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ABSTRACT 

This paper proposes a general model for  interference in genetic crossing 
over. The model assumes serial Occurrence of chiasmata, visualized as a re- 
newal process along the paired (or pairing) chromosomes. This process is de- 
scribed as an underlying Poisson process in which the Ist, n -/- Ith, 2n + Ith, 
etc., events are to be interpreted as realized chiasmata. Chromatid interfer- 
ence is described in terms of the probabilities that two successive chiasmata 
involve two, three or four different chromatids. Several characteristics of this 
model, e.g., the cytological and genetic mapping function and the density of 
chiasmata along the chromosomes, are discussed. Some aspects of other inter- 
ference models are briefly discussed. 

WO types of interference are to be distinguished in genetic crossing over. 
( 1 ) Chiasma interference refers to the influence of a given chiasma on the 

probability of occurrence olf another one in its neighborhood. Positive chiasma 
interference reduces this probability. In  the absence of chiasma interference, the 
formation of chiasmata can be visualized as a Poisson process along the chromo- 
some. A powerful approach to interference theory is indeed by describing chiasma 
occurrence as a renewal process that starts at a fixed point on the chromosome. 
Chiasma interference is then incorporated by assuming a distribution of inter- 
cept lengths that is different from the negative exponential distribution (as it is 
in the Poisson process). (2) Chromatid interference refers to the configuration 
of pairs of successive chiasmata. Pairs of successive chiasmata may be of three 
types, i.e., two-strand doubles, three-strand doubles and four-strand doubles (see 
Figure 1). If the involvement of chromatids in any chiasma is a matter of pure 
chance, the frequencies of the two-, three- and four-strand doubles are 0.25, 0.5 
and 0.25, respectively. Any deviation from these relative frequencies can be 
referred to as chromatid interference. 

Mast of the presently existing interference models deal with a renewal process 
along a given chromatid. The nature of such a process is determined by both 
chiasma and chromatid interference. Thus, if the probability density function 
(pdf) of intercept lengths along a given chromatid contains a single parameter, 
the model does not distinguish between the two types of interference. The theory 
developed by OWEN (1950) is based on such a model. 

The idea of chiasma formation as a serial process (a renewal process) is from 
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FIGURE 1.-The three types of pairs of chiasmata: (a) two-strand double; (b) three-strand 

double; ( c )  four-strand double. 

MATHER (1936), who also introduced the concept of a “differential distance” 
(see below). The theory of renewal processes was applied by OWEN only to the 
process along a given chromatid probably because at that time virtually no 
reliable data were available on chiasma densities. Correctness of OWEN’S (1950) 
model could at that time be tested only by means of comparing crossover data 
obtained from multiple backcross experiments. Although the chiasma density 
can readily be obtained from OWEN’S theory, there was apparently no need for 
doing so. During the last decade, however, data on chiasma densities along chro- 
mosomes have become available (HENDERSON 1963; Fox 1973; HULT~N 1974). 
Since the pattern of chiasma density is affected only by chiasma interference, 
there is now need for a model that incorporates both types of interference in such 
a way that they are “separable”. With such a model, the chiasma density and 
the prediction of genetic map distances between gene loci from recombination 
frequencies can be separately analyzed. 

The aim of this gaper is to analyze a model that accounts for both types of 
interference, each described by its own parameter. The approach is to consider 
first the process of occurrence of chiasmata as such, i.e., without considering the 
involvement of chromatids. Chiasma interference is reflected by the character- 
istics of this process. The process along a given chromatid is connected to1 the 
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“main process77 by means of a simple probability law that describes the degree of 
chromatid interference. This permits a separation of the two types of interference. 

ASSUMPTIONS A N D  DEFINITIONS 

Considering the occurrence of chiasmata as such, the folllowing assumptions 
are made: (1) The process of chiasma occurrence starts at a fixed point (the 
centromeric or telomeric end of a chromoisolme arm). (2) The distance, X , ,  
between this starting point and the first chiasma (the differential distance) has 
pdf, f1 (z) . (3) The distances between subsequent chiasmata, X, ,  X3,  etc., (the 
interference distances) are independent and identically distributed with pdf, f (z) . 

The independence of subsequent intercept lengths implies that we are con- 
sidering single chiasma interference. 

Positive chiasma interference operates such that the probability of occurrence 
of a chiasma is reduced in the neighborhood of a given one. With sequential 
formation of chiasmata, this means that only the first chiasma to be formed is 
not subject to interference; it is folrmed without restriction. Therefore, if chiasma 
interference exists, the differential distance and the interference distance will not 
be identically distributed [f, (x) + f (x) 1. 

F ,  (1) = J f l  (x) dx 

F ( t )  = .f f ( z )  dz , thecdf of theinterferencedistance; 

Y (to,t) 

We further introduce the following variables: 
t 

, the cumulative distribution function (cdf) of the 
differential distance; 0 

I 

0 

, the probability of at least one chiasma in the interval 

, the mean number of chiasmata in the interval (to,to+t) 

, the recombination fraction between two gene loci at to- 
and to+t 

(to, to+t) 

x (to,t) 

r(toJ> 

, the mean number of crossovers between these two loci; 
z refers to crossovers involving a given chromatid. 

