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ABSTRACT 

A genetical model is formulated in which the sex ratio in broods and 
the relative size of broods are determined by the genotype at  an autosomal 
locus. The results also apply to the case in which the sex-ratio locus is sex 
linked and expressed in the homogametic sex and to the case in  which the 
locus is expressed in the diploid sex of a haplodiploid organism. FISHER (1930) 
argued that the sex ratio evolves under natural selection to a value such that 
parental expenditure is equalized between the sexes. SHAW and MOHLER 
(1953) and MACARTHUR (1965) proposed that the sex ratio evolves to increase 
a certain expression for fitness. The sex ratio suggested by FISHER (1930) is 
in fact identical to the sex ratio specified by these maximization principles. 
Further, in our model, the Fisherian sex ratio corresponds exactly to the sex 
ratio at certain equilibria that are approached whenever they exist. 

HE adaptive significance of the sex ratio has been a point of controversy 
Tamong evolutionists since DARWIN. DARWIN (1871) suggested that certain 
sex ratios may benefit a population in terms of allowing more efficient group de- 
fense or mate selection, but failed to discover any selective advantage or disad- 
vantage to the individual associated with distortion of the sex ratio. FISHER 
(1930) suggested that the sex ratio evolves under natural selection to a value 
such that parental expenditure is equalized between male and female offspring. 
FISHER’S discussion of the problem, involving econmic terms such as “expendi- 
ture” and a rather imprecise use of “reproductive value,” was criticized by SHAW 
and MOHLER (1953) as “non-genetical.” They proposed that fitness in sex-ratio 
evolution should be interpreted as the relative contribution of individuals through 
sons and through daughters and implied that fitness defined in this way should 
increase under natural selection. That expression for fitness, which we will call 
representational fitness, has been widely used (e.g. ,  BODMER and EDWARDS 1960; 
KOLMAN 1960; MACARTHUR 1965; HARTL and BROWN 1970; CHARNOV 1975), 
but the precise relationship between representational fitness and the underlying 
genetics has not been explored. Using a graphical fitness set approach, MAC- 
ARTHUR (1965) suggested that the product of the number of sons and the number 
of daughters produced by the population will be maximized by natural selection. 
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Theoretical investigations analyzing evolution at specific sex-ratio modification 
loci indicate that the qualitative predictions are critically dependent on the par- 
ticular mode of transmission of the sex-ratio locus. SHAW ( 1958) , SPIETH (1974), 
NUR (1974) and ESHEL (1975) have analyzed models in which sex-ratio dis- 
tortion is influenced by an autosomal locus. Evolution at an autosomal locus that 
influences susceptibility to material inheritance of a cytoplasmic endosymbiont 
that distorts the sex ratio in the broods of its carriers has been investigated by 
UYENOYAMA and FELDMAN (1978). HARTL and BROWN (1970) considered a 
sex-ratio locus that is expressed in the diploid sex of a haplodiploid organism. I n  
general, these papers indicate that the 1 : 1 sex ratio is highly attractive. However, 
models involving sex-linked sex-ratio loci (EDWARDS 1961 ; HAMILTON 1967; 
THOMSON and FELDMAN 1975; BENGTSSON 1977) suggest that skewed sex ratios 
may be common in such systems; in fact, populations in which the sex chromo- 
somes segregate in the normal 1:1 manner are particularly susceptible to the 
introduction of X -  or Y-linked drivers (THOMSON and FELDMAN 1975). The role 
of FISHER’S (1930) measure of reproductive value or SHAW and MOHLER’S (1953) 
expression for representational fitness in these models is not clear (EDWARDS 
1961; BENGTSSON 1977). HAMILTON (1967) pointed out that FISHER’S (1930) 
argument contains tacit genetic assumptions that restrict its applicability to sex- 
ratio modification loci that are transmitted in genetically equivalent forms 
through sons and daughters. In  particular, HAMILTON (1967) suggested that 
FISHER’S argument does apply to sex-linked loci expressed in the homogametic 
sex, to loci expressed in the diploid sex of a haplodiploid organism, and to auto- 
somal loci expressed in the heterogametic sex. The results obtained in the present 
paper bear out HAMILTON’S predictions, provided the restriction of the expression 
of autosomal sex-ratio loci to only the heterogametic sex is removed. 

