the polymorphic equilibrium, it 
is possible to find a sequence (Pt, 2Qt, R t ) ,  t = 0,1,. . . , such that @t does not 
steadily increase with t .  

The following example is of a similar type to the one given by HADELER and 
LIBERMAN, but entails simpler computations. G,, = 36, G,, = 2 and all the other 
G,j values be equal to 0. We then have from ( 2 )  and ( 3 )  that, for t 0,1,. . . , 

GtPt+i = GtRt+i = 2Q: 7 

2ctQt+i = 4(18PtRt + Q Z , )  7 

ct = 8(9PtRt + Q;) . 

Hence, for t 2 1,  Pt = Rt, Pt + Qt = 1/2 and Gt = 2-8Pt + 80P,Z. Thus, if 
Pt = Re, Gt is minimized when P = 1/20. - 

When there is a polymorphic equilibrium, Pt = Pt+l = P, where 

( 2  - 8P + 8OpZ)F = 1/2 - 2F + 2F, 

and hence 

160F3 - 20P + 8F-I = ( F -  1 / 8 )  (160F2 4- 8 )  = 0 . 



388 E. POLLAK 

This cubic equation has only one real root, P = 1/8, which is associated with the 
unique equilibrium that exists in this example fo r  a surviving population. 

To explore whether the equilibrium is stable, we set Pt = 1/8 + dt for t = 1, 
2, . . . . Then, because Qt = 3/8 - dt, we have that 

9/32 - (3/2) dt + 2dg 
9/4 + 12dt + 80di 

1 
8 

1/8 - (2/3)dt + (8/9>dZ, 

Pt+i = - + dt+l= 

_-  - - - - d t  
1 + (48/9)dtf  (320/9)d4 8 3 

when dt is small. The equilibrium is thus locally unstable, with divergent oscil- 
lations. Because F =  1/8 is not the same as P = 1/20, the value at which the 
parabola representing gt for Pt = Rt is minimized, it is evident that et will 
oscillate for  Pt near p. If, for example, Po = Ro = 0.10 and 2Q0 = 0.80, we have 
the following figures. 

0 1 2 3 4 5 p‘, 0.10 0.16 0.0835 0.1836 0.0621 0.21 17 
G 2.0000 2.7680 1.8899 3.2269 1.8116 3.8925 

In the example given by HADELER and LIBERMAN (1975), GI, = G3, = 1, 
G,, = G,, = 2, G,, = 55 and G,, = 4. At equilibrium P = a = 1/7, which differs 
from the value P = 1/28 at which gt is minimized on the set where Pt = Rt. 
Moreover, it can be shown that the unique polymorphic equilibrium is locally 
unstable with divergent oscillations, so thatGt oscillates for Pt nearP. Thus, the 
essential qualitative features are the same as in the example that has been dis- 
cussed above. Therefore this example from HADELER and LIBERMAN (1975) 
implicitly justifies the assertion they make in their summary that the “funda- 
mental law of population genetics” does not hold. 

DISCUSSION 

In  the usual theory of viability selection at one locus, it is possible to show 
that @, the mean of the relative viabilities among zygotes, increases from one 
generation to the next. Proofs have been given by SCHEUER and MANDEL (1959), 
MULHOLLAND and SMITH (1959) , ATKINSON, WATTERSON and MORAN (1960) 
and KINGMAN (1961a,b). This theorem seems to be what HADELER and LIBER- 
MAN (1975) mean when they refer to the “fundamental law of population 
genetics”, or “Fisher’s fundamental principle”. 

In this paper we have a situation in which the units that are subjected to 
selection are not individuals, but mating pairs. Thus, instead of having a relative 
viability Wif ,  which is an attribute of individuals with genotype ACAj, we have 
a mean fecundity Gij, which is an attribute of mating pairs in which one of the 
mates is of genotype i and the other is of genotype j .  Carrying the analogy 
further, G is then a “natural” measure of the mean fitness of the population, 
just as is such a measure in the classical viability selection model. With 
fecundity selection, however, the counterexamples in the last two sections demon- 
strate that Gt is not necessarily larger than Gt-,. 
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One may object that the “natural” measure of population fitness that has been 
chosen is not appropriate, and that, after solme search, a more suitable function of 
the Gij’s and P,Q,R could be found, having the desirable property of showing 
that the population becomes more fit as selection proceeds. I doubt that this is 
true, folr the following reasons. Under viability selection, the merit of a superior 
individual may not be passed on to its offspring because of genetic segregation. 
Under fecundity selection, there is an additional hurdle. For, even if a superior 
mating produces offspring with a potential for entering a superior mating, the 
realization of this potential is dependent upon the structure of the population. 
The dynamics of a population under fecundity selection at one locus are then 
intrinsically more complex than if there were only viability selection at one locus. 

Perhaps, then, it is futile to attempt to prove that a population’s mean fitness 
increases with time if any other genetic mechanism than segregation is involved. 
It is well known (cf . ,  MORAN 1964) that if there is viability selection and recom- 
bination at two loci, then w, does not necessarily increase with t. Attempts have 
been made to find some functio’n wtt that necessarily increases with t, but so far, 
I believe, without success. 

resulted in improvements in the presentation of the material in this paper. 
I am grateful to OSCAR KEMPTHORNE and JAMES L. CORNETTE for useful suggestions, which 
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