The quantity z will be referred to as genetic map distance, whereas z will be 
called cytological map distance. The (parametric) relation between +(to$) and 
z(to,t) is known as the genetic mapping function (@). The relation between 
y ( to,t) and z ( to$) will be called the cytological mapping function (cmf) . Absence 
of chromatid inter€erence means that a given chromatid has prolbability 0.5 of 
being involved in any chiasma, irrespective olf involvement in preceding ones. 
Therefore, in tlie absence of chromatid interference we have 

r ( to , t )  = y(to,t)/2. 

z(to,t) = z(to7t)/2, (1) 

Y = $(XI, (2)d 

Since a chiasma involves one of the two chromatids per homologue, 

irrespective of the degree of chromatid interference. Thus, if a cmf reads 
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the transformation into the gmf, gives (assuming absence of chromatid inter- 
ference) 

In HALDANE'S classical model (i.e., a Poisson process along the chromosome, 
I = $(22)/2. (3) 

we have 

so that 

A renewal 
stationary. 
which will 

r =  (1-e-'")/2 . 
process that started long before it is first observed is approximately 
Stationary processes have a number of useful characteristics, some of 
be used below. For a stationary process, we will write 

x8 ( t )  = lim x( to , t )  , and 

ys( t )  = lim r(t07t) . 
to-+ m 

t"-t m 
The variable 

is known as the renewal density, or, in our terminology the chiasma density. 
Referring to a textbook on (continuous time) stochastic processes, the follow- 

ing results will be used (cf. Cox 1962 for a monograph on the subject). 

where p is the mean interference distance, i.e., 

p =  J t f ( t )  d t  . 

x,(O) = 0, ( 5 )  leads, via (4), to 

lim t - t  5 h( t )  = l / p ,  ( 5 )  

m 

n 
Since 

ZS(t) = t / p .  (6) 

[ l -F ( t ) I /p  . 
The distance to the first event in a stationary process has the pdf 

This pdf directly leads to 

If we standardize the pdf f ( t ) ,  such that p=l, the cmf ( 7 )  becomes 

y s ( s )  = (1 - F ( u ) }  du . (8) 
We will write 

m 
f * ( s )  = x { f ( s ) }  -= f e-Sx f ( s )  dx 

for the Laploce transform of the function f ( x )  with respect to the argument x. 
The usefulness of Laplace transforms in renewal theory is obvious because the 
transform of the pdf of the sum of n-intercept lengths simply is the n-fold convo- 
lution of the transform of the pdf of a single intercept length with itself. We will 
use the following results. 

f l*  (SI x { h ( t ) }  = h * ( s )  =--- 
1 -f*(s) 

(9) 
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In ( 1  1 ) , N t  is the number of events in the interval (0,t). Formal inversions of 
expressions (9) to ( 1  1) yields explicit expressions for h( t )  , x( 0,t) and $ ( t )  . We 
will use I) ( t )  for calculation of the variance of the number of chiasmata in (0,t). 

CHIASMA INTERFERENCE 

Absence of chiasma interference corresponds to a Poisson process along the 
chromosome, or, alternatively, a negative expolnential pdf for the interference 
distance. Chiasma interference can be described by means of the instantaneous 
rate of occurrence, + ( t )  (the “age-specific failure rate” in terms of general 
renewal theory), as a function of the distance to the last chiasma. In a Poisson 
process 4 ( t )  is constant; when + ( t )  is increasing (decreasing) chiasmata are 
inhibited (enhanced) near a given one. The relation between +(t )  and the pdf 
of intercept lengths, f ( t )  , is 

Thus, + ( t )  uniquely determines f ( t )  . One way to formulate a mo,clel of chiasma 
interference is to start from a given function, + ( t ) .  This approlach was first 
applied by FISHER, LYON and OWEN (1947). In  general, a more-or-less arbitrary 
choice of + ( t )  , such as hyperbolic or exponential curve, leads to a complicated 
pdf. Since f ( t )  and + ( t )  are mathematically equivalent, one can equivalently 
set up a model by choosing an adequate form of the pdf, preferably a family that 
represents some generality and yet is relatively simple, so that it allows further 
analysis of the model. Such a pdf is the gamma density 

(12) f ( t )  =hntn- le -x t /  (n-l)! , t > O  

For integer values of n, this is the pdf of the distance to the nth event in a Poisson 
process with intensity h. For n=1, there is no chiasma interference; for n > 1 
(< 1) interference is positive (negative). For integer values of n, the analysis 
of the model is greatly simplified because the process can then be visualized as 
an underlying Poisson process in which after an event the next n-I events are 
suppressed; every nth event in the underlying “silent” process is counted as a 
realization. The disadvantage of the restrictioln ( n  taking only integer values) 
is that negative chiasma interference is then not covered by the model. However, 
negative chiasma interference seems to be rare in nature. Only in the mold 
Aspergillus has it been demonstrated in a limited number of crosses; cf. FINCHAM 
and DAY 1963. Notice that chiasma interference as such can be inferred only 
irom either direct cytological observations or from tetrad analysis.) Therefore 
we can use the pdf (12) with the restriction of n being an  integer, without great 
loss of generality. 
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The most important characteristic of the distribution of intercept lengths is its 
variance relative to the mean; the smaller the ratio variance : mean, the stronger 
the interference is. Standardization of (12) to p=1 is achieved by putting X=n. 
Then, the variance equals l / n ,  so that, by varying n, almost any variance can 
be obtained. 

