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ABSTRACT 

The two-locus, two-allele multiplicative viability model is investigated. It 
is shown that the well-known region of recombination values for which D = 0 
is locally stable does not preclude the local stability of an equilibrium with 
D # 0. This is shown numerically and is true for every case investigated in 
which both loci are overdominant and the viabilities not symmetric. 

HE extent to which linkage disequilibrium exists in natural populations has T been a focus of interest for experimental population genetics. The interpre- 
tation of the results in terms of possible modes of selection (including none at all) 
has been rather vague. In some loose sense, the absence of linkage disequilibrium 
between a pair of loci has been taken to indicate lack of epistasis. In this note we 
demonstrate a surprising complexity in the case where the selection regimes 
at each of two loci are independent and overdominant. For a range of recombi- 
nation values, both D = 0 and D # 0 are stable. 

B A C K G R O U N D  

Suppose that two gene loci have alleles A and a at the first, and B and b at the 
second. The frequencies of the four chromosomes AB, Ab, aB and ab will be 

written zl, x2, z3 and z4, respectively, with ,x xi = 1. The recombination fraction 
between the two loci is R with 0 5 R I 1/2. The effect of natural selection on 
the system is described in terms of a 4 x 4 fitness matrix, W ,  whose entries are 
the relative viabilities of the genotypes as follows: 

4 

2=1 

AB Ab aB ab 
AB wl1 WlZ w13 w14 

Ab WlZ wZ2 w23 w24 

aB w13 w23 w33 w34 

ab wl4 w24 w34 w44 

(1) W =  
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Usually the fitnesses of the double heterozygotes, wZ3 and w14 are assumed to be 
equal, in which case W can be written in locus-by-locus form: 

BB Bb bb 
A A  w11 WlZ wzz 
A a  w13 w14 W24 

aa w33 w34 w44 

The frequencies of the four chromosomes in the next generation can then be 

W xz' = xi W+. + ~i RD ~ 1 4  , (3) 

W .  z. = z w . .  1.3 x3, . w=zwi.xi , (4) 

( 5 )  

written in terms of those in the present according to the recursion system 

where 
- 

z 

E %  = -1 for i = 1, 4 and E C  = 4-1 for i = 2, 3, and 

D = ~ 1 ~ 4  - ~ 2 x 3  . 

A coordinate system equivalent to the chromosome frequencies includes the gene 
frequencies 

P A  = x1 + x2, P B  = x1 + x3 (6) 

(7)  

of alleles A and B together with D in (5) .  Thus, using (6) we have for example 

xi = p A p o  + D 
with similar relations holding for  x2, x3 and xq. From (7) we see that D measures 
the departure from independence of the gene frequencies at the separate loci in 
determining the four chromosome frequencies. D also has an interpretation as a 
covariance between the state variables of the separate loci. 

When R = 0, the recursion system (3) can be analyzed in terms of the sta- 
bility of the various equilibria (KINGMAN 1961). When R # 0, the equilibrium 
behavior for the general viability matrix is not known, a l t h q h  certain features 
of the equilibrium structure, especially for  tight linkage (R small), have been 
demonstrated (KARLIN 1975). More detailed results are available for three 
special classes of viability matrices, the additive viability system 

the symmetric viability system 

BB Bb bb 
A A  Yo Y l  Y2 

Aa Y3 Yz Y3 

aa Yz Yl Yo 7 

(9) 
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and the multiplicative viability system 

BB Bb bb 
AA 4 1  4 2  alp3 

Aa azP1 a z o 2  d z P 3  (10) 
aa a3Pl f f 8 2  a3o3 * 

With additive viabilities (8), as long as 0 < R I 1/2 the system (3) converges 
from any nontrivial starting condition to the equilibrium point 

x* = (x:, x:, x:, x:) with 

5: = p ; p ; ,  x; = p ;  (1 - p i > ,  z,'= (1  7;) P i ,  .,'= (1 7:) (1 - p 3 ,  (11) 

where 

p ; =  (az-a3)/(2az-ai-.cY3), p,'= ( P Z - ~ ~ ) / ( ~ P Z - P I - P ~ ) ,  (12) 

provided that there is overdominance at each locus, that is 

a2 > max (aLy1, a3) ,  F2  > max (P1, P 3 )  . (13) 

