
MAINTENANCE OF GENETIC VARIABILITY UNDER THE 
PRESSURE OF NEUTRAL AND DELETERIOUS MUTATIONS 

IN A FINITE POPULATION 

WEN-HSIUNG LI 

Center for Demographic and Population Genetics, University of Texas 
Health Science Center at Houston, Houston, Texas 

Manuscript received July 5, 1978 
Revised copy received November 3, 1978 

ABSTRACT 

In order to assess the effect of deleterious mutations on various measures of 
genic variation, approximate formulas have been developed for the frequency 
spectrum, the mean number of alleles in a sample, and the mean homozy- 
gosity; in  some particular cases, exact formulas have been obtained. The as- 
sumptions made are that two classes of mutations exist, neutral and deleterious, 
and that selection is strong enough to keep deleterious alleles in low frequen- 
cies, the mode of selection being either genic or recessive. The main findings 
are: (1) If the expected value ( G )  of the sum of the frequencies of deleterious 
alleles is about 10% or less, then the presence of deleterious alleles causes only 
a minor reduction in the mean number of neutral alleles ir, a sample, as 
compared to the case of G = 0. Also, the low- and intermediate-frequency parts 
of the frequency spectrum of neutral alleles are little affected by the presence 
of deleterious alleles, though the high-frequency part may be changed drasti- 
cally. ( 2 )  The contribution of deleterious mutations to the expected total num- 
ber of alleles in a sample can be quite large even if 4 is only 1 or 2%. (3) The 
mean homozygosity is roughly equal to (1-2G)/(1+81), where 8 ,  is twice the 
number of new neutral mutations occurring in  each generation in the total 
population. Thus, deleterious mutations increase the mean heterozygosity by 
about 2rj/ (1 +e,). The present results have been applied to study the contro- 
versial problem of how deleterious mutations may affect the testing of the 
neutral mutation hypothesis. 

U S I N G  WRIGHT’S ( 1949a) multiallelic distribution, I have recently developed 
formulas for the frequency spectrum, the mean number of alleles in a sam- 

ple, and the mean and variance of homozygosity under mutation pressure, under 
either genic or recessive selection (LI 1977, 1978; see also WATTERSON 1978a). 
These formulas are general, but become computationally intractable when the 
intensity of selection is strong. Simpler formulas are therefore needed for the 
case of strong selection. In some particular cases, I have recently been able to 
reduce my formulas to simple forms by algebraic manipulations, but I have not 
been able to do so in general. I have, however, used a heuristic approach similar 
to that of WRIGHT (1966) to get approximate formulas that are useful for the 
study of strong selection. Recently, W. J. EWENS (personal communication) has 
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pursued the same problem and has, somewhat earlier than I, obtained approxi- 
mate formulas for the mean number of alleles in a sample and the mean homo- 
zygosity for the case of genic selection, using a different heuristic approach. My 
results for this case largely agree with his. The purpose of this communication 
is to present my new results mentioned above and to apply them to investigate 
the controversial problem of how deleterious mutations may affect the testing 
of the neutral mutation hypothesis (EWENS 1972; NEI 1975; OHTA 1976; WAT- 
TERSON 1978b,c). 

I n  this study, I assume that there are two classes of mutations, neutral and 
deleterious, and that selection is sufficiently strong to keep deleterious alleles in 
low frequencies. Under certain circumstances, my approximate formulas for 
the frequency spectrum of neutral alleles are not very satisfactory. Nevertheless, 
they provide deep insight into the problem and enable us to compute fairly 
accurately both the mean number of neutral alleles in a sample and the mean 
homozygosity. 

GENIC SELECTION 

Consider a randomly mating population of effective size N .  Let the number of 
possible allelic states at a locus be K, and let Ai denote the ith allele and xz its 
frequency. We assume that there are two classes of alleles, i.e., neutral alleles and 
deleterious alleles, and that the neutral class consists of the first I allelic states 
and the deleterious class the remaining K - I states. Let s be the selection coeffi- 
cient against deleterious alleles. We use the K-allele model: each gene, of what- 
ever allelic type, ha5 a mutation rate U per generation and the probability of Ai 
mutating to Aj is u1 = v/(K - 1) for each j # i, i = 1, . . . , K (WRIGHT 1949b; 
KIMURA 1968a). Let p = x1 + . . . + XI be the sum of the frequencies of neutral 
alleles and u1 = I u1 the sum of the mutation rates to neutral alleles; similarly, 
let q = xr+l + . . . + xK and uz = ( K  - Z)u1. In  addition, let A = 4Nul,  el = 
4Nu1 = ICU, 8, = 4Nu, = ( K  - I )cu ,  and OT = 4Nv = O1 + 8, - A. In this paper, 
we assume that s is at least one order larger than uz and that S = 4Ns is suffi- 
ciently large so that the expected value ( q )  of q at equilibrium is close to the 
equilibrium value in a population of infinite size, i.e., 4 

We first study the frequency spectrum, which is conventionally denoted by 
@(x) and has the meaning that @(x)dz represents the mean number of alleles 
whose frequency is between z and x + dx. (The frequency spectrum is also com- 
monly known as the distribution of allele frequencies.) a ( ~ )  can be decomposed 
into the frequency spectrum of neutral alleles, (x), and the frequency spec- 
trum of deleterious alleles, az(x) .  We treat @.,(XI and @,(z) separately. 

First, let us consider a2 (z) . To this end, we focus our attention on a particular 
deleterious allele, say A,,  i > I .  It  can be easily shown that the mean change of 
x, per generation is approximately given by 

4 = u2/s = e,/s. 

Ma=7A(1-xz) -uz , - s z ,p  . 