Since we assume that the first chiasma is formed without restriction, we put 
n=l (no interference) for the pdf od the differential distance. We then have as 
our model 

f l ( t )  = kXt 

f ( t )  =Xntn-le-ht/ (n-I)! 

f l ( t )  = ne+ 

f ( t )  = r ~ t " - l e - " ~ /  ( n - l ) !  

t > O .  

or, after standardizing the mean interference distance to unity, 

t > O .  ( 1 3 )  

We now have a model with a single parameter (n )  that describes the degree 
of chiasma interference. With this model the occurrence of chiasmata can be 
visualized as an underlying Poisson process in which the events with index 
numbers 1,  n+l, 2n f1 ,  etc., are to be interpreted as chiasma. Further consider- 
ations are based on this simple model. 

AnaLysis of the model 
With the model ( 13) we have 

m n f l *  ( s )  = j e-st n e-nt dt = - 
n s f n  ' 

and 
m 

( 1 5 )  
n n  

f * ( s )  = j {e-stnntn-l e*t/ (n- - l ) ! }d t= (-) . 
0 s f n  

Inversion of the Laplace transforms (9) to ( 1  1 )  is straightforward, because they 
are easily written as partial fraction expansions. The probability of at least one 
chiasma, y( to, t ) ,  is most easily obtained by a direct method. 

The chiasma density 
Since 

h*(s)  = f l * ( S )  [cf., (9)] , 
1 - f * ( s )  

the partial fraction expansion is of the form 

where the sk are the roots of the equation f *  (s) = 1 ;  i.e., the sk satisfy 
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For the coefficients AI, in (16), we find 
n 

Inversion of (1 6) thus yields 
%-1 

h(t) = 2- exp(tsk) . 
k=n 

The roots s k  are found fro” (1 7) : 

-1) , k =  0,1, . . . ,n-1 . 

or 
s k  = n exp ( 2 ~ k i / n )  - n 

=ncos  (%k/n)  - n + i n s i n  (%k/n) , k=O,I , .  . . ,n-I. (19) 
It is seen that complex roots occur in conjugate pairs. Writing sk=a+ib, Sk =a-ib 
for such a pair, we find that the contribution of a pair of complex conjugates in 
(18) equals 

e ( u + i a )  t + e‘u-izJ) t 

) = .at (@t + &bt 

= 2 eat cos bt 

a=Re(sk )  =ncos (2~k /n )  - n  , 

b = Im(sk) = n s i n ( 2 ~ k / n )  . 

. (20) 

and (21) 

Here 

As an  example, consider the case n=6. Equation (1 7) then has roots 
so = 0 

= -3 * i 3 q 3  , 

s ~ , ~  = -9 -C i 3 q 3  , 
s,=-12 . 

Substitution into (18), taking into account (20), yields 
h( t )  = 1 + 2 (e-3t + e-9t) cos 3 v T +  c 1 2 t  . 

The chiasma density, h (t) , has been ploltted for several values olf n in Figure 2. 
It is seen that chiasma density has a peak [h(O) = n] at the starting point and 
that, in general, it shows a damped oscillation towards its stationary value of 
unity. A wavy pattern of chiasma density, with a peak at one end of the chromo- 
some arm has been observed in several organisms: Trillium ( NEWCOMBE 1941 ) , 
a locust (HENDERSON 1963; Fox 1973), man (HULT~N 1974) and the mouse 
(DE BOER and STAM, in preparation). It probably is a widespread characteristic 
of chiasma occurrence. 

It should be noted here that even in the absence of interference, chiasmata 
might occur in clusters, in the sense that the chiasma density is not uniform. 
Such a nonuniformity, then, merely is the reflection of and “cod” regions 
along the chromosome. In the model we use here it is assumed that the instan- 
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FIGURE 2.-Chiasma densities ( h )  along the chromosonie for different intensities of chiasma 
interference (n). 

taneous rate of occurrence depends only on the distance to the previous chiasma; 
it does not depend on the position oln the chrolmosmne. Notice that the existence 
of “hot” and “cool” regioas does not alter the mapping functions, if we think of 
a “hot spot” as being a region where the axis along which the process proceeds is 
contracted. (I owe this point to an anonymous reviewer.) 