The point ( 11 ) is usually called the Hardy-Weinberg equilibrium of the system 
(3) * 

For the symmetric viability system (9) in (3), an equilibrium of the form 
( l l ) ,  i.e., with D* = O ,  exists with p : = p i  == 1/2 for all R 2 0. However, it is 
locally stable if, and only if 

YZ - YO > I yl - y3 I and R > (y2 - yl - y3 + y o ) / 4 y 2  (14) 

For 0 I R < ( yz - yl - y 3  + y o )  /4, this Hardy-Weinberg equilibrium is not stable. 
In this region, two other equilibria with p i  = p,' = 1/2 and 

exist. These equilibria can be stable only when the Hardy-Weinberg equilibrium 
is nat, but the conditions within this range can be quite complicated (EWENS 
1968; KARLIN and FELDMAN 1970). KARLIN and FELDMAN (1970) d' ISCUSS 

generalizations oi  (9) that can exhibit up to seven interior equilibria. The details 
of the results reviewed abcwe can be found in LEWONTIN and KOJIMA (1960), 
BODMER and FELSENSTEIN (1967) and KARLIN and FELDMAN (1970). 

Multiplicative viabilities in system (3) have been studied by BODMER and 
FELSENSTEIN (1967), MORAN (1968) and KARLIN (1975). When there is over- 
dominance at both loci [i.e., (13) holds] BODMER and FELSENSTEIN (1967) 
showed that x* in (11 )  is locally stable, prolvided that$ 

(16) 
(aZ-al) (%-(Y3) (PZ-Pl) ( P 2 - P S )  R > R , =  

a Z P Z  ( & z - a z - a 3 )  (2PZ-Pl-83) * 

$ We take this opportunity to correct the formula for R, prmted incorrectly on the top of page 376 of KARLIN (1975). 
The correct formula 1s as in (16). 



816 S. KARLIN AND M. W. FELDMAN 

It is assumed throughout this discussion that R I 1/2. Oscillatory behavior of the 
population about x* is possible if R > 3/4. 

MORAN (1968) established that x* in (1 1) is globally stable if 

R > i = 1/2 - min (A ,B)  

where 

(18) (PZ-Pl) ( P Z - P 3 )  , B =  

Thus, under the condition (17), the population evolves to x* from any initial 
gamete frequency array. 

In  addition to these facts concerning the Hardy-Weinberg equilibrium, the 
following properties of the multiplicative viability model are true. The gamete 

frequency domain {x = (xi, x2, x3, x4) : xi 2 0, ,E xi = I} is divided by the surface 
D ( x )  = O  into two disjoint parts &+ and &- with 

(%-a1) ( a Z - f f 3 )  

A = 6a2 ( % x z - ~ l - f f 3 >  6/32 (ZP2-Pi-P3 ) ’ 

4 

2=1 

&+ = {x: D ( x )  > O} 
&- = {x: D ( x )  <O} 

&+ and dQ- are invariant regions under the transformation (3), so that if x is 
such that D > 0 (< 0), then the frequency vector x’ of the next generation has 
D > 0 (< 0).  The sign of the disequilibrium function is preserved in successive 
generations (KARLIN 1975). The surface separating &+ and dQ- is also preserved 
for all R. That is, D ( x )  = O  entails D(x’) = 0 (MORAN 1967; BODMER and 
FELSENSTEIN 1967). 

When linkage is tight to the extent that R < Ro, and if the overdominance 
conditions (13) hold, there are two locally stable polymorphic equilibria, one in 
&+ and the other in 8. If R = 0 these locally stable equilibria can be explicitly 
determined; the nine mutually exclusive configurations possible when ( 13) holds 
are detailed in Table 1 of KARLIN (1975, p. 378). 