For the purpose of examining the significance to sex-ratio evolution of the 
concept of reproductive investment and the sex-ratio strategy arguments, we have 
formulated a genetical model involving an autosomal sex-ratio locus that influ- 
ences the brood sex ratio and the relative fertility of the various matings. The 
results apply equally well to sex-inked loci that are expressed in the homogametic 
sex and to loci that are expressed in the diploid sex of a haplodiploid organism. 

The equilibria of the model, under the restriction that the genotype of one par- 
ent alone determines the brood sex ratio and relative brood size, are determined 
as the valid roots of a cubic function. The analysis in the present paper extends 
the work of ESHEL (1975), who considered the equal brood-size case under the 
assumption that off spring genotype rather than parental genotype determines 
brood sex ratio. The evolutionary criteria proposed by SHAW and MOHLER (1953) 
and MACARTHUR (1965) will be compared and found to specify identical strate- 
gies. Maximization of representational fitness and of MACARTHUR’S (1 965) 
product is possible in our model if and only if  a certain relationship exists between 
the brood sex ratio and relative brood size among the genotypes. Under this condi- 
tion, the roots of the equilibrium cubic can be obtained explicitly. Further. it will 
be shown that, when that condition holds, the sex ratio specified by the two maxi- 
mization principles corresponds exactly to the sex ratio attained at certain equi- 
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libria in our genetical model. Local stability of the equilibria will be examined 
and interpreted in light of the maximization principles. A number of reasonable 
models that satisfy the key condition for maximization, including the case of par- 
ntal expenditure considered by FISHER (1970) will be discussed. It will be shomwn 
that, for the case of parental expenditure, the population sex ratio converges 
towards the value predicted by FISHER. 

THE MODEL 

Consider an infinitely large, random-mating population, and let there be a 
locus, A,  with two alleles, A and a, that determines the proportions of males and 
females within broods and the relative size of bloods. If the locus is autosomally 
inherited and the organism is diploid, there are three genotypes in females and 
three genotypes in males. Let the frequencies of AA, Aa and aa females be fl, f2  

and f3, and the corresponding values for males be ml, m2 and m3 (Xfi = Z m j  = 1).  
The frequency of males in broods, censused at reproductive age and arising from 
matings of females of genotype i and males of genotype j ,  is denoted by rij, and 
the relative size of such broods, censused at the same time, by sij. The outcomes 
of the different matings are summarized in Table 1. There are no additional 
selective effects, such as viability differences, associated with the A locus. The 
model is similar to one formulated by SPIETH (1974). 

If the A locus is X-linked in an organism where the females are homogametic 
or if it is expressed in the diploid sex of a haplodiploid organism, then there are 
only two male genotypes, A and a, and six mating types. A mating table similar 
to Table 1 may also be constructed for this case. 

Table 1 presents our model in its full complexity. In  the present paper, atten- 
tion will be restricted to the case in which the effect of the A locus is expressed 
only in females. This does not necessarily imply that the females are sex deter- 
mining in a physiological sense, but that the A alleles modify the sex ratios via 
an effect in females. Under this simplifying assumption, the frequency of males 
produced by a mating is determined by the mother’s genotype only. Let females 
of genotype A A  produce a fraction a of males among their offspring, Aa females 

TABLE 1 

Brood sex ratios and relative fertilities 

Female Male Frequency of mating Frequency of males Relative b r d  size 

A A  A A  
Aa 
aa 

Aa A A  
Aa 
aa 

aa A A  
Aa 
(da 

r11 
r12 

‘2 1 

2 2 2  

‘13 

‘2 3 

r31  

‘32 

7-3 3 

s11 

S12 

s2 1 

s2 2 

s 2 3  

‘13  

‘31 

‘32 

s 3  3 
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produce a fraction 8, and aa females a fraction y, and let the corresponding rela- 
tive brood sizes be u1, uZ and u3, These definitions apply both to the autosomal 
inheritance scheme and the X-linked or haplodiploid model. In  Table 1, the 
definitions imply that 

rI1 = r12 = 1 1 3  = a and sll = slz = s13 = u1 
rZ1 = rZ2 = rz3 = /3 and szl = sz2 = sZ3 = u2 
131 = ra2 = r33 = y and ss1 = s32 = s33 = u3 . 