The mean number of chiasmata 

in the interval (to, t o f t )  we simply have 

because means are additive. Thus, knowledge of z(0, t )  suffices for the calculation 

For the mean number of chiasmata (the cytological map distance), x ( t o , t ) ,  

Z ( t 0 , t )  = s(O,to+t) - x(0,to) (21b) 

of z (to,t) . 
We have [cf. (IO)] 

Here s=O is a double root of the equation s{ 1-f* (s) } = 0 
The partial fraction expansion of (22) takes the form 

where the s k  are the non-zero roots of f*  (s) = 1 
Substituting (14) and (IS) it is found that 

A 2 = 2 ,  and 
A,= (n-l)/2n . 
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The coefficients B k  are found to be 

-n 

=sI,-l (A) = sk-l , k = 1,2,. . . ,n-1 . 
Sk + n 

Inversion of (23) thus yields 
n-l exp ( S k ' t  ) 

x ( 0 , t )  = t + (12-1) (2n)-l+ z 
sk 

k=1 

where the sk  are given by ( 1 9 ) .  Writing, as before, s k  = a + ib, Sk = a - ib for a 
pair of complex conjugate roots, the contribution to (24) of such a pair equals 

(25) (acos bt + b sin bt) . 

As an example, consider again the case n = 6; substitution of (21a) into (24) , 
and taking into account the contribution of a complex conjugate pair (25) ,  one 
obtains 

x (0,t) = t + - - - clzt + - e-3t (cos 3 d 3  + d 3  sin 3 t q 3 )  

2 eat 
a2 + bz 

- -~ 

5 1  1 
12 12 6 

1 
18 

+ - e 4  ( 3  cos 3 d 3  + d 3  sin 3 d 3 ) .  

The distribution of the number of chiasmata 
Let p h ( t o , t )  be the probability of k chiasmata in the interval (to, to+t). Let 

further 41 ( t )  be the probability of I events in the underlying Poisson process in 
an interval of length t ,  i.e., 

We now define 38Tc(t) as the probability of k chiasmata in ( O , t o ) ,  such that after 
the k-th chiasma i unrealized events have occurred in the underlying process. 
This state of affairs corresponds to a number olf 1 + (k-1)  n + j events in the 
underlying process (see diagram below) . 

qz(t)  =e+t ( n t > l / l !  (26) 

Events in Poissonprocess, 1 2 3 . .  n+l . . .2n+l . . (k-l)n+l . . . (k-l)n+l+j 
Chiasmata 1 2 3 k 

Thus, 

, j = O  
Notice that j O , ( t )  = {"" 
because with no chiasmata in (0,t) there can be no unrealized events in the 
underlying Poisson process. Now suppose that i unrealized events have occurred 
after the lth chiasma in ( O , t o )  ( D O ) .  Then k chiasmata occur in (to, t o f t )  if the 
number of events in the underlying process in (to, t o f t )  equals one of the values 
n-i+(k-l)n, n--j+(k-l)n+l, . . . n--j+(k-l)n+n-1. The total probability 

, i > O  
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of k chiasmata in (to, to+t), together with I chiasmata ( D O )  in (0, to)  thus equals 

If l=O, this becomes 
111. 2 0 

kn 

o e o ( t o )  m=1+ 2 (k-1)n q m ( t )  - 
w 2.0 

Summing over all possible values of I ,  one obtains 

where ql ( t )  and j O l ( t )  are given by (26) and (27), respectively. In particular, 
the probability of no chiasmata in (to, to+t) is 

CO n-1 n-i-1 

~ . ~ ( t ~ , t )  =qo(to+t) + B j e z ( t o )  m=0 2 qm(t) . (29) 
2=1 3=0 

Expressions (28) and (29) are useful for numerical evaluation. 

The cytological mapping function 
Equations (21b), (24) and (29) enable tabulation of x ( t o , t )  and y(to,t)  

[= l--p.o(to,t)] for a given value of n. The relation between x and y? i.e., the 
cytological mapping function, has been plotted in Figure 3 for several values 
of n and to. For each value of II, two different values of to were chosen, i.e., to = 0 
and a value corresponding approximately to x(O,to) = 0.5. In the latter case, 
segments are measured from a point where cytollogical map distance (measured 
from the starting point) approximately equals 0.5. It  is seen that, especially for  
large values of n, the cmf may seriously depend on the value of to. In other words, 
the relation between cytological map distance and probability of being “bound” 
(i.e., having at: least one chiasma) varies with the position of the segment. 

Models for chiasma interference that do not take into account this position 
dependency have been formulated by BARRAT et al. (1954) and STURT (1976). 
In  these models the occurrence of chiasmata can be regarded as a stationary 
renewal process. It is therefore worthwhile to consider here also the cmf of the 
process in stationary phase; these can then be compared with the cmf‘s corre- 
sponding to BARRAT’S and STURT’S models. Application of (8) directly leads to 

e-nx n-1 (n-k) ( n z )  y s ( s )  = 1 -- z 
k! k=O 

7 

(cf., Cox 1962, p. 39). This function has been plotted for several values of n in 
Figure 4. 