As a final introductory remark we note that if the viabilities are simultaneously 
multiplicative and symmetric, so that a1 = a3, & = P3, then, under the condition 
(13), R = 0 entails the local stability of the two equilibria at which the gamete 
arrays are the complementary pairs [ (1/2) AB, (1/2) ab] and [ (1/2) Ab, 
(1/2) aB] respectively. For R positive, but small, two stable polymorphic equi- 
libria involving mostly these complementary pairs must exist. These two equi- 
libria simultaneously become locally unstable at the value R = R, given by (16). 
The value of R, is equal to the value given in (14) in this symmetric case, and 
for €2 > R, only the Hardy-Weinberg point is stable. 

It has generally been assumed that in the general (asymmetric) multiplicative 
viability model results similar to those of the previous paragraph hold, namely, 
that as the value of R increases to R,, both of the equilibria stable for R small 
coalesce into the Hardy-Weinberg point. I t  has been assumed, therefme, that for 
R > R, only the Hardy-Weinberg equilibrium (1 1) is locally stable. This note 
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is addressed to the demonstration that this assumption is false and that, over a 
suitable range of recombination values, the Hardy-Weinberg equilibrium with 
D* = 0 can be simultaneously stable with an equilibrium having D* # 0. The 
finding of FRANKLIN and FELDMAN (1977) is therefore extended to the multi- 
plicative viability system. 

RESULTS 

One-hundred multiplicative viability regimes were constructed by choosing 
( ~ ~ , ~ ~ + x ~ , / 3 ~ , / 3 ~ , / 3 ~  at random from a uniform distribution on [O, l ]  and multiplying 
the numbers as in (10). None of these matrices turned out to be symmetric. Ten 
initial gametic frequency arrays were chosen randomly in a similar way. For 
each matrix and an array of recombination fractions, the system (3) was iterated 
from each of the ten starting Conditions. Of the 100 matrices, 13 satisfied the 
overdominance conditions. In all other cases convergence occurred to a chromo- 
some or gene fixation state (x: + x: = ¶, x: + z,* = I , x,* + x: = 1, x,* + x: = 1 ). 
This is in good agreement with KARLIK and CARMELLI (1975), who found seven 
out of 50 matrices gave overdominance at both loci. The exact breakdown of the 
stable configurations for R=O from the 100 matrices is shown in Table 1A. The 
terminology used in the table is the following: A “ C O ~ W ”  equilibrium is a chro- 
mosome fixation state; A “g.f. edge” is a state of gene fixation; a two-boundary 
equilibrium stands for a gamete array composed of either AB and ab or Ab and 
aB (i.e., complementary gamete pairs) ; a threeboundary equilibrium denotes 
one in which one of the four possible sets of three gametes is stable. In Table 1B 
the stable configurations for 100 matrices constructed at random, but restricted 
to satisfy the overdominance criteria (13), are shown. 

For each of the 13 matrices satisfying conditions (13) , the transformation (3) 
was iterated numerically for  values of R increasing from zero to 0.5. Our obser- 

TABLE 1A 

Stable configurations from 100 randomly chosen multiplicative viability matrices (R=O) 

Two 2-boundary One 2-boundary and one Two 3-boundary 
Comers g.f. edges equilibria 3-boundary equilibrium equilibria 

M 43 5 4 4 

TABLE 1B 

Stable configurations for 100 randomly chosen overdominant multiplicatiue viability matrices 
~ ~~~~~ 

Two 2-boundary One %boundary and one Two 3-boundary 
equilibria 3-boundary equilibrium equilibna 

31 47 22 

Note that more than 2/3 of the equilibria at R=O do not occur on edges, i.e., are not of the 
high complementarity type. The preponderance of asymmetry suggests that high comple- 
mentarity would not be the usual polymorphism to be expected of two loci on which selection 
acts independently, i.e., multiplicatively. 
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vations on these iterations led us to select a further ten matrices with heterozy- 
gote advantage at each of the loci. The same procedure was carried through; 
equilibria were obtained at R=O and the value of R increased with iteration to 
equilibrium for each R value. The results were as for  the previous 13 cases. In  
order to understand the implications, it is worthwhile to describe the results and 
then present the numerical evidence that our description is indeed quite general. 
We shall assume throughout what follows that the multiplicative viability array 
satisfies (1 3) .  