M , Z U ~ ( ~ - X , )  -x,(s+U1-UU1) . (1) 

Following WRIGHT (1966), we replace p by p^ = 1 - uz/s ,  and obtain 
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My earlier computations for the case of I =  1 suggest that this approximation 
introduces no serious errors as long as S = 4Ns is larger than 20 (see Tables 1 
and 4 of LI 1978). Putting the variance of the change in xi per generation equal 
to xi (1 - x i ) / ( 2 N ) ,  we find that the equilibrium probability density of xi is 
given by 

in which r(.) is the gamma function. Since there are K - Z allelic states in the 
second class, 

@z(x) = (K-- l )+(x)  - 
Letting K approach infinity, but keeping U and I /K constant, we obtain the fol- 
lowing result for the infinite-allele model: 

cp,(x) = ezxyi  - x ) s + w  . (3) 

(Note that, in the infinite-allele model, el + O2 becomes equal to e,.) The ex- 
pected number of deleterious alleles in a random sample of m individuals or 2m 
genes is equal to 

1 

& J 0 [ l -  ( 1  - x ) 2 n ’ ] @ 2 ( ~ ) d x  (4) 

= e,[(S+ el)-1 + (s+e, + q - 1  + . . . + (s+e1+2m- 11-11 

= e2 iog,[(s + e, + 2m - 0.5)/(s+ e,  - 0.511 

= o2 loge[ 1 + 2 m / ( S  + e,  - 0.5) 1 . ( 5 )  
Using a different approach, EWENS (personal communication) has o,btained a 
slightly different formula: 

(6) = 8, loge [ 1 + 2m/ ( S  + 0 - 0.5) ] . 
The contribution to mean homozygosity due to deleterious genes is given by 

which is negligibly small, if S is large. EWENS (personal communication) neg- 
lects this term by arguing that it is of order SF. The sample mean is expected to 
be slightly larger than the population mean given by (7) ,  but the difference is 
negligible as long as m is larger than 25 (cf. ,  NEI and ROYCHOUDHURY 1974). 
The same comment applies to formulas (14a,b). 

We now consider a, (5). The mean change of xi per generation for a neutral 
allele ( i  5 I )  is approximately given by 

Mi = U , ( l  -xi) - UX( +sx ig  . (8) 
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Replacing q by u2/s,  we find 

From (9) , we obtain 

al (1) = e,+(i - s)el-l (10) 

for the model of infinite alleles. This is identical with the frequency spectrum 
for the case of neutral mutations with effective size N and mutation rate u1 
(KIMURA and CROW 1964). Thus, substituting for q in equation ; (8) is  
equivalent to neglecting the class of deleterious mutations. As will be seen later, 
this approximation creates no serious errors when 8, 2 1. However, serious dis- 
agreements between (IO) and the exact frequency spectrum occur at high allele 
frequencies when O1 < 1. Fortunately. even in this case, @,(I) in (IO) agrees 
extremely well with the exact frequency spectrum at low and intermediate allele 
frequencies, and gives a quite accurate value for the mean number of neutral 
alleles in the population. Consequently, 

1 

E, = j [I - ( 1  -s)’”]@,(s)dz (11) 
0 

el 
N -  - 1 9 1 + L + . . . +  

I91 8,+1 8,+2m-I 

provides, in all cases, a close approximation to the mean number of neutral alleles 
in a sample (see examples and a more detailed expanation below). EWENS (per- 
sonal communication) has obtained the same formula as (12a). This formula is 
expected to give an Overestimate because it is obtained under the assumption that 
there exists no deleterious allele in the population. 

Another estimate of El can be obtsined as follows. We again neglect the class 
of deleterious mutations, but assume that the effective population size is Njj 
AT( 1 - u2/s )  instead of N .  From these two assumptions, we get 

in which 8,’ = 8, ( 1 - u2/s) .  This is an underestimate because the actual effect of 
random drift on neutral genes is weaker than that created by an effective size of 

When using @1 (5) in (IO) to compute J1, the contribution to mean homozy- 
gosity due to neutral genes, we must remember that this formula was obtained 
by assuming that the population is free of deleterious mutations and therefore 

every gene drawn from “the population” is neutral, i.e., j x@, (s)dz = I. Since 

N ( 1 - u2/s). 

1 

0 
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instead of 1, the actual probability of a randomly drawn gene being neutral is 
we need to multiply 

1 1 

P, = j- 22a,(s)ds = -L- 
O 1 + e ,  

by j j z  (1 - u2/s) in order to obtain J1, namely, 

- (I-uu,/s)2 J ,  = i + e ,  . 
This formula is identical with that of EWENS (personal communication). We 
may roughly regard P, as the conditional probability that two genes randomly 
chosen from the population are of the same allelic type, given that they are 
neutral genes. As will be seen below, the actual frequency spectrum of neutral 
alleles is somewhat less dispersed over the whole allele frequency range than the 
approximate one given by (IO) ; consequently, P, is an underestimate. Because 
of this, formula (14a) tends to be an underestimate; however, it may become 
an overestimate when 8, is small and selection is weak, so that neutral alleles 
may temporarily become absent from the population and jj < 1 - u2/s (see 
examples below). An overestimate for P, can be obtained by neglecting the class 
of deleterious mutations and assuming that the effective population size is 
IV( 1 - uB/s)  instead of N .  It is given by P, = 1/[1 4- (1 - u2/s) e,],  from which 
we get 

- 
J1- ( 1 - ~ ~ / ~ ) ~ / [ 1 + ( 1 - ~ ~ / ~ ) 0 ~ ]  . (14b) 

Since P ,  is an overestimate, so is formula (14b). 
Making use of these formulas, we can compute @(x) = %(x) + a2(x), 

k = xl 4- K z ,  and 7 = Jl 4- 7,) in which is the mean total number of alleles in a 
sample and 7 the mean homozygosity of the population. 

Let us now examine the accuracy of the above formulas. This can be done by 
comparing these formulas with my earlier ones (LI 1977, 1978) for reasonably 
large 4Ns values. To a close approximation, my earlier results can be written as 
follows. 

- 
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cZ-l= { S"r(n+81)/[n!r(n+eT)] . 
When 8, and 8, are integers, some simplification of these formulas can be made. 
Given below are three examples. 