The situation in which the further assumption that ul = uz = u3 is made has been 
analyzed by NUR (1974) and ESHEL (1975). 

In the full model given by Table 1 ,  the evolution of the system is described by 
the frequencies of all genotypes in males and females. However, in the restricted 
cases investigated here, the evolution of the system is completely described by the 
gene frequencies in males and the genotype frequencies in females. The recursion 
equations for the autosomal inheritance model are: 

~ m ’ =  (1/2>pm + (1/2) Cfiuia + (1/2)f2~2P]/(fl~la + f 2 g z P  + f 3 ~ 3 ~ )  ( 1 4  

where p m  = m, + 0.5 mz and qm = ( 1  - p,) . F is the frequency of females at the 
time of mating, and M = 1 - F is the frequency of males at the same time. 

If the sex-ratio locus is X-linked or is expressed in the diploid sex of a haplo- 
diploid organism, then the recursion equations are identical to ( 1 )  with the ex- 
ception of ( la) ,  which is replaced by 

The equilibria of ( 1 a)  and ( 1 a’) are identical. 

ANALYSIS O F  THE MODEL 

Equilibria of the system 
The equilibria of system (1 ) are found by first expressing the female genotype 

frequencies at equilibrium (f,, f 2 ,  f3) in terms of the equilibrium gene frequencies 
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in males, ljrn and dm, and then producing a cubic in pm, the roots of which are 
the nonfixation equilibrium values ljm. The frequencies of the female genotypes 
are given below: 

- 
~f~ = ( 1 ~ )  a z  ( 1-p) pm [F-qma, (1-7) I 
T/z = [F-pmu1(I-a) 1 [F-qma3(l-y) I 
Tf3 = ( 1 / 2 )  u2 ( 1-P)  qm [F-pmal (1-a) 1 

- 
(2)  - 
- 

where T is the sum of the right-hand expressions ensuring that 
the larger root of the following quadratic: 

= 1 and F is 

- 
( i ? ) 2  - F[$mu1(1-*> + (1/2)u2(1-P> + Q m u 3 ( 1 - r > 1  

+ (1/2)$m~i(I-*) [ $ m ~ z ( l - P )  + Q m r 3 ( 1 - ~ > 1  (3) 
(1/2)Q,03(l-y>C$m~i(l-a) Qma2(1-P)I  =O- 

An expression for ljnz in terms of the iz is available from ( 1 a) or ( 1 a'), which 
are identical at equilibrium. Elimination of the f i  from that expression using (2) 
produces the following cubic after the fixation equilibria T j m  = 0 and gm = 1 have 
been factored out. The roots of this cubic are the equilibrium gene frequencies 
pm, 

g(pm) = A i A z [ u i ( l - a )  + as(1-y)  -2uz(l-P)l 

1. U3 (I-y)-uz (l'-P) 
[ pm - u1 (I-*) +a3 (1 -y> -20, (1 -P> 

[ pm - a18a+a3y-2az/3 a3y-uzP 1 (4) 

where AI pmala + qmazp - (1/2) a& 
A,  = pmu$ + 4mu3y - ( I / % )  a$. 

It can be shown that all roots of g ( p , )  in (0,l) are valid equilibria in our system, 
and conversely all valid equilibria correspond to roots of g ( p m )  in (0, 1 ) .  Once 
the equilibrium gene frequency in males & is determined from (4), the equilib- 
rium genotype frequencies in females fl, f 2  and f 3  can be calculated from (2), 
and the frequency of males and females in the equilibrium population can then 
be obtained from (le) and ( l f ) .  

ESHEL ( 1 9 7 5 )  found far his sex-ratio model, in which offspring genotype 
rather than parental genotype determines the brood sex ratio, that two classes of 
equilibria may exist. The first class, denoted symmetric, is characterized by 
equal gene frequencies in males and females, i.e., Tjm = f 1  + ( 1/2)fz. The second 
class, denoted asymmetric, is characterized by the 1: 1 sex ratio. Following 
ESHEL ( 1 9 7 5 ) ,  we say that a root of the cubic g ( p m )  in ( 4 )  is symmetric and 

A I  
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denote this root by $s if eS = cm = il + (1/2)j2. When symmetric roots exist, the 
remaining roots of g(pm)  are denoted the asymmetric roots. 