The variance of the number of chiasmata 
In  cytogenetics the ratio, R, of the mean to the variance of the number of 

chiasmata is often used as a measure of interference (see SYBENGA 1975 for 
several examples). In  the absence of chiasma interference ( n  = 1 in our model), 
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FIGURE 3.-Cytological mapping functions for nonstationary processes. to is the point from 
which segments a r  measured. 2, = a corresponds to a point where the average number of chias- 
mata, measured from t = 0, approximately equals 0.5. (n = parameter of chiasma interference; 
z = mean number of chiasmata; y = probability of at least one chiasma.) 

the number of chiasmata in any segment is Poisson distributed; thus, R equals 
unity in that case. With positive interference, chiasmata are more evenly dis- 
tributed over single chromosomes, resulting in a decrease of the variance relative 
to the mean, i.e., R>1. In order to have an impression of the value that R may 
take in our model, we calculate 
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FIGURE 4.-Cytological mapping functions for stationary processes. n = parameter of 
chiasma interference; z = mean number of chiasmata; y = probability of at least one chiasma.) 

a2( t )  = +(t)  - x ( 0 , t )  - (z(0,t))' . 
From this 

is calculated. 
R=x(O,t) / v ' ( t )  

The Laplace transform of + ( t )  is [cf. (1 1) ] 

The equation s{ 1-f* ( s ) } ~  = 0 has roots s=O of multiplicity 3 and n-1 roots of 
multiplicity 2 that satisfy (1 7),  so that the partial fraction expansion of (32) 
takes the form 

(33) 
A B C R--l 

S3 s2 
I)*(S) =-+-+-+ z { 

k 1 1  

Inversion of (33) gives 

Straightforward application of the rules for determining the coefficients in a 
partial fraction expansion yields 

A = 2  
B = 2  
C = (n-1) (5n-1) / 6n' 
Dk= 2 (,+-) 1 1  

Eh = - 2 (1 ----) 1 1  
sk  

s k  n Sk 

(35) 
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The contribution of a pair of complex conjugate roots to (34) is found to be 
a cos bt + b sin bt cos bt 

4 te" t  { a2+b2 +-I n 

} (36) 
4 eat 

a2 + b2 
(a2 - b2) cos bt + 2ab sin bt a cos bt + b sin bt - 

a2 + b2 n -- { - 

where a and b are given by (21 ) . Using (24) and (34) to (36) , I have produced 
graphs of the ratio R against the mean in Figure 5. It is seen that R may vary 
abruptly when n is large. Variance estimates from cytological observations are 
usually inefficient, and, besides, they often contain an unknown between-chromo- 
some component. Taken together with the fact that R may vary widely with the 
mean, estimates of R must be considered of little value as to the information they 
provide on chiasma interference. 

R 

26 

25 

24 

23 

22 

2 l  

2c 

0 1 2 
X 

FIGURE 5.-The ratio mean : variance (R) plotted against the mean (z) for different values 
of n. 
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The segmental calculus 
In this section I will indicate how the probability distribution plc ,..,k ( t l , . . , tr) ,  

i.e., the probability that kl,..,kr chiasmata occur in subsequent segments of 
lengths tl,..,tr, can be obtained. 

Analogously to j e k ,  (tl) we define j e k L , k ,  ( t l , t z )  as the probability that in the 
adjoint segments ( O , t , )  and (t l , t l+tz) k, and k, chiasmata occur, such that after 
the k,-th chiasma j unrealized events occur in the underlying Poisson process. 
Then, obviously, 

(37) 
We will call the (column) vector with elements o ~ ~ l ( t ~ ) , l ~ ~ l ( t l ) ,  . . , w l e k , ( t l )  

the state vector of order 1, denoted by Similarly the state vector of order 2, 
e ( - )  has elements o & _ . k - ( t l , t z ) ,  . . ,n-lek , k _ ( t l , t , ) .  The state vectors of increasing 

~r 

n-1 

]=U 
plol,. . ,X (11, , ti) = 2 fiekl. . . , k r ( t l r  - * , tc)  * 

d recursively as follows. First suppose k1>0; tl 

. . .  

. . .  

or, in shorthand notation 

Similarly, 

The matrix to be inserted for the ith segment, k i C t i ,  is called the "segmental 
matrix" (cf. BAILEY 1961). Evidently, elements q l ( t )  with Z<O must be taken 
identically zero. Next, consider the case kl=O, kz>O. Then, the right-hand side 

e ( 2 )  = k 2 c t 2  a e(1) . 

= k , C t ,  ' 6") = k , , C t , ,  * k 2 C t ,  . 0'') . 

0 : : 01 10 
. . . .  
o . . o  0 

0 O 1  

Fo,mes 

0 o . . o  
q o ( t 2 )  0 . . 0 

. . .  

. . .  
0 o . . o  

(39) 

. (40) 
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Denoting the three types of segmental matrices in (38), (39) and (40) by k,Ct,, 

k,Dt, and Et, ,  respectively, we have the following rule. The matrix k,Ct ,  is 
inserted if the first chiasma occurs before the i-th segment; k,Dt, is inserted if 
the first chiasma occurs in the i-th segment and Et ,  is inserted if the first chiasma 
occurs after the i-th segment. The first segment can be considered as being pre- 
ceded by a segment with no chiasmata, which corresponds to the state vector 
V’ = (1,0, . . ,0) . So if we post-multiply by V ,  the appropriate segmental matrix 
for the first segment can be inserted (being either klDtl or Et,) .  