For 8, = 1 and 6 ,  = r, r a positive integer, 
r-1 

2=0 
@' (z) = 271 - 27' fTS(1-8) ,2 si ( 1  - z) i/i! , 

a2 (z) = rz-lcSx , 
(21 1 
(22)  

(23)  

J z = r / ~  . (24) 

S i ( l - z ) i  , (25) 

(26)  

- 1  
J1=,-rS-'+r(r+1)/(2Sz) , 

For O1 = 2 and O 2  = r, 
?=I i) 221 

+-@(I-*) ~ 

2r 
@'(S) = 2 x 1 ( 1 - x )  -- 

@, (1) = r z l  ( 1 - z) cSX - r2 ( S  - r )  -W" , 
S - r  S - r  U i! 

[2Sz - 3 ( r  + 1)s + ( r  + 1 )  ( r  + 2 ) ]  , - 1  r J '=3-  
3 (S-r )S '  

7, = r ( ~ - 2 ) / ~ 3  . (28 )  

For O1 = 3 and O 2  = r, 
+'(z) = 3 ~ 1 ( 1 - z ) 2 - 3 z - 1 [ ( r + 1 ) r - r ( r - 1 ) S +  ( r - l ) ( r - 2 ) S 2 / 2 ] - '  

x [ r ( r - I ) S z ( l  -z) - ( r + I ) r x ( 2 - x )  

+ cS(1-z) Y ( r  - i + 1) ( r  - i)si ( 1  - x) i/i!] , (29)  

r 
[ ( r  + I ) r  - r ( r  - 1)s + (I - 1 )  ( r  - 2)S2/2]-' - 1  

J 1 z T - q  

x [ ( r -  i p 4 -  5 ( r +  i ) S 3  + 4 ( r +  1) ( r + 2 ) S 2  
- ( r + l ) ( r + 2 ) ( r + 3 ) 1  , (31)  

The corresponding formulas for zl and %, are more complicated and are not given 
here because it is less convenient to use them than to put (z) and a, (5) into 
formulas (4) and ( 1 1 )  and carry out numerical integrations. Formulas (21) to 
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(32)  hold with a high degree of accuracy, though some approximations have been 
made to simplify them. The mathematical manipulations involved in the deriva- 
tion are tedious, but the principle is rather simple and can be illustrated by the 
simplification of C, for the simplest case: 8, = O2 = 1. Namely, 

m 

cl-'= z ( -S)"n!/[n!(nf  l)!] 
n=0 

m 

= (+)-I I: (--S)"+l/(n+ l)! 
n=o 

m 

= (+)-I [- 1 + z (-S)"/n!] 
n=O 

= (1-@)/S . 
The same principle can be applied to derive formulas for any integral 8, and 02. 
Furthermore, using such formulas and the method of numerical interpolations, 
an approximate frequency spectrum of neutral alleles can be obtained for arbi- 
trary (integral or nonintegral) 8, and 02; numerical computations show that the 
spectrum thus obtained is quite accurate when 2 2, though it is not very satis- 
factory when 8, < 2. (An example will be given below to illustrate this method 

1 5  

10 

5 

0 
0 

EXACT 

............. APPROX M A T E  

0,=0.1, 0,=2.5 

0.5 
GENE FREQUENCY 

FIGURE 1 .-Approximate and exact frequency spectra of deleterious alleles for two cases of 
genic selection: ( 1 )  S = 25, 8 ,  = 0.1, e2  = 2.5 and (2) S = 50, 6 ,  = 0.1, O 2  = 2.5. The ordinate 
denotes +2(z), which has the meaning that +,(z)dz represents the expected number of deleteri- 
ous alleles whose frequency is between z and z + dz. - Exact frequency spectrum. . . . . . . 
Approximate frequency spectrum. 
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of interpolation.) For ease of discussion, we shall call formulas (15) to (32) the 
“exact” formulas, though terms of order cS have been neglected in some of these 
formulas. 

Figure 1 shows the approximate ( 3 )  and the exact frequency spectrum (16) 
of deleterious alleles for two cases: (1) S = 25, = 0.1, 0, = 2.5, and (2) S = 50, 
0, = 0.1, 8, = 2.5. In both cases, the approximate frequency spectrum is almost 
indistinguishable from the exact one. Such close approximations also hold for 
larger Ql values. As an example, if O1 = 1 and O2 = r, formula (3) becomes 
rz’(1 - z)” which is close to the exact frequency spectrum given by (22) as 
long as S is large and r / S  is small. As another example, if O1 = 2 and 8, = r, 
formula ( 3 )  becomes rx l ( l  - x ) ~ + ~ ,  while the exact frequency spectrum is 
given by (26). The approximation is now even better. Thus, we may conclude 
that formula ( 3 )  holds well under the conditions specified in this paper. Numeri- 
cal computations suggest that formula ( 3 )  gives an underestimate, unless el is 
large (cf. ,  Figure 1). 

The comparisons between the approximate (IO) and the exact frequency 
spectrum (15) of neutral alleles for the two cases given in Figure 1 are shown in 
Figure 2. Since the value is the same for  both cases, so is the approximate 

15 

1 0  

5 

0 

APPROXIMATE . . . . . . . . . . . . . . 
.-.-.- REVERSED G A M M A  

01= 0.1, O2 = 2.5 

0 0.5 
GENE FREQUENCY 

1 

FIGURE 2.-Approximate and exact frequency spectra of neutral alleles for the same two 
cases shown in Figure 1. The ordinate denotes +l(z), which has the meaning that +,(z)dz 
represents the expected number of neutral alleles whose frequency is between z and z + dz. 