From (2) and (4), the following necessary and sufficient condition for the 
existence of a symmetric root in the present case may be obtained: 

( 5 )  

When (5) is satisfied, the symmetric root pAs = fim = j1 + ( 1/2)j2 is given by 

ulaZ('a:-p) f UZu3(P-y) + alos(y-a:) ZI 0 * 

from (4). Under (5),  eS corresponds to a valid equilibrium if /3 > (Y and y, or 
P < a: and y. 

The symmetric root may now be factored out of g(pm)  to produce the follow- 
ing quadratic, the valid roots of which correspond to the remaining equilibria, 
which we denote asymmetric: 

h(pm) = AiAz[Ui(l-a) + ~3(1-~)-2uz(l-P)]  (7) + (1/2)uz(l-@) (UI" + u3y-2u2P) ( p d 2  + qmA1). 

The remaining analysis in the present paper will be restricted to those cases 
in which g(p,) has a symmetric root. I t  will be argued in the next section that 
optimization of sex ratio strategies is possible only in those cases in which the 
condition for the existence of the symmetric root holds. 

Maximization principles 
In  this section, we relate (5), the condition for existence of a symmetric root, 

with the condition under which the proposed maximization principles are mean- 
ingful in the present model. 

SHAW and MOHLER (1953) suggested that the following expression for an  
individual's contribution through sons and through daughters is a measure of 
fitness and implied that fitness defined as follows increases under natural 
selection: 

where m and f are the frequencies of males and females in broods produced by 
the individual and M and F are the population frequencies of males and females. 
Because lhe rela tionship between genotypic fitness and individual contribution 
is not made explicit, we regard SHAW and MOHLER'S  (1953) suggestion as a 
maximization principle. In terms of our model, a natural interpretation of SHAW 
and MOHLER'S principle is that selection should maximize the following expres- 
sion for  mean fitness: 



EVOLUTION OF THE SEX RATIO 727 

MACARTHUR (1965) proposed on the basis of his fitness set analysis that 
natural selection maximizes the product of the number of sons and daughters 
reared to reproductive age by the population. MAYNARD SMITH (1978, pp. 166- 
167) has obtained a similar result from a genetic model describing the initial 
increase of a sex-ratio modification gene. SPIETH (1974) has interpreted this 
principle as implying the maximization of the product F M ,  where F is the un- 
normalized frequency of females defined by ( 3 )  and M is the analogous quantity 
for males. It can be shown that the points o€ maximization over the f i  specified 
under the two principles are identical (see also MAYNARD SMITH 1978, p. 167).  

Maximization of W or F M  with respect to f l ,  f z  and f 3  and subject to the con- 
straint that Z f i  = 1 (see COURANT 1937, p. 190) leads to the following “optimal” 
frequencies of €emales: 

-- - 
- 

-- 

ol(1-a) - u,( l -P)  
U 1  (1-CY) -U2 ( 1  -p> + Uzp-UlCY 

F:, = 

U i ( 1 - a )  - U s ( 1 - y )  F:, = 
(rl (l-CY)--@3 ( 1 - U )  + Usy-Ula  

’ 
where F t l *  is the frequency of females in the population obtained by maximiza- 
tion with respect to f l  and f j .  Existence of a sex ratio at which the maximization 
principles are satisfied requires that the expressions in (10 )  be identical. These 
threz expressions are identical if and only if condition ( 5 )  is satisfied. There- 
fore, maximization in the senses suggested by SHAW and MOHLER (1953) and 
MACARTNUR (1965) is possible in our model (in which the genetic basis of the 
sex-ratio distortion is well defined) if and only if the model is such that it has 
a symmetric root. The frequency of females at the “optimal” sex ratio will be 
denoted F’ (= F,,’ = F2,* = F , , * ) .  

Further, it can be shown that the frequency of females, F*, derived from 
maximation principles when ( 5 )  holds is exactly equal to the frequency of 
females associated with the roots of the quadratic h(pnz)  given in ( 7 ) ,  which 
defines the asymmetric equilibria of our model. 