Define R* as the critical recombination value such that if R > R* the Hardy- 
Weinberg equilibrium ( 1  1) is globally stable, whereas if R < R*, it is not. The 
exact value of R* is not known, although in view of (16) and ( 1  7 )  we must 
always have 

(19) 

R, < R f  (20) 

unless the viability system is symmetric as well as multiplicative i.e., a1 = a3, 
PI =ps. Thus, the Hardy-Weinberg equilibrium becomes locally stable at a 
smaller recombination fraction (R,) than that at which it becomes globally 
stable (R ' ) .  This is contrary to the commonly accepted description of the equi- 
librium behavior of the multiplicative viability model. The way in which this 
comes aboat'is as follows. 

At R = O ,  the stable equilibria are composed of the gametes (AB, ab) or 
(AB, aB, ab) or (AB, Ab, ab)  in &'+ and (Ab, aB) or (AB, Ab, aB) or (Ab ,  aB, 
ab) in &. one from each of &+ and R. Now, over the ranges 0 < R < R,  and 
R, < R < R* denote the two stable equilibria as 

What is demonstrated by our numerical work is that, in fact, 

% ( R )  and $(R) (21) 

to  emphasize their dependence on R. For definiteness, in 0 I R < R,, choose these 
such that D ( 2 )  > 0 and D ( 3  < 0. Since for  R < R, the Hardy-Weinberg point 
(1 1 ) is unstable, with this range of recombination values the domain of attraction 
to x̂  is &+ and to$ is &. The continuity theory (KARLIN and MCGREGOR 1 9 7 2 )  
implies that G(R)  and z ( R )  vary continuously with R in 0 I R < R,. From the 
numerical studies, it is clear that as R increases to R,, except in the symmetric 
case ( Y ~  =,aJ, = p 3 ,  one, but not both of 2 and 2 merges with the Hardy- 
Weinberg point x * .  Suppose for  definiteness that this one is %. Then C(R)  
remains distinct from x* €or the additional recombination range R, 5 R < R*. 
For R satisfying R, < R < R*, 2(R) = x *  so that 

D[x^ (R)]  = D ( x * )  = 0 , 
while D @ ( R ) ]  < 0. It should be noted that for R, < R < R* the domain of 
attraction to x* properly contains &+ while that to 2 ( R )  is a reduced part of 
&. As R increases to R*,  2 ( R )  approaches X* as well, and for R > R* the Hardy- 
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FIGURE 1.--%(R) and ?(R) as functions of R as represented by the disequilibrium. The 
drawing is schematic and not to scale. 

Weinberg equilibrium is globally stable. These movements of G ( R )  and g ( R )  
as functions of R are depicted in Figure 1. At the point R,, the equilibrium, 2 ( R ) ,  
previously stable, changes its role and is represented by the curvex”(R) of unstable 
equilibria that persists until R = R’, when all the equilibria coalesce. 

These remarks are essentially interpretations of the numerical findings. Table 
2 lists the ten fitness matrices whose detailed properties with respect to R follow. 

TABLE 2 

T e n  randomly generated overdominant fitness matrices of ihe form (10) 

Fitness Fitness Fitness Fitness Fitness 
matrix 1 matr ix  2 matrix 3 matrix 4 matrix 5 

ffl 

a.) 