Reversed gamma distribution. For detail, see text. 
Exact frequency spectrum. . . . . . . Approximate frequency spectrum. - . -. -- 
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frequency spectrum (10) because it is determined by 8, alone (see the dotted 
line), I t  is seen from this figure that the approximate frequency spectrum agrees 
well with the exact one at low and intermediate allele frequencies, but deviates 
far from it at high allele frequencies. Such serious discrepancies are expected to 
arise whenever 8, is smaller than unity. The explanation is as follows: When 
8, = 0 (in the absence of deleterious mutations), @,(x) is exactly given by (10) 
and is U-shaped, i.e., @, (x) has a peak at z = 1. As 8, increases, the probability 
of monomorphism decreases and the aforementioned peak becomes lower and 
moves inward; when 8, + 8, = OT, becomes larger than one, @,(z) becomes zero 
at z = 1, and the peak moves to somewhere below x = 1 (see LI 1978). Since 
the approximate frequency spectrum (10) does not change with e,, the approxi- 
mation will become less and less satisfactory as 8, increases. Fortunately, the 
mean number of high-frequency alleles in the population computed by using 
(1 0) is only slightly larger than that computed by using (15). For example, the 
mean number of alleles whose frequency is higher than 0.6 is 0.923 for the curve 
with S = 25, 0.942 for the curve with S = 50 and 0.959 for the approximate fre- 
quency spectrum given in Figure 2. Since the mean number of high-frequency 
alleles in a sample of reasonable size should be roughly the same as that in the 
population, the discrepancies between the approximate and exact frequency 
spectra at high allele frequencies should introduce no serious errors into formula 
(12a), the approximate formula for  the mean number of neutral alleles in a 
sample. That this is indeed the case can be illustrated by the following example: 
For the parameters specified in Figure 2 and 2m = 200, formula (12a) gives 
k, = 1.57 and formula (17) gives g, = 1.56 for the case of S = 2 5 ,  and 1.57 for 
the case of S = 50. More examples are given in Table 1. 

Figure 3 shows that when O1 2 1 no large discrepancies such as those of Figure 
2 occur between the approximate and the exact frequency spectra of neutral 
alleles. For the case of 8, = 1, the approximate frequency spectrum coincides 
with the exact one, except at the high-frequency end. For the case of d1 = 2.5, 
some appreciable differences occur between the two frequency spectra at inter- 
mediate allele frequencies. The broken line is obtained by interpolation, using 
formulas (25) and (29). The procedure is as follows: First, we note that 8, = 2.5 
is not an integer. We therefore raise it to 3 and, at the same time, raise S to 30 
so that the original value of 8,/S = 2.5/25 is maintained. (Alternatively, we may 
reduce 8, to 2 and S to 20.) Next. we note that 8, = 2.5 is the average of 8, = 2 
and 8, = 3. We therefore use the average of (25) and (29) with T- = 8, = 3 and 
S = 30 to approximate the frequency spectrum with dl = 2.5,O, = 2.5 and S = 25. 
It is seen from Figure 3 that the curve thus obtained gives an excellent fit to the 
exact frequency spectrum. Thus, for 2 2 a close approximation to the fre- 
quency spectrum of neutral alleles can be obtained by interpolation, using 
formulas for integral 81 and 8,; for O1 < 2, however, this method is less successful. 

The prob!em that remains to be solved is how to compute the high-frequency 
part of %(x) €or O1 < 1 when S is large, say S > 100, so that formula (15) be- 
comes computationally intractable. This is an important case and a practical 
formula should be developed. Here, I present only two interesting properties. 

- 
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15 

1 0  

5 

0 

............. APPROXIMATE 

.-.-.- BY INTERPOLATION 

0 0. s 1 

FIGURE 3.-Approximate and exact frequency spectra of neutral alleles for two cases of genic 
selection: ( 1 )  E,= 1, 8 ,  = 2.5, S = 25 and (e) 8 ,  = 2.5, 8 ,  = 2.5, S = 25. The ordinate 
denotes a1(z), which has the meaning that @,(z)dz represents the expected number of neutral 
alleles whose frequency is between z and z f dz. - Exact frequency spectrum. . . . . . . 
Approximate frequency spectrum computed by using formula (IO). -. -. -. Extrapola- 
tion by using formulas (25) and (29). 

GENE FREQUENCY 

First, we note from Figure 2 that this part of a, (x) resembles a reversed gamma 
distribution. The following is the theoretical basis for this resemblence. When 
O,/S and 8, are small, the distribution of q, the sum of the frequencies of dele- 
terious alleles, can be approximated by the gamma distribution + ( q )  = G(q;  
Y,, S )  in which 

(NEI 1968). Since p ,  the sum of the frequencies o€ neutral alleles, is equal to 
1 - q, the distribution of p can be approximated by the reversed gamma distribu- 
tion + ( p )  = G ( l  - p ;  e,, S ) .  When 8, is very small, so that most of the time 
there is only one neutral allele in the population, a1(x) should follow + ( p )  
closely except at frequencies near x = 0, where a1(s) is very large. When 8, 
becomes larger but is still substantially smaller than one, the high-frequency 
part of @,(x) should still resemble some reversed gamma distribution, though 
it will now have a lower peak and a longer tail, that is, the a and p values for 
this reversed gamma distribution are smaller than On and S, respectively. In 
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Figure 2, the high-frequency part of the curve with S = 25 follows roughly the 
reversed gamma distribution with a: = 2 and p = 15, while that of the curve with 
S = 50 follows roughly the reversed gamma distribution with a = 1.9 and p = 27; 
these two distributions were obtained by trying some reasonable combinations 
of a: and p values. Second, we note further that the peak of + ( q )  should occur 
near x = ( e ,  - 1)/S because the peak of G(y;a,P) is at y = (,a: - 1)//3. There- 
fore, the peak of a1 (z) should occur near x = 1 - (ez - l)/S. For example, the 
peak of the curve with S = 25 OCCLXS at x = 0.93, which is only slightly smaller 
than 1 - (0, - 1)/S = 0.94, and lhat of the curve with S = 50 occurs at 
z = 0.965, which is again only slightly smaller than 1 - (0 ,  - 1)/S = 0.970. 