Chromatid interference 
Chromatid interference can be described by considering pairs of subsequent 

chiasmata, which may be of three possible types, viz., two-, three- and four- 
strand doubles (cf., (Figure 1). Let the probabilities of these types be U, U and w, 
respectively. For simplicity we will assume that these values do not depend on 
the distance between the successive chiasmata of a pair. (This assumption may 
be an  oversimplification; the effect of dependency olf U, U and w on the distance 
is discussed later on). It can be shown ( WEINSTEIN 1958) that tlie probability, r, 
of a given chrolmatid being involved in an odd number of chiasmata ( r  is the 
recombination frequency) is given by 

m 

r(to,t) = (1 - p.o(to,t) - h=l akP.zk(to,t)) / 2  . (41 1 
where a! = u-w and p.3 (to,t) is the probability that the interval (to,to+t) con- 
tains j chiasmata as such. (Expression (41) has recently been derived anew by 
STURT and SMITH 1976). Equation (41) shows that recombination is affected by 
chromatid interference only if the latter is such that U # w. For this reason we 
will call a!=u-w the parameter of chromatid interference. The distribution 
p.k(to,t) is given by (28). The genetic map distance simply equals half the 
cytological map distance: 

(42) 

The genetic mapping function is given by the (doubly) parametric relation 
between r(to,t) and z(to,t). Using (24), (28), (41) and (42), r(to,t) and z(to,t) 
can be tabulated for any combination ob n and a! (i.e., chiasma and chromatid 
interference). Before considering the behavior of the gmf in the general case 
(arbitrary values of n and a), it is worth paying attention to a few specific combi- 
nations of the two types of interference. 

Absence of both chiasma and chromatid interference (n=l;  ,=O) 

z(to,t) = x(to,t) / 2 * 

This  is Haldane’s classical model with 

P.k ( to,t) = Ct tk / k !  and 
x(to,t) = t . 

Substitution into (41) leads to Haldane’s gmf: 

r(z;to) = (1 - e-*$) / 2  . 
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Absence of chromatid interference (n>l ;  a=O) 
In this case (41) reduces to 

r(to,t> = (1 - p.o(to,t) 1 / 2 , 
whereas z( to , t )  must be evaluated as indicated above. 

Absence of chiasma interference (n=1; -1la<l ;  a#O) 
With n=1, we again have 

Substitution into (41), and remembering z ( t )  = 1/2t for this case, yields 
P . k ( t 0 , t )  = e-t 2k / k! . 

Z( t0 , t )  = t /2  
For d o ,  (43a) can be written as 

so that the gmf becomes 

For a>O, the gmf can be written as 

For any value o€ a, except a=1, the limiting value of r (as z tends to infinity) 
equals 0.5. With a=l (corresponding to the hypothetical case that all chiasmata 
of a chromosome pair involve the same pair of chromatids), (45)  becomes 

r ( z ; to )  = (1 - e-4z) / 4  . 

r(to,t)  = { I  -e-tcos ( t l a l x ) } / 2  , 

r ( z ; to )  = (1 - e-zz cos (2zlaj1/)} / 2  . (44) 

r ( z ; t o ) = { l  -e-z2cosh ( 2 2 & ) } / 2  . (45) 

The limiting value of r then equals 0.25. 
For a<O (i.e., more four-strand doubles than twocstrand doubles), the recombi- 

nation fraction rises above 0.5; there is a damped oscillation towards the limiting 
value 0.5. 

Both chiasma and chromatid interference (n > 1 ; 
For this general case, I applied numerical evaluation of (41) and (42) to pro- 

duce graphs of the gmf. These are shown in Figure 6 (all distances measured 
from to=O).  It is seen that a negative value of a always predicts a recombination 
frequency of over 50% for certain chromosome regions. Since these have only 
rarely been found in genetic experiments (see OWEN 1950 for a classic example), 
this type of chromatid interference probably plays a minor role in nature. With 
positive values of a, recombination frequency never exceeds 50%, but it does not 
necessarily always increase with map distance. Crossover data that are incon- 
sistent with respect to gene order (as has been found in fungi) could possibly 
result from this type of chromatid interference. Another important feature of 
positive a values is that recombination frequency may hardly increase over large 
map distances at a level well below 50%. 

Other interference models 
The approach to interference theory followed by OWEN (1950) (see also 

BAILEY 1961 for a detailed description) is to consider the process of chiasma 

# 0) 
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FIGURE 6.-Genetic mapping functions for different combinations of chiasma and chromatid 

interference. (z = genetic map distance; T = recombination frequency; n = parameter of 
chiasma interference; a = parameter of chromatid interference. Segments measured from 
to = 0.) 

determination along a given chromatid as a renewal process. As mentioned 
earlier such a model does not distinguish between the two types of interference. 
It is worth considering here some aspects od OWEN’S (1950) model and see how 
these fit into the model presented in this paper. 
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Let, as before, fl ( t )  be the pdf of differential and interference distance, respec- 
tively. Further, let gl ( t )  and g ( t )  be the pdf of the first and subsequent intercept 
lengths along a given chromatid. [OWEN’S (1950) analysis starts from a given 
g l ( t )  and g ( t )  .] Assuming as before, that a is constant, we can express gl* (s) = 
x{gl(t)} and g* (s) = x { g ( t ) }  in terms of fl* (s) and f*  (s) (see APPENDIX for a 
derivation) : 