Existence conditions for the asymmetric equilibria 
We have found that the frequency of females at the asymmetric equilibria is 

exactly the value suggested by the maximization arguments. The following geo- 
metric method is helpful in the presentation of the existence conditions for 0, 1 
or 2 valid asymmetric equilibria. 

From ( 1  ) it can be seen that over symmetric points the frequencies of the 
si  assume Hardy-Weinberg proportions. Define the curve F ( p ) ,  the frequency 
of females over symmetric populations, as follows: 
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0 ,  

The symmetric equilibria of the system, given by & = + ( 1/2)j2 = 0, 1 and 
p^s, correspond to the extrema of the curve in (0 , l ) .  In  particular, F’(p*,) = 0. 
Asymmetric equilibria are associated with the line F = F*, but do not fall on 
F ( p )  because Hardy-Weinberg proportions do not obtain over asymmetric 
equilibria. I t  can nevertheless be shown that the number of valid asymmetric 
equilibria is exactly equal to the number of intersections between the curve F ( p >  
and the line F = F * .  Figures 1 and 2 depict two examples showing the symmetric 
equilibria at the extrema of F ( p )  ( 0 , l )  and the intersections between F ( p )  
and F = F*. 

In Figure 1 ,  a polymorphic symmetric equilibrium is represented by the maxi- 
mum of F ( p )  in (0 , l ) .  F ( p )  intersects with F = F* in a single point, indicating 
that one valid asymmetric equilibrium exists. In Figure 2, P ( p )  has no internal 
critical point and hence no internal symmetric equilibrium exists. 

Local stability conditions for the symmetric equilibria for both autosomal and 
sex-linked cases 

The fixation equilibria associated with pm=O is stable in the full model only 
if the following condition is satisfied: 

(1-U) (u3y-.tS) + yru3(1-y)-Uz(l-S)1 > 0. 
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1-1 

1-6 
FIP) 

I- d 

1 

P 

F = F *  

FIGURE 2.-F(p)  plotted as a function of p for the case in which (Y > B > y, u,(l--cu) - 
uz(l-p) + u25 - u p  < 0, and ozp - ula > 0. Two symmetric equilibria, p = 0 and p = 1, 
exist. F* is negative and no valid asymmetric equilibria exist. Note that the symmetric equi- 
librium p = 0 is stable, although it maximizes the deviation between the frequency of females 
in the population and F*. 

When ( 5 )  holds, (12) may be arranged as follows: 

By symmetry, the condition for stability of the pm = 1 equilibrium is given by 

The p,,, = l;, equilibrium is stable when it exists if 

(a101 - uzp) F,  -1 F* < 0 , 
IM, M +  

where F ,  is the frequency of females at the pm = GS equilibrium, given by 

~1~ cay - ( U Z P ) "  __ Fs = 
al(a,y-uZPP) + u2(ul~-a2p) , 

and M ,  = 1 - F ,  is the frequency of males. 

Using (1 3) ,  (14) and (15), it can be shown that if two asymmetric equilibria 
exist, all symmetric equilibria are unstable. If one asymmetric equilibrium 
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exists, then the two symmetric equilibria closest in gene frequency to the asym- 
metric equilibrium frequency for pm are unstable. For example, in Figure 1, the 
pm = 0 and pm = ~3~ equilibria are unstable and the pm = 1 equilibrium is stable. 
If no asymmetric equilibria exist, then the local stability conditions (13), (14) 
and (15) suggest that the domains of attraction for the various symmetric equi- 
libria has eluded analysis, but the considerations presented above and numerical 
iterations suggest that the asymmetric equilibria are locally stable whenever 
they exist. 