In Table 1, we examine the accuracy of the approximate formulas for XI, E?, 
TI, and 7,; the "exact" formulas for these quantities are given by (1 7), (1 8) , (1 9) 
and (20), respectively. The parameters are specified in the table. We observe 
the following. (i) The accuracy of formula (12a) declines with increasing B,/S, 
but remains quite high as long as e,/S is not considerably larger than 0.1; if el 
is around one o r  smaller, formula (12a) is still fairly accurate even if 0,/S is 0.2. 
This result indicates that if the sum of their frequencies is 0.1 or smaller, the 
presence of deleterious alleles causes no substantial reduction in the mean num- 
ber of neutral alleles in a sample. Note that formula (12a) always gives an  over- 
estimate. Formula (12b) is less accurate than (12a), but provides a lower bound 
for the mean number of neutral alleles in a sample. (ii) Formula (5) is a close 
approximation to formula (18), and is somewhat better than formula (6), par- 
ticularly when 0, is large. In  most cases, formula ( 5 )  gives an underestimate- 
it. becomes an overestimate only when el is very large. (iii) Formula ( 1 4 4  gives 
a close approximation to formula (19) and is, on the whole, slightly better than 
iormula (14b). Note that the latter always gives an overestimate while the 
former gives an underestimate except for the case of el = 0.1 and 8, = 1. It has 
been explained earlier why formula (14a) may become an overestimate when 
selection is weak and O1 is small. Interestingly, if S and e, are raised to 50 and 2.5, - 

TABLE 1 

Comparisons between Ihe approximate and the exact fwmulas fork , ,  kz, SI and Ts* 

0.1 1 1.57 1.54 1.57 2.4a 2.37 2.45 0.820 0.824 0.818 
0.1 2 1.57 1.52 1.56 4.83 4.66 4.99 0.730 0.737 0.732 
0.1 4* 1.57 1.46 1.55 9.687 8.99 9.83 0.582 0.592 0.573 
1.0 1 5.88 5.67 5.83 2.38 2.33 2.40 0.451 0.463 0.453 
1.0 2 5.88 5.4'5 5.77 4.75 4.58 4.80 0.4805 0.426 0.408 
1.0 4 5.88 5.01 5.65 9.50 8.86 9.60 0.320 0.356 0.325 
5.0 1 19.07 18.38 18.85 2.22 2.18 2.23 0.150 0.157 0.154 
5.0 2 19.07 17.68 18.64q 4.43 4.29 4.44 0.135 0.147 0.141 
5.0 4 19.07 16.24 18.20 8.86 8.33 8.81 0.107 0.128 0.119 

0.0024 0.0028 
0.0047 0.0056 
0.0094 0.01 16 
0.0022 0.0025 
0.004.; 0.0050 
0.0087 0.0100 
0.0015 0.0017 
0.0030 0.0033 
0.0062 0.0063 

* S = 20,2m = 200. The numbers in parentheses refer to formula numbers. 
t Exact formulas. 
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but 0, remains equal to 0.1, then formulas (14a) and (19) both give 1, = 0.820; 
note that the value of e,/S is the sallie as that of 1/20. (Because of computational 
difficulty, no larger S has been tried.) This suggests that if S is large, formula 
(14a) will become an underestimate even if el is small and the exact value of 
will be somewhere between the two values given by (14a) and (14b), probably 
closer to the former. (iv) Formula (7)  is a close approximation to formula (20) 
andJ2 is usually negligible. Note that the 3 value used in Table 1 is only 20. 
When S is larger, the agreement between the approximate and the “exact” 
formulas is expected to be even better. This has been borne out by extensive 
computations. 

RECESSIVE SELECTION 

Let the fitness of A,A, be 1 - 2s if i. i > 1 and one if otherwise. This means 
that the deleterious alleles are completely recessive. We use the same notations as 
above and make the same assumption that Q is close to Q =\l‘u2/(2s) = 
d/e,/(2S), the equilibrium value in an infinite population. 

We again focus our attention on the frequency of a particular deleterious 
allele, say Ai, i > 1. It can be easily shown that the mean change of zz per gen- 
eration is given by 

Mi = v , ( l - z % )  - uxt - 2sx,(l -q )q  , 

M ,  = V l ( l  -x,) - x * ( d G +  U1 - v,) . 
approximately. As WRIGHT (1 966) did, we replace q by 4 and find that 

(33) 

A - comparison of (33) with (1) suggests that if we substitute \/2u2s for s (or 
d28,S for S )  in the approximate formulas for genic selection, we will obtain 
the corresponding formulas for recessive selection. This is indeed the case and we 
have the following: 

- 

- 
k, = 0, l o g e [ l + 2 m / ( q m +  8, - 0.5)] , 

In formulas (36b) and (38a,b), we have not replaced Q by 4 because, when 8, 
is of order 1 or smaller, q is substantially smaller than 4 and the formula 
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4 = r[e, 4- 1)/2]/[V/Sr(e2/2)] should be used (NEI 1968). Numerical com- 
putations show that, as in the case of genic selection, formula (35) gives a close 
approximation to the frequency spectrum of deleterious alleles, and in what fol- 
lows we shall be concerned only with the accuracy of formulas other than (35) 
and (37). The corresponding “exact” formulas have been given by LI (1977, 
1978). 

Figure 4 shows the approximate (34) and the exact frequency spectrum of 
neutral alleles for three cases: 8, = 0.1, 0.36, and 1.5; in all cases, S = 30 and 
Q 2  = 0.75. It is seen that in the first two cases the approximate frequency spec- 
trum agrees well with the exact one at low and intermediate allele frequencies 
but deviates far from it at high frequencies, while in the third case there occur 
no large discrepancies. As in the case of genic selection, the approximate and the 
exact frequency spectrum give similar values for the mean number of neutral 
alleles whose frequency is higher than 0.01; for the above three cases, the former 
gives 1.50,2.70, and 6.86, and the latter gives 1.47,2.44, and 6.73. Consequently, 
formula (36a) holds fairly well; for the same three cases as above, it gives 1.73, 
3.52, and 10.31 if 2m = 1000, while the exact values are 1.72,3.49, and 10.18. 

Table 2 shows some comparisons between the approximate and the exact - - 

S =  30, 02= 0.75 

15 

LO 

5 

0 0.5 1 
G E N E  F R E Q U E N C Y  

FIGURE 4.-Approximate and exact frequency spectra of neutral alleles for three cases of 
recessive selection: e, = 0.1, 0.36, 1.5; in all cases, e, = 0.75 and S = 30. The ordinate denotes 
@,(z), which has the meaning that +p,(z)dz represents the expected number of neutral alleles 
whose frequency is between z and z + dx.--- Exact frequency spectrum. . . . . . . Approxi- 
mate frequency spectrum. 
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formulas for J ,  and 1,. It is seen that formula (38a) gives a quite accurate value 
for 5. The S value used is only 30 and formula (38a) tends to give an over- 
estimate. If S becomes large, this formula will probably become an underestimate; 
unfortunately this is difficult to verify, because of computational difficulties. 
Formula (38b) is less accurate than formula (38a), but provides an upper bound 
for J,. Formula (39) tends to give an overestimate for T2, particularly when 8 2  

is small. Fortunately, when S becomes larger than 50,7, becomes less than 0.01 
because it can be shown that 7, < 1/(2S) , and can therefore be neglected. 