Both OWEN (1950) and BAILEY (1961) for  simplicity assume identity of g1 ( t )  
and g(t)  (all intercept lengths identically distributed, included the first one), 
though their general theory covers other situations as well. They pay special 
attention to the case that all intercept lengths (along a given chromatid) follow 
a gamma distribution. In that case, the model always predicts recombination 
frequencies of over 50% for  certain regions (c f . ,  BAILEY 1961). It is interesting 
to verify what conditions are to be imposed on the main process in my model 
for gl ( t )  and g ( t )  to be identical. Since gl* (s) and g* (s) uniquely determine 
gl(t) and g ( t ) ,  identity of gl(t)  and g ( t )  requires identity of gl* (s) and g* (s), 
or equivalently, from (46) 

1 +a-&f* (s) 
1-af* ( s )  fl* (s) = f *  (SI 

Taking the first moment [fl*’(0) = -pl, f * ’ ( O )  = -p, etc.] this leads to the 
condition 

1 -2a 
1 -a 

p 1 = p - .  (47) 

We have seen that recombination frequencies of over 50% can occur only when 
a<O. This in turn implies the condition pl>p (47). Thus, the simplifying 
assumption that gl ( t )  and g( t )  are identical requires that for the “main” process 
the mean differential distance be larger than the mean interference distance. 
This is in conflict with the concept of a differential distance (MATHER 1936). 

An entirely different approach to chiasma interference is to disregard the 
sequential nature of chiasma formation, but to regard only the probability distri- 
bution of the number of chiasmata in a segment of given length. This distribution 
is assumed to be independent of the position off the segment. In the absence of 
chiasma interference, this distribution is Poissonian. Several authors have formu- 
lated interference by means of a distribution which, in some way, deviates from 
the Poisson distribution. BARRATT et al. (1954) used the following modification 
of the Poisson distribution. 

Kit , k=O 
(47) 
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where X is a dummy variable and c is the interference parameter. For c=l, the 
distribution is Poissonian. STURT (1976) colnsidered a model in which a chromo- 
some (or chromosome arm) always has one obligatory chiasma, while the num- 
ber of “extra” chiasma is Poisson-distributed. With this formulation the total 
arm length, T,  enters into tlie distribution 

In this model, the degree of interference decreases as the chromosome length 
increases; as T tends to infinity, the distribution (48) approaches the Poisson 
distribution. It is straightforward to verify that the BARRATT et al. (1954) model 
leads to the following inverse cmf. 

Sturt’s model leads to the c.m.f. 
d y ; c )  = {-yc ln (l-y-)} / {1-(1-y)9 * (49) 

(50) ~ ( Z ; T )  = 1 - (I - --) 5 exp (- -) AT5 
1 +AT I f h T  ’ 

where l+hT  is the mean number of chiasmata in the whole chromosolme (arm). 
The functions (49) and (50) are in general appearance very similar to the cmf 
in stationary phase in my model (30). 

Still another approach is to search for a gmf that satisfies two conditions; (1) 
monotonically increasing and (2) asymptotically approaching the value 0.5. The 
criterion for such a gmf is its general applicability. Such functions have been 
designed by KOSAMBI (1944) and CARTER and FALCONER (1951). With this 
approach the nature of the process of chiasma formation is almost completely 
disregarded. Although a gmf developed along these lines may indeed fit fairly 
well to many actual crossover data, it  hardly contributes to a better understand- 
ing of the processes during meiosis. 

DISCUSSION 

Describing chromatid interference I have, for simplicity, assumed that the 
difference, a, between frequencies of two- and four-strand doubles does not 
depend on the distance between the two chiasmata. A more natural assumption 
would be that a decreases with increasing distance, resulting in absence of chro- 
matid interference over long distances. This could for example, be accounted for 
by assuming a relationship of the form 

m ( t )  = a(0) e-ct , (51) 
c being a positive constant. Since such a relationship cannot be incomrporated into 
the model in a simple way, I resorted to a Monte Carlo simulation of the process, 
accounting for (51). From the results of 2000 replicate runs, genetic mapping 
functions were plotted (segments measured from to=O). Figure 7 shows these 



592 

J 

r 

0.5 - 

P. STAM 

* . - 1  

n:4 

FIGURE 7.-Genetic mapping functions when chromatid interference ( a )  decreases with dis 
tance. (Solid lines = constant values of a. Segments measured from 2, = 0.) 

graphs for c = In 2 (Le., a(1) = a(0)/2) and two different values of a ( O ) ,  viz., 
a (0) = 1 and a (0) = -1 ; the chiasma interference parameter (n) here equals 4. 
The gmf for  constant a is also shown for comparison. It is seen (cf., Figure 6) 
that, roughly speaking, the effect of decreasing chromatid interference with 
distance is similar to the effect of constant chromatid interference at a lower 
level. Similar results were obtained for other colmbinations of a ( 0 )  and n. 