Under parameter combinations leading to positive F*,  the stable equilibria of 
the system are those that minimize the local deviation between the frequency of 
females in the population and F*,  even if F* is greater than 1. However, when 
F* is negative, it is not true that natural selection always minimizes the deviation 
between the frequency of females in the population and F*. In the example 
presented in Figure 2, the p = 0 equilibrium is the only stable point in the 
system even though the deviation between F ( p )  and F* is minimized at the p = 1 
equilibrium. The local stability of the symmetric equilibria under all possible 
parameter combinations can be correctly predicted using a one-locus, frequency- 
dependent model-constructed solely for the purpose of illustration-in which 
fitness depends on the sex ratio in a population in a manner suggested by (8). 
Specifically, assign the genotypic fitnesses as follows 

AA A a  aa 

Then the marginal fitnesses will be given by 

w 1 = p u 1  [M+7-] a! (1-a) +qu2 [-,+-I B (1-PI 
F 

and the one generation change in gene frequency, ~ p ,  becomes 

Equation (1 7) may be arranged in the following form: 

p q ( u i a  + a37 - 2 4 )  (p-p^s) 
F A p  = 

From ( 18), it can be seen that the symmetric equilibria of our sex-ratio model 
are also equilibria of this constructed frequency-dependent model. Using (6),  
the p = 0 point in the model described by (18) is stable if (13) is satisfied. 
Similarly, p = 1 in the constructed example is stable if (14) holds, and p = 
is stable if (15) holds. Therefore, the stability conditions (13), (14) and (15) 
near the symmetric equilibria of the sex-ratio model may be understood by 
analogy with the selective pressures arising in a purely symmetric system such 
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as (1 7), which acts to increase locally the frequency-dependent mean fitness as 
defined by (9). 

RELATIONSHIP BETWEEN THE BROOD SEX RATIO AND FERTILITY 

It may appear that the existence condition for a symmetric root under which 
we have derived our main results is highly restrictive. However, it is o w  position 
that condition (5) represents a special case of the full model given by (4) rather 
than a degeneracy, in the sense that the small parameter theory of KARLIN and 
MCGREGOR (1972) applies to our system and allows us to infer the qualitative 
behavior of more general cases when the structure of the full model is “close” to 
our special case. We will discuss several relationships between the brood sex ratio 
and fertility that satisfy ( 5 )  and then construct the case discussed by FISHER 
(1930) from which the extension to more general cases will be made. 

Equal fertilities among genotypes 
Suppose that physiological conditions in the female are such that the broods 

produced by the various genotypes are of equal size independent of the sex ratio 
in the brood. Under this assumption u1 = u2 = and ( 5 )  is satisfied for all a, p, 
and y. In this case F* reduces to 0.5 in agreement with NUR (1974) and ESHEL 
(1975), who found that the system converges towards a state characterized by the 
1 : 1 sex ratio. 

Dominance of A 
Condition (5) is satisfied under the assumption that the A allele is completely 

dominant with respect to  sex ratio and brood size, i.e., (I. = J? and u1 = u2. There 
can be at most one asymmetric equilibrium, and the frequency of females at this 
highly attracting equilibrium is given by 

Equal homozygotes 

p and u2, and F* reduces to 
Under the assumption that = and ul = u3, condition ( 5 )  is satisfied for all 

Manipulation of the sex ratio through infanticide 
DARWIN (1871, p. 608) speculated that “There is reason to suspect that in some 

cases man has by selection indirectly influenced his own sex-producing powers.” 
DARWIN believed that the tendency to give birth to more sons than daughters ob- 
served in certain cultures in India, New Zealand and the Hawaiian Islands re- 
flected the selective pressures arising from the tradition of female infanticide 
which was practiced by those cultures in earlier times. In terms of our model, sup- 
pose that the frequency of males at birth in broods produced by AA, Aa,  and aa 
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females are given by al, p1 and yl, respectively, and that the frequency of males 
is adjusted in all broods to the value r through infanticide of females. If we assume 
that no reproductive compensation is practiced by the genotypes, then the fer- 
tilities of the genotypes are given by 

a1 
u1=-, 

r 
Pl Y l  uZ=- and us=-- . 
r r 

In  this case, the secondary frequencies of males are (Y = ,8 = y = r and ( 5 )  is 
satisfied for all r .  F* reduces to (l-r) /( 1-2r), which is never valid for r in (0, 
1). The problem reduces to a pure fertility model and the stability conditions 
(13) I (14), and (19), indicate that the mean fertility will be maximized. Fertility 
as defined in (19) is an increasing function of the frequency in males at birth. 
Therefore, genotypes that produce more sons in a culture practicing infanticide 
of females will indeed be favored. 