E S T I M A T I N G  6 FOR T E S T I N G  THE N E U T R A L  M U T A T I O N  H Y P O T H E S I S  

It has been controversial as to how one should estimate 8 when testing the 
neutral mutation hypothesis. On the one hand, NEI (NEI and ROYCHOUDHURY 
1974; NEI 1975), OHTA (1976) and some others advocate using the estimator 
given by 

8,=h/(l-A) , (40) 

in which h is the observed mean heterozygosity of the population fo r  a large num- 
ber of loci. On the other hand, EWENS (1972) and WATTERSON (1978b,c) con- 
tend that it is better to use the estimator defined through 

7 (41 ) 
i k  

ik + . . . +  A = - + -  i k  

i k  6 k f 1  ik4-2m-1 

in which k is the total number of alleles observed in a sample for a single locus. 
In  my opinion, this controversy arises because of the failure to distinguish be- 
tween the hypothesis of pan-neutrality (H,) , which postulates that all alleles in 
a population are neutral, and the hypothesis of neutral mutations ( H n ) ,  which 
postulates that the genic variation or the heterozygosity of a population is mainly 
due to neutral or almost neutral mutations. These two hypotheses may appear 
similar superficially, but are actually very different. In fact, H p  is much more 
stringent than H,. The following example will make this point clear. Suppose 

TABLE 2 

Comparisons between the approximate and the exact formulas for T I  and Tg* 

0, 

0.10 
0.10 
0.36 
0.36 
1.50 
1.50 

0 2  

0.75 
3.00 
0.75 
3.00 
0.75 
3.00 

~~ 

(38a) 

0.763 
0.573 
0.61 7 
0.464 
0.335 
0.252 

j* 
(38b) Exact 

0.768 0.758 
0.584 0.567 
0.631 0.616 
0.440 0.462 
0.353 0.340 
0.288 0.258 

- 
'2 

0.0142 0.0081 
0.0152 0.0136 
0.0132 0.0078 
0.0147 0.0133 
0.0099 0.0067 
0.0126 0.01 19 

(39) Exact 

* s = 30. 
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that at a certain locus there are six alleles with the following frequencies: 0.60, 
0.36, 0.01, 0.01, 0.01, 0.01. Then, for H ,  to hold, it requires only that the first 
two alleles be neutral because the heterozygosity is mainly due to these two 
alleles. But, for H ,  to hold, it requires that all six alleles be neutral; if any one 
of them is not neutral (say, one of the four low-frequency alleles is deleterious), 
then H ,  is not true, In other words, H ,  can be true even if the majority of the 
alleles are deleterious, but H ,  is true only if every allele is neutral. This differ- 
ence is of vital importance because the majority of mutations are deleterious and 
every natural population contains many deleterious genes. We note that what 
KIMURA (1968a,b) proposed is not H ,  but H,. In  NEI’S and OHTA’S approaches 
to testing H,, one needs first to estimate 8. The 0 value to be estimated is not OF, 

the total 4Nu value, but el, the “neutral only” value, because H ,  postulates that 
only neutral mutations are important to the polymorphism of a population. HOW- 
ever, since H ,  does not specify precisely what proportion of the mean hetero- 
zygosity is due to (almost) neutral mutations, only rough estimates of 0, can be 
obtained under this null hypothesis. In the method advocated by NEI (1975) 
and OHTA (1976), it is assumed that h is completely due to neutral mutations, 
ignoring the possibility that some (or many) of the rare alleles in the sample 
may be deleterious. This method has been criticized by EWENS (1972; personal 
communication) and WATTERSON (1978b,c), who argue that & is superior to 
because k is a sufficient statistic for e if all mutations (alleles) are neutral. This 
argument is valid if what is to be tested is H ,  or what is to be estimated is OT. 
Here, however, the purpose of estimating 0 is to test H,, that is, what is to be 
estimated is O1. Since both estimating procedures ignore the possibility that some 
of the rare alleles may be deleterious, we need to examine the effect of deleterious 
mutations on & and &, when comparing them as estimators of 0, under the null 
hypothsis of H,. In  the following, I shall use a numerical example to illustrate 
that the first approach is quite robust against the existence of rare deleterious 
alleles, whereas the second approach is not. I shall also discuss the controversial 
question of whether it is better to pool data €ram all loci studied or to treat each 
locus separately, the former approach being advocated by NEI (1975) and OHTA 
( 1976) and the latter by W A T T E R ~ O N  (1978b,c). 

Effect of deleterious mutations: Assume that the genome consists of a large 
number of identical loci; the problem of inhomogeneity among loci will be dis- 
cussed later. Assume further that the parameter values for each locus are el = 1, 
0, = 10, and S =  500, the mode of selection being genic. Using formulas (23) 
and (24), we find that the mean heterozygosity of the population is fl = 0.52. 
If the population were free of deleterious mutations, i.e., 8, = 0,  the mean hetero- 
zygosity would decrease only slightly to = OJ(1 f e,) = 0.5. Thus, it is true 
that the mean heterozygosity is mainly due to neutral mutations or, in other 
words, the condition postulated by H ,  is true. However, the condition postulated 
by H ,  is far from being true because the population contains many deleterious 
alleles. If we follow the first approach and use gene frequency data from a large 
number of loci to compute h, the observed mean heterozygosity, the value ob- 
tained is expected to be close to 0.52, as long as the number of genes sampled for 
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each locus is reasonably large (NEI and ROYCHOUDHURY 1974). Using h = 0.52 
and equation (40) , we find t& = 1.08, which is reasonably close to 8, = 1. Next, 
let us consider the second approach. This approach uses single-locus data but, 
for ease of comparison, let us neglect the sampling error and assume k = x. If 
2m = 200, then El z 5.88, k, z 3.36 and x z 9.24. Using k 9.24 and equation 
(41), we find f& 1.78, which is considerably larger than = 1. Thus, & is 
quite sensitive to the existence of rare deleterious alleles, but O h  is rather robust 
against such alleles. 