f f 3  

P I  
P, 
P3 

ff1 

a, 

a3 

P I  
Pn 
P3 

0.37788 
0.61941 
0.43919 

0.33845 
0.77882 
0.54932 

Fitness 
matrix (i 
0.75577 
0.99053 
0.9281 1 

0.34715 
0.99135 
0.94399 

0.58472 
0.85739 
0.51495 

0.12073 
0.80629 
0.47801 

Fitneas 
i i idtriY i 
0.26773 
0.48721 
0.38483 

0.13207 
0.73914 
0.38276 

0.22677 
0.67275 
0.33016 

0.13951 
0.92846 
0.18424 

Fitness 
matrix 8 

0.63871 
0.72554 
0.01532 

0.20407 
0.59292 
0.12289 

0.62671 
0.82654 
0.69473 

0.24875 
0.37554 
0.1591 1 

Fitness 
inatiix 9 

0.06077 
0.63215 
0.182,73 

0.58386 
0.94149 
0.43520 

0.35488 
0.8 7 748 
0.4Q923 

0.01092 
0.79654 
0.1 1282 

Fitness 
matrix 10 
0.59953 
0.75542 
0.12276 

0.81754 
0.94925 
0.12866 
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In matrices #3.5,9 the equilibria for  R=O are of category 2-2. Matrices 6 and 8 
are both 3-3, while 1 ,  2, 4, 7, 10 have 2-3 (or 3-2)_/configurations. The two 
critical recombination values R, [from ( 1 6 ) ]  and R [from ( 1 7 ) ]  are listed 
together with our estimate of R* from the numerical results. The values of 
D [ f  ( R )  ] and D [ $ ( R )  ] for the ten multiplicative viability matrices mentioned 
earlier, chosen such that (13) holds, are listed in Table 3. In each case a judicious 
choice of recombination values is reported. In particular, the choices of R are 
refined in the neighborhood of R,. and a close approximation to R* can also be 
extracted. In the third column the values of the mean fitness W [ i ( R ) ]  and 
W [ $ ( R ) ]  are recorded. Of the ten cases, using the terminology of Table 1, three 
were of the two 2-boundary type, five were of the one 2-boundary, one 3-boun- 
dary type and two were of the two 3-boundary type. The type of two-equilibrium 
configuration is listed at the top of each data set. 

TABLE 3 

Numerical resulis for the ten matrices of Table 2 

Fitness matrix #1 (2-3) 

R 
0.0 
0.025 
0.030 
0.03226 
0.03227 
0.03228 

, 0,03229 
0.035 
0.04 

D ( f ( R ) )  
0.241 
0.116 
0.073 
0.034 
0.034 
0.034 
0.034 

0.86E-13 
0.25E-12 

D($(R) )  
-0.2.07 
-4.079 
-0.040 
-0.7E-3 
-0.6E-3 
-0.17E-4 
-0.96E-8 
-0.263-12 
-0.88E-13 

R,  = 0.03227950 R' = 0.034 

W ( f ( R 1 )  
0.338886 
0.327875 
0.325639 
0.324466 
0.324469 
0.324452 
0.324445 
0.324148 
0.324148 

R = 0.48535221 
- 

W ( 2 R ) )  
0.332403 
0.325847 
0.324565 
0.324148 
0.324148 
0.324148 
0.324148 
0.324148 
0.3241 48 

Fitness matrix #2 (3-2) 

R 
0.0 
0.04 
0.046 
0.04873 
0.04874 
0.04875 
0.04876 
0.05 
0.075 

D(" 
0.233 
0.069 
0.042 

0.1E-4 
0.12E-7 
0.6E-10 
0.49E-12 

0.4E-3 

0.22E-13 

D ( h )  
-0.239 
-0.098 
-0.069 
-0.027 
-0.027 
-0.027 
-0.027 
-0.47E-12 
-0.233-13 

R, = 0.04874439 R' = 0.050 

W ( W U )  
0.4321 50 
0.415190 
0.413335 
0.412284 
0.412284 
0,412284 
0.412284 
0.412284 
0.412284 

R = 0.48487203 
- 

W f & W  
0.442418 
0.418243 
0.415276 
0.412762 
0.412752 
0.412743 
0.412733 
0.412284 
0.412284 

Fitness matrix #3 (2-2) 

R D f Z f R ) )  D&W Wf2fR)) W h ) )  
0.0 0.2498 -0.2409 0.335609 0.334272 
0.075 0.152 -0.140 0.288822 0.287684 
0.1 0.099 -0.096 0.273230 0.272404 