Control of the sex ratio through parental expenditure 
FISHER (1930) introduced the factor of parental expenditure in offspring into 

the problem of sex-ratio evolution, stating that a population evolves under natural 
selection until the parental expenditure in female offspring is equal to the paren- 
tal expenditure in male offspring. In the present genetical model, we use the eco- 
nomic concept of parental expenditure to construct a functional relationship be- 
tween the sex ratio in a brood and the size of the brood. Specifically assume that 
the amount of parental expenditure required to rear a female off spring compared 
to the amount needed to rear a male offspring is CP to 1, and consider the following 
relationship between the sex ratio in a brood and the relative size of the brood: 

,,=[a+ ( l - m ) @ ] - l ,  ~,=[/3+(1-/3)@]-~ and ~ ~ = [ y f ( l - y ) ( P ] - ~ .  (20) 

Condition ( 5 )  for the existence of a symmetric root is always fulfilled under (20). 
This relationship between parental expenditure, sex ratio and brood size has 
been used by BODMER and EDWARDS (1 960) and by SPIETH (1974). 

The relationship (20) between brood size and brood sex ratio may be justified 
in a variety of ways. The concept common to all is that a limited amount of re- 
sources is allocated between the production of daughters and the production of 
daughters and the production of sons. TRIVERS’ (1972) concept of “parental in- 
vestment” is based on a similar assumption. BODMER and EEWARDS (1960) ob- 
tained (20) by calculating the reproductive value of offspring, defined as in (8) , 
per unit parental expenditure. SPIETH (1974 assumed that the production of one 
female requires CP units of parental capital relative to  one male and called (20) 
the case of “constant total expenditure” among parental genotypes. Further, one 
may interpret (20) as reflecting the effects of preferential care shown to one sex 
by mothers in species which produce more offspring per brood than can possibly 
survive. Suppose females of all genotypes produce the same sex ratio and the same 
number of offspring at birth, but the genotypes display different propensities to 
care for offspring of one sex. At the end of the period of parental care, the brood 
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sizes among the maternal genotypes are given by (20), where @ is a conversion 
factor that determines the number of daughters gained for each son lost. 

According to FISHER (1930), if the amount of parental expenditure needed to 
rear a female offspring compared to a male offspring is to 1, the population 
evolves to a state such that the population frequency of females is 1/(1 f @I,  
because at this value there is equal investment in male and female off spring. Sub- 
stitution of the expressions (20) into (10) gives exactly the suggested value for  F* 

1 F* =- 
I+@ * 

FISHER’S (1930) principle concerning equal investments in males and females, 
represented by (20), is therefore equivalent to the maximization principles dis- 
cussed earlier. Because F* under the interpretation of parental expenditure must 
be positive, the population will either evolve to a state where the frequency of 
females is exactly F* or converge towards a state where the deviation between 
the frequency of females and F* is locally minimized. 

Extensions to  more general cases 

ing form for some (not necessarily positive) values of %, aZ and %: 
Any set of fertilities u1, u2 and u3 may arbitrarily be represented in the follow- 

ul= [a+ (l--a)@J1, uz= [P+ (1-/3)@2]-1andu3= [y+ (I-y)%]-l. (22) 

The existence condition for the symmetric root, which can be written 

(a1 - @z> (P - y) (1 - a> - (@a - @2) (P - a) (1 - y> = 0 , (23 ) 
is not satisfied in general. However, appealing to the small parameter theory of 
KARLIN and MCGREGOR ( 1972), we conclude that the stable equilibria (which in- 
clude the asymmetric equilibria when they exist) of the special case considered 
in the present paper will correspond to stable equilibria in the more general model 
described by (12) for perturbations of the parameters in the special cases consid- 
ered such that (23) is sufficiently small. Numerical iterations of the general case 
in which @,, a2 and a3 differ slightly from one another confirm that the qualitative 
behavior of the system is preserved. We therefore believe that condition ( 5 )  de- 
scribes a special case rather than a degeneracy and that the qualitative insights 
gained through the analysis of the class of models considered in the present paper 
are applicable to more general cases. 