Now see what we will get if we use these two estimated values to make predic- 
tions. First, consider the mean heterozygosity. If we assume that 6' = 8h = 1.08 
and all mutations are neutral, we will predict a heterozygosity of 1.08/ 
(1 4- 1.08) = 0.52. As expected, this is equal to the mean heterozygosity. On the 
other hand, if we assume that 8 = & = 1.78 and all mutations are neutral, we 
will predict a heterozygosity of 0.64, with a standard deviation equal to 0.16 
(STEWART 1976). The difference between this predicted heterozygosity and the 
mean heterozygosity is 0.12, which is comparable to the standard deviation. This  
result suggests that if the discrepancy between the observed mean heterozygosity 
among loci and the value predicted by using 8 = 8 k  is used to test H,, there will 
be a high probability of rejecting H ,  when H ,  is true, i.e., the type I error will 
be high. Next, consider the frequency spectrum. We again assume that all muta- 
tions are neutral and 6' = 8h  for the first approach, while 8 = 8 k  for the second 
approach. The frequency spectrum obtained by the first approach is represented 
by the curve with 8 = 1.08 in Figure 5, while that obtained by the second ap- 
proach is represented by the curve with 8 = 1.78. It is seen that the former is very 
close to the solid line, the actual frequency spectrum, but the latter deviates far 
from it. Again we see that the type I error is high for the second approach. It is 
interesting to note that in the present example 81c is much smaller than BT = 11, 
and the spectrum with 8 = 1.78 is very different from that with 8 = 11. If our 
purpose is to test H,, we should try to get a more accurate estimate of 01- so that 
the spectrum obtained will be closer to that with 8 = 11. For  this purpose, it is 
better to use NEI'S (1977) approach of estimating QT through the number of rare 
alleles than to use (41). 

One might argue that in practice deleterious alleles may bz usually too rare 
to appear in a sample, so that the second approach can also be applied to estimate 
cl when testing H,. Let us see if this is true. In a recent review article. SIMMONS 
and CROW (1977) gave the following estimates for Drosophila populations: the 
rate of mutations causing mild deleterious effects is 6 x per locus per genem- 
tion, and these mutations reduce the fitness of heterozygotes on the average by 
about 0.02, the former being-a minimum estimate. Using these two estimates 
and formula ( 5 ) ,  we obtain k, 0.54 if 2m = 200, O1 I 2 and N = 10'; x2 in- 
creases slowly with increasing N .  Note that this is a minimum estimate. Note 
also that, in adhtion to mildly deleterious mutations, there should be mutations 
that reduce the fitness of heterozygotes by a value, say, between 0.01 and 0.001, 
and there should be severely deleterious mutations such as recessive lethals. If 
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FIGURE 5.-Frequency spectra under various situations. The ordinate denotes @ (x), which 
has the meaning that +(x)dx represents the expected number of alleles whose frequency is 
between x and x f dx. __ Genic selection with S = 500, 8 ,  = 1, e, = I O .  . . . . . . Neutral 
mutations. 

all these possibilities are taken into consideration, k, may easily become 1 or 
larger. Let us assume that this is true. Let us assume further that I 0.2. Then, 
in a sample of 200 genes, the expected number of different neutral alleles is 
smaller than 2.12 and, on the average, about one third of the total number of 
alleles in the sample is due to the presence of deleterious mutants. The assump- 
tion of 8, I 0.2 is quite reasonable because, if 8, = 0.2, the mean heterozygosity 
is greater than 0.16, which is roughly equal to o r  larger than the majority of 
mean heterozygosities observed in Drosophila species (cf.,  AYALA et al. 1974 and 
data cited in NEI 1975). Although this assessment of the effects of deleterious 
mutations on k is admittedly rough and is based on data from Drosophila only, 
it suggests that the second approach of estimating 8 can be very unfavorable for 
the testing of Hn. 

Single-locus approach vs pooling data: A single-lccus approach generally has 
the following three drawbacks: ( i )  The estimator of a parameter often has a 
large mean square error. This is true for I& because k has a large variance (EWENS 
1972). For example, if all mutations are neutral, then = 1.57 and V ( k )  = 0.56 
for 8 = 0.1, and k = 5.88 and V ( k )  = 4.24 for 8 = 1, assuming 2m =200. (ii) 
The power of a single-locus test is generally low. This is true even if the hypo- 
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thesis to be tested is H,, not to mention the less stringent hypothesis H,. As an 
example, let us consider WATTERSON'S (1978a,c) homozygosity test. This seems 
to be the best single-locus test that has been devised €or testing H p .  Yet, his results 
show that it is almost impossible to reject H ,  if the sample contains fewer than 
three alleles (see Table 1 of WATTERSON 1978a). (iii) Far testing H,, we will not 
be able to use data from monomorphic loci, loci with low heterozygosity, because 
such loci contribute little to the observed average heterozygosity and therefore 
whether the alleles at such a locus are neutral or not is an irrelevant question 
under the null hypothesis of H,. We note that the proportion of monomorphic 
loci is high in most of the species surveyed (c f . ,  FUERST, CHAKRABORTY and NEI 
1977). Thus, a large amount of iniormation will be wasted if we use a single- 
locus test. These three drawbacks can be overcome by pooling data from all loci 
studied. Of course, pooling data creates the problem of inhomogeneity because 
mutation rate varies from locus to locus and the mode and intensity of selection 
may also vary. However, the variation in mutation rate among loci may be taken 
into account by using a model of varying mutation rate as developed by NEI 
and his associates (cf., NEI, CHAKRABORTY and FUERST 1976; FUERST, CHAKRA- 
BORTY and NEI 1977), though the problem of variation in the mode and intensity 
of selection among loci cannot be easily handled. At any rate, if the inhomo- 
geneity among loci is not taken into consideration in a test, the type I error may 
become large. 