-0.001 0.261 31 9 0.261290 0.1 1878 0.005 
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0.11879 0.004 -0.823-3 0.261308 0.261289 
0.11880 0.533.-7 -0.56E- 10 0.261289 0.261289 
0.11881 0.2E-10 -0.2E- 10 0.261289 0.261289 
0.125 0.653-13 -0.66E-13 0.261289 0.261289 
0.15 0.13E-13 -0.13E-13 0.261289 0.261 289 

R, = 0.11879223 R* = 0.11881 R = 0.46272062 
U 

Fitness matrix #4 (3-2) 

R 
0.0 
0.019 
0.02 
0.02044 
0.02045 
0.02046 
0.02047 
0.025 
0.03 

D (W)) 
0.193 
0.039 
0.016 
0.9E-3 
0.4E-3 
0.673-5 
0.2E-7 
0.1 5E-12 
0.733-13 

D ( - ~ R ) )  
-0.239 
-0.081 
-4.058 
-0.040 
-0.04Q 
-0.039 
-0.039 
-0.15E-12 
-0.753-13 

R, = 0.02045804 R* = 0.024 

W(?(R))  
0.224018 
0.220995 
0.220867 
0.220837 
0.220837 
0.220837 
0.220837 
0.220837 
0.220837 

R = 0.49445779 
- 

W ( i ( R ) )  
0.2271 66 
0.221541 
0.221200 
0.221023 
0.221019 
0.221014 
0.221009 
0.220837 
0.220837 

Fitness matrix #5 (2-2) 

R 
0.0 
0.1 
0.125 
0.12916 
0.12917 
0.12918 
0.12919 
0.15 
0.16 

D ( W v )  
0.2479 
0.120 
0.046 
0.004 
0.004 
0.43E-10 
0.2E- 10 
0.18E-13 
0.12E-13 

D($R)) 
-0.2498 
-0.116 
-0.043 
-0.001 
-0.91E-4 
-0.44E10 
-0.2E-10 
-0.18E-13 
-0.12E-13 

W ( f ( R ) )  
0.362315 
0.292469 
0.274856 
0.271 765 
0.271753 
0.271732 
0.271 732 
0.271732 
0.271732 

W ( i ( R ) )  
0.360833 
0.291362 
0.274381 
0.271733 
0.271 732 
0.271 732 
0.271732 
0.271732 
0.271 732 - 

R, = 0.12917058 R* = 0.12918 R = 0.46546190 

Fitness matrix #6 (3-3) 

R 
0.0 
0.001 
0.002 
0.00251 
0.00252 
0.00253 
0.00254 
0.003 
0.004 

D (.XR)) 
0.070 
0.062 
0.052 
0.046 
0.046 
0.046 
0.046 
0.039 
0.61E-I2 

D ($ (RI )  
-0.017 
-0.01 1 
-0.005 
-0.993-4 
-0.1E-4 
-0.15E-9 
-0.3E-9 
-0.29E-11 
-0.61E-12 

W ( W ) )  
0.886473 
0.886325 
0.886153 
0.886054 
0.886052 
0.886050 
0.886048 
0.885945 
0.885646 - 

R, = 0.00252002 R* = 0.004 R = 0.49744785 

W ( i ( R ) )  
0.885703 
0.885673 
0.885650 
0.885646 
0.885646 
0.885646 
0.885646 
0.8856% 
0.885646 

Fitness matrix #7  (2-3) 

R D (ri.(R)) D (: ( R ) )  W(” W ( h )  
0.0 0.239 -0.182 0.231549 0.221234 
0.035 0.124 -0.055 0.219373 0.215693 
0.04 0.095 -0.029 0.217502 0.215047 
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TABLE 3-Continued 

0.04352 o.ofj4 -0.13-3 0.21 6001 0.214786 
0.04353 0.064 -0.2E-4 0.215996 0.21 4786 
0.04354 0.064 -0.68E-10 0.215991 0.214786 
0.04355 0.064 -0.3E10 0.215986 0.241 786 
0.05 0.933-13 -0.923-13 0.214786 0.214786 
0.075 0.1 8E-13 -0.18E-13 0.214786 0.214786 