DISCUSSION 

In an effort to interpret FISHER’S (1930) argument concerning the role of 
parental expenditure in the evolution of the sex ratio, SHAW and MOHLER (1953) 
constructed an expression for fitness that involves the relative contribution of 
individuals through sons and through daughters. BODMER and EDWARDS (1960) 
calculated the equilibrium sex ratio under the assumption that the Shaw- 
Mohler measure increases under natural selection. Proceeding from a similar 
expression for representational fitness, MACARTHUR ( 1965) used strategy argu- 
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ments to arrive at the conclusion that the product of the number of sons and 
the number of daughters evolves to a maximum. While it is clear that repre- 
sentational fitness as defined by SHAW and MOHLER (1953) is at least qualita- 
tively related to genetic transmission, the exact nature of this relationship has 
not been fully explained previously. As discussed earlier, results derived from 
models involving autosomal sex-ratio loci are consistent with the predictions 
arising from the maximization principles, while results from models of sex- 
linked loci contradict these predictions. HAMILTON ( 1967) suggested that 
FISHER’S (1930) argument applies only if the sex-ratio locus is transmitted in 
genetically equivalent forms through sons and daughters. It has been our pur- 
pose in the present paper to clarify the functional significance of the maximiza- 
tion principles to the evolution of the sex ratio in such transmission systems. 

The genetic model we used allows the genotype at an autosomal locus in one 
parent to determine the brood sex ratio and the size of the broods produced by 
the mating. In  agreement with HAMILTON (1967) , HARTL and BROWN (1970), 
TRIVERS and HARE (1976) and CHARLESWORTH (1977). the results also apply 
to loci that are expressed in the diploid sex of haplodiploid organisms and to sex- 
linked loci that are expressed in the homogametic sex. A sex-ratio strategy in 
our model is characterized by a brood sex ratio and an associated relative fer- 
tility that may be a direct function of the brood sex ratio. We have shown that 
the sex ratios specified in our model under the two maximization principles are 
identical and that this sex ratio exists if condition (5) is satisfied. Under condi- 
tion (5), the sex ratio suggested by the maximization principles corresponds 
exactly to the sex ratio at the asymmetric equilibria that are approached from 
all starting conditions whenever they exist. Further, the local stability conditions 
are consistent with the interpretation that natural selection leads to the local 
maximization of representational fitness as defined by SHAW and MOHLER 
(1953). Appealing to the small parameter theory of KARLIN and MCGREGOR 
(1972), we believe that our results are qualitatively correct for more general 
forms of the system which are “close” to the special case defined by ( 5 ) ,  in the 
sense described earlier. 

The relationship between brood sex ratio and fertility required by (5) has 
been shown to hold under a variety of reasonable biological assumptions. In  
particular, it is satisfied for the case of parental expenditure that was intro- 
duced by FISHER (1930). TRIVERS’ (1972) concept of parental investment is 
closely related to FISHER’S concept of parental investment. TRIVERS defined 
parental investment as any action on the part of the parent that increases the 
probability of survival to reproductive age of a given offspring at the cost of 
the reduction in the parent’s ability to invest in other offspring. Implicit in both 
concepts are the assumptions that the resources available to the parent for repro- 
duction are limited and that different patterns of allocation of those resources 
lead to differential reproductive succes. While energy may often represent a 
good indicator of the allocation of investment, it should be recognized that 
parental expenditure/investment may depend on a variety of factors (TRIVERS 
1972). 
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We interpret the case of parental expenditure in our model as follows: 

u1[a + (1-a)@] = u2I-p + (I-P>@l = as[y + (I-y>@l , (24) 

where @ is a measure of parental expenditure on females relative to males. 
SPIETH (1974) termed (24.) the constant total expenditure case and showed 
that MACARTHUR’S maximization criterion is satisfied for 

1 F* =- 
I + @  - 

In fact, parental expenditure between the sexes is equalized at this frequency 
of females, as follows: 

M*=@F* . 
F* is exactly the frequency of females that characterizes the highly attracting 
asymmetric equilibria. Therefore, in our genetical model the frequency of 
females predicted by FISHER (1 930) at which parental expenditure is equalized 
between the sexes is approached from all starting conditions. 
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