In addition to the above, some other arguments have also been put forward by 
both sides. I discuss two of them here. Both are arguments against the first ap- 
proach, namely, that o h  has a large mean square error and a large bias. These 
two criticisms can easily be refuted because they are based on single-locus esti- 
mation, but what NEI (1975) and OHTA (1976) propose is to estimate the average 
6, value among loci by using data from a large number of loci. Obviously. if data 
from a large number of loci are used, the mean square error of will become 
very small. This is also true for the bias for estimating the average 8, over the 
loci studied because it can be shown that the bias decreases quite rapidly as the 
number of loci used increases. Incidentally, even for a single-locus estimate. the 
bias of & may be a less serious problem than the sensitivity of 6,' to the effect of 
deleterious mutations. For instance, for the example given in Figure 5 ,  adding a 
bias of 40% to O h  increases its mean value from 1.08 to 1.51, which is still con- 
siderably better than the estimate & = 1.78. A bias of 40% is used in the above 
computation because EWENS (personal communication) argues that the simula- 
tion result of EWENS and GILLESPIE (1974) shows that for OT of order one the 
bias of @IL for  a single-locus estimate is consistently 40% or more upwards, as- 
suming that all mutations are neutral. 

Several further remarks are in order. First, in the above I have compared 
&, and & as two estimators of O1 under the null hypothesis of H ,  and have argued 
that i h  is superior to 8,. This is not to suggest that e h  is the best estimator that will 
ever be found, because it has some drawbacks, as mentioned above. In particular, 
if the number of loci used is not large, the estimate obtained by this method may 
not be very accurate. A more accurate approach is to use the number of alleles 
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whose sample frequency is, say, higher than 0.01. This approach is, however, 
more complicated than that using h. In  a future study, I shall examine whether 
the estimate obtained by the latter approach is close to that obtained by the 
former. If the answer is yes, then the latter is to be preferred to the former since 
it is much simpler. Second, although I have used a single-locus example to illus- 
trate the difference between H ,  and Hp,  it should be borne in mind that Hn is 
postulated as a majority rule for  the loci of a genome, and whether it is true or 
not can be decided only by studying a large number of loci. Third, it may be 
possible to find a statistic for testing H ,  whose distribution is free of the nuisance 
parameter 8, but so far no such test statistics have been found. We note that 
although the testing procedures of EWENS (1972) and WATTERSON (1978a,b) 
do not require the estimation of 8, they are developed under the null hypothesis 
of H,, not H,. Fourth, since the neutral mutation hypothesis was proposed, terms 
such as the neutral alleles hypothesis (or theory), the neutrality hypothesis, etc., 
have appeared in the literature. These terms have been used sometimes as 
equivalents for the neutral mutation hypothesis and sometimes as equivalents 
for the hypothesis of pan-neutrality. This is very confusing. I suggest that a clear 
distinction always be made between the two hypotheses. Fifth, some authors 
(e.g. ,  WATTERSON 1978a,c) seem to think that “detecting selection among alleles” 
is equivalent to “testing the neutral mutation hypothesis,” but it is not. To test 
the neutral mutation hypothesis is to detect selection among polymorphic alleles 
only, i.e., among alleles whose frequencies are higher than 0.01, say. Detecting 
selection among alleles is equivalent to testing the hypothesis of pan-neutrality. 
Sixth, whether an allele is almost neutral or not is judged by whether random 
drift or selection plays a more important role in the population dynamics of this 
allele. KIMURA (1968a) proposed the definition 12Nsl < 1 but I (LI 1978) sug- 
gested that a better definition would be 1Nsl < 1. 

DISCUSSION 

In obtaining the present theoretical results, it has been assumed that all dele- 
terious mutations have the same selective disadvantage. This assumption may 
seem restrictive, but from the results we may draw the following general con- 
clusions for the effects of de€eterious mutations on the frequency spectrum, the 
mean number of alleles in a sample and the mean homozygosity: 

First, if the expected value ( 4 )  of the sum of the frequencies of deleterious 
alleles is around 10% or less, then the presence of such alleles causes no sub- 
stantial reduction in the mean number oE neutral alleles in a sample. Further- 
more. the low and intermediate allele frequency parts of the frequency spectrum 
of neutral alleles are little affected by the presence of deleterious allels, though 
the high allele frequency part may be changed drastically. 

Second, it can be shown that if S is much larger than 2m, then formula (5), 
the formula for genic selection. reduces to 
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The same __ is true for formula (37), the formula for recessive selection, provided 
that d2B2S is much larger than em. Thus, a general principle emerges, namely, 
that the mean number of severeZy deleterious alleles in a sample is equal to the 
product of the sample size (2m) and the sum of the expected frequencies of such 
alleles (Q) . (Here, by severely deleterious alleles, we mean alleles with large S.) 
We note that if 2m = 200 and Q = 0.01, then formula (42) gives & 2, a large 
value. Thus, the contribution of deleterious mutations to % can be quite large 
even if Q is only 1 or 2 % . 

Third, the presence of deleterious alleles reduces the mean homozygosity of a 
population from 1/( 1 + 0,) to about 

Thus, the contribution of deleterious mutations to the meaii heterozygosity of a 
population is roughly equal to 2g/( 1 f e,). An upper bound of the mean homo- 
zygosity is given by 

Of course, the second and third principles do not apply to the case where one 
or more of the deleterious alleles enjoy heterozygote advantage. These three 
principles are mainly for assessing the effects of mutations whose selective dis- 
advantage is considerably large. The effects of mutations with very mild dele- 
terious effect. say S I 30, can be studied by my earlier formulas (LI 1977. 1978). 

I am indebted to W. J. EWENS for showing me his unpublished results and valuable com- 
ments. I also thank M. NEI, J. F. CROW and M. J. SIMMONS for discussions and suggestions. This 
study is supported by National Science Foundation grant DEB 77-09120 and Public Health 
Service grants GM 20293 and GM 19513. 
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