So far I have described chiasma interference solely in terms of a mathematical 
model. The pdf of intercept lengths was intentionally chosen to reflect the well- 
known phenomenon that an existing chiasma reduces the rate of occurrence in its 
neighborhood relative to the overall rate of occurrence. How can this effect be 
brought about by the biological (biochemical) process of chiasma formation? 
Fox (1973) proposed the following model. A “chiasma determining mechanism” 
(CDM) moves along the chromosome at constant speed. For a chiasma to be 
formed, the CDM must be triggered in some way. Fox (1973) considers the 
following alternatives for the triggering mechanism: (1) trigger signals reach 
the CDM from outside the chromosome; (2) triggers are located on the chromo- 
some, switching on the CDM as it passes. In  the latter case, the chiasma density 
merely reflects the density of triggers. Neither possibility satisfactorily explains 
the great similarity between chiasma densities of all chromosomes of Schistocerca 
gregaria studied by Fox. (In all chromolsomes, chiasma density has a wavy 
pattern with a peak near the telomeric end.) On the one hand, a similar distri- 
bution of triggers over all chromosomes seems highly improbable. The great 
similarity between chromosomes od different length can, on the other hand, not 
be explained by signals arriving from outside. This would mean that the rate of 
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arrival changes with time, but the rate of change is different for chromosomes oif 
different length. I€ the rate of change were the same for all chromosomes, short 
chromosomes would be too short to have the second peak that OCCLWS in long ones. 

The following slight modification of the Fox model partially explains the great 
similarity between all chromosomes. The CDM is an (enzyme) complex that 
remains “occupied” for a variable period (the busy period) to finish a chiasma. 
The process of chromosome pairing proceeds along the chromosome at constant 
rate and the CDM can only be triggered as long as pairing has not yet been com- 
pleted. After completing a chiasma the CDM jumps forwards to the site of pair- 
ing where the probability of being triggered per unit length is constant. Then 
the distance between two successive chiasmata is the sum of two random vari- 
ables: (1 ) the “jump distance” over which pairing proceeds during the busy 
period, and (2) the distance over which the free CDM moves before it is triggered 
again. This model explains the high density near the starting point; for the first 
chiasma there is no preceding busy period. The similarity between chromosomes 
of different length could be due to an adjustment of the rate OS the whole process 
(i.e., pairing and chiasma formation) to the chromosomal length. Different chro- 
mstin concentrations might be responsible for the latter. This model closely 
parallels the formulation that I used for my mathematical model. The “busy 
period” corresponds to the n-I unrealized chiasmata in the underlying Poisson 
process. Chromatid interference (a>O) could be due to the tendency of the CDM 
to remain associated with the same pair of chromatids. 

The model described above is a speculative one. It does not account for the 
possibility that the process of pairing and chiasma determination may start 
simultaneously at several sites and proceed in both directions. Nevertheless the 
general framework allows the formulation of a mathematical model, the analysis 
of which contributes to a better understanding of the control of chiasma determi- 
nation and its consequences for chromosome mapping. 

I am grateful to J. SYBENGA for drawing my attention to the subject. I thank T. A. BUISHAND 
(Division of Mathematical Statistks, Agricultural University) and the reviewers for their valu- 
able comments and discussion. 
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APPENDIX 

Let p be the probability that a given chromatid is involved in a chiasma, given that it was also 
involved in the preceding one, Then p is also the probability that a given chromatid is not in- 
volved in  a chiasma, given that it was not involved in the preceding one. If U ,  U and w are the 
probabilities of two-, three- and four-strand doubles, then p = U + %U and q = 1 - p = 
'/eu f w. With U - w = a, we have p = i/z (1 + a) .  Let c1 (s) and +(s) be the Laplace trans- 
forms of f l ( t )  and f ( t ) ,  respectively. Now consider the distance to the first chiasma involving 
a given chromatid and denote the Laplace transform of its pdf by 'El (s) . Then, by the rules for a 
compound distribution (and dropping the argument), we have 

The first term in this expression arises from the fact that a given chromatid is involved in the 
first chiasma with probability 0.5. The terms of the form 0.5 q p n  G1 +n + 1 state that with 
probability 0.5 qp" the distance to the first chiasma involved equals the sum of the distance to 
the first one, plus n + 1 subsequent intercept lengths. Expression ( A l )  reduces to 

'El= %c, + %?Cl+ + %4P+, + . . . i / e q P n + l + n  + '+ . . . (AI 1 

1 -a+ 
(-42) 

Next consider the distance between two successive chiasmata involving a given chromatid. 
Analogous to the above reasoning we can write 

'E - +  
2 - ( l + a ) + .  

1- 1 

'E= p + + q 2 p + q 2 p + 3 + .  . + q ' p n P $ - Z f .  . 
1 +a--a+ 

2 - (1 +a)+ 
(A31 - - + - _ _ ~ .  

(A2) and (A3) are the required Laplacs transforms. 