R,  = 0.04353096 R* = 0.049 R = 0.48696445 
- 

~~ ~~ 

Fitness matrix #8 (3-3) 

R 
0.0 
0.03 
0.035 
0.03826 
0.03827 
0.03828 
0.03829 
0.04 
0.046 

D(Z(R)) 
0.199 
0.061 
0.040 
0.021 
0.021 
0.021 
0.021 
0.333-12 
0.833-13 

R, = 0.03827367 

D ( h ) )  
-0.096 
-0.030 
-0.016 
-0.1 E-3 
-0.2E-4 
-0.84E-9 
-0.4E-10 
-0.333-12 
-0.84E-I3 

R* = 0.040 

W ( 2 f R ) )  
0.254262 
0.248240 
0.247320 
0.246663 
0.246661 
0.246658 
0.246656 
0.246380 
0.246380 

U 

R = 0.49013333 

W(B(R))  
0.249568 
0.246925 
0.246542 
0.246380 
0.246380 
0.246380 
0.246380 
0.246380 
0.246380 

Fitness matrix #9 (2-2) 

R 
0.0 
0.05 
0.075 
0.08857 
0.08858 
0.08859 
0.08860 
0.1 
0.125 

D ( 2 f R ) )  
0.2496 
0.153 
0.084 
0.53-3 
0.20E-3 
0.433-7 

0.41E-13 
0.13E-13 

0.4E-10 

D f B f R ) )  
-0.2486 
-0.166 
-0.102 
-0.020 
-0.018 
-0.01 8 
-0.018 
-0.393-13 
-0.13E-13 

R, = 0.08858629 R* = 0.098 

W ( X R ) )  
0.326784 
0.298003 
0.284717 
0.278557 
0.278557 
0.278557 
0.278557 
0.278557 
0.278557 

R = 0.47786037 
U 

W(.kR))  
0.332388 
0.302759 
0.287756 
0.278892 
0.278881 
0.278870 
0.278859 
0.278557 
0.278557 

Fitness matrix #10 (2-3) 

R 
0.0 
0.018 
0.019 
0.01978 
0.01979 
0.01980 
0.01981 
0.02 
0.025 

D(?(R)) 
0.185 
0.126 
0.121 
0.119 
0.119 
0.119 
0.119 
0.118 
0.093 

D I h )  
-0.029 
-0.004 
--0.001 
-0.3E-4 
-0.1E-4 
-0.89E-8 
-0.1E-9 
-0.36E-11 
-0.1E-12 

R, = 0.01979474 R* = 0.040 

W ( z ( R ) )  
0.545625 
0.536153 
0.535618 
0.535198 
0.535193 
0.535188 
0.535182 
0.535080 
0.532259 

R = 0.48927793 
- 

W df R ) )  
0.527422 
0.526828 
0.526820 
0.526818 
0.526818 
0.526818 
0.526818 
0.526818 
0.526818 
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DISCUSSION 

Although no formal stability analysis of the equilibria in &+ and &- has 
ever been performed, it has previously been assumed that the interval of recombi- 
nation in which these two equilibria were locally stable was R < R,. We now 
know that this is not the case. The fact that D=O and D#O can be simul- 
taneously locally stable was determined by FRANKLIN and FELDMAN (1977) for 
a class of viability matrices involving five parameters. The classical multipli- 
cative viability model involves four parameters after each locus is normalized to 
the heterozygote and is endowed with the same property. The phenomenon has 
occurred in every example chosen, except those in the symmetric case a1 =a3, 
p1=Pp,, and for which the local stability conditions of D=O and D#O are 
known not to overlap. It therefore appears that the result can be attributed to 
asymmetries in the viability system producing disequilibria in &+ and 8- of 
different magnitudes. In  the FRANKLIN-FELDMAN (1977) model, the two equi- 
libria initially (i.e., at R = 0) had disequilibria of the same sign, but different 
magnitudes. Further, after one of the D#O equilibria had emerged with the 
D =  0 point, the other D # 0 equilibrium remained stable for all R values to 
R = 1/2. In the present multiplicative case, at R = R* all three equilibria coalesce 
into x*. 

Certain observations on the equilibria in &+ and c/< are worth making. At 
R = 0, a stable equilibrium in a %boundary tends to have a smaller D magnitude 
than one in a 2-boundary. In all of our runs in which at R = 0, there was one 
stable 3-boundary equilibrium together with a stable 2-boundary equilibrium; 
the former had the smaller D magnitude and also was the equilibrium that merged 
at R = R, with the Hardy-Weinberg point. It is tempting to conjecture that this 
is a general phenomenon. i.e., that the point with the smaller ]Dl at R=O is that 
which meets X* first, However, with two 2-boundary equilibria, this is not neces- 
sarily the case (examples 3,5,9).  Always in our runs that point with the smaller 
W(x)  at R = 0 met X* first. 

The interval of overlap of stability of a D # 0 with the D = 0 equilibrium is 
generally largest when at R = 0 the stable equilibrium configuration is one 
3-boundary and one 2-boundary. In our examples the interval [R,,  R*]  was 
smallest with two 2-boundaries as the initial configuration. The difference in 
magnitudes of the initial D values is a good gauge to the relative size of the 
interval of overlap. 

The value R, where the central equilibrium first becomes stable depends on 
the initial ( R  = 0) equilibrium configuration. Thus, when the stable points at 
R = 0 are in the 3-3 or 3-2 configuration. R, is in the small to moderate range, 
usually between 0.005 and 0.05. When the stable equilibria at R = 0 are in the 
2-2 configuration, R, is in the moderate range, usually between 0.05 and 0.15. 
Obviously the strength of selection is important in determining Ro. 

Along each curve 6(R) and fix(R), ID[^x(R)] 1 and ID[$(R)]  I are invariably 
strictly decreasing to zero. Similarly, the mean fitness W [ 9 ( R ) ]  and W [ P ( R ) ]  
are decreasing functions of R. The fact that for general two-locus viability 
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TABLE 4 

Comparison of multiplicative and symmetric viability models 

hlultiplicative viabilities (10) with (13)  Symmetric viabilities (9) 

Existence of Hardy- Equilibrium (1 1 ) always exists x = (1/4,1/4,1/4,1/4). 
Weinberg 
polymorphism 

equilibrium always exists 

Tight linkage 
Stability of the 
Hardy Weinberg 
equilibrium 

Loose linkage 

Existence of 
equilibria with 
D* # O  

Never stable for R = 0, therefore 
not stable for R small and 
positive 

Always stable for moderate to 
free recombination ( R  > R,). 
Globally stable for R > R'. 

Always two distinct stable 
equilibria for 0 < R < R,. One 
is stable also for R , < R < R'. 

Can be stable for R = 0. 
If so, then stable 
for all 0 5 R 5 0.5. 

Usually stable for free 
recombination but, depending 
on fitness values, may not 
be stable for any R. 

If the Hardy-Weinberg equi- 
librium for R = 0, then 
usually two stable equilibria 
with D # 0 exist for R small. 
These are not necessarily 
stable throughout their range 
of existence, which is comple- 
mentary to the range of 
stability of D = 0. 

Conimen t i  Symmetric viabilities 
The nonHardy-Weinberg 
equilibria can, for some fitness 
arrangements, be stable over 
two disjoint segments 
O <  R <  R,, R, < R <  R,= R* 
(see EWENS 1968; KARLIN 
and FELDMAN 1970). 

models the mean fitness W [ G ( B ) ]  at a stable curve is not always decreasing 
as R increases is noted in KARLIN and CARMELLI (1975). although W [ s ( R ) ]  
must decrease for R sufficiently small. 

I t  is interesting to compare properties of the stable equilibria in the general 
two-locus, two-allele multiplicative viability model ( 10) with those of the 
symmetric viability system (9). This is facilitated by Table 4. 

The authors are indebted to BARBARA ANDERSEN for excellent computational assistance. 
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