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ABSTRACT 

The linkage disequilibrium expected in a finite, partially selfing population 
is analyzed, assuming the infinite allele model. Formulas for the expected sum 
of squares of the linkage disequilibria and the squared standard linkage 
disequilibrium are derived from the equilibrium values of sixteen inbreeding 
coefficients required to describe the behavior of the system. These formulas 
are identical to those obtained with random mating if the effective population 
size N e  = (l--i/eS)N and the effective recombination value re = (l-S)r/ 
(I--+@), where S is the proportion of selfing, are substituted for the popula- 
tion size and the recombination value, Therefore, the effect of partial selfing at 
equilibrium is to reduce the population size by a factor I - g S  and the recom- 
bination value by a factor (l-S)/(l--%S). 

HERE have been several studies on the amount of linkage disequilibrium 
Tfound in natural populations. Most of these studies found no significant link- 
age disequilibrium between loci that are not associated with an inversion 
(LEWONTIN 1974; LANGLEY, ITO and VOELKER 1977). However, in plant popu- 
lations that are partially selfing, a significant amount of linkage disequilibrium 
is consistently present (BROWN 1979). This observed linkage disequilibrium 
could be generated either by selection with epistatic interactions between the 
loci or by random drift. In order to determine whether or not this observed 
disequilibrium could be a result of random drift, it is necessary to know the 
amount of linkage disequilibrium expected in a partially selfing finite population 
without selection. 

The expected amount of linkage disequilibrium in a finite population with 
random mating has been studied extensively. These studies have assumed two 
alleles at each locus with no mutation (HILL and ROBERTSON 1968; OHTA and 
KIMURA 1969) or an infinite number of alleles at each locus with mutant alleles 
differing from all preexisting ones (HILL 1975) i.e., the infinite-allele model of 
KIMURA and CROW (1964). In this paper, the amount of linkage disequilibrium 
expected in a finite population assuming the infinite allele model and partial 
selfing is derived using inbreeding coefficients. It is shown that the formulas 
for the expected sum of squares of the linkage disequilibria and the squared 
standard linkage disequilibrium are quivalent to those from random mating with 
a reduced recombination value and a reduced population size. 
Genetics 94: 777-789 March, 1980. 
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THEORY 

Before considering random drift of two loci in a finite population that is 
primarily selfing, the one-locus model is developed. 

Let the population consist of N diploid individuals that produce off sepring by 
both selfing and outcrossing. Let S be the proportion of the offspring of an indi- 
vidual that are produced by selfing and 1 -S the proportion of off spring produced 
by outcrossing. Each of the N individuals in the next generation is the off spring 
of either one individual selected at random (if it is produced by selfing) or two 
individuals selected at random without replacement (if it is produced by out- 
crossing) from the present generation. If S = 1/N, then there is random mating. 

Two inbreeding coefficients or descent measures are needed to describe the 
behavior of the system from one generation to the next. One coefficient, * ( A / A ) ,  

is the probability that the two genes of an individual are identical by descent. 
The other coefficient, @ ( A )  ( A ) ,  is the probability that two genes selected from two 
different individuals are identical by descent. (The notation used for the sub- 
scripts is explained when considering the two-locus model.) Since the proba- 
bility of an offspring having its two genes identical by descent is $. 
if it is produced by selfing and @ ( A )  ( A )  i f  it is produced by outcrossing, 

* ( A / A ) ’ =  ( 1 - p ) 2 [ S ( I / 2 + % * ( A / A ) )  + ( l - s ) @ ( A / A ) l  ( l a>  

(1b) 
1 1 

@ ( A / A ) ’  (I-P)’ [ N ( ! ’ b f % * l A / A ) )  +( 1-w) @ ( A / A ) ]  

where p is the mutation rate to unique alleles. 

If N>>1 and p”0 ($) , then these equations can be approximated by 

* ( A / A ) ’ = S ( % + % * ( A / A ) )  + ( I - S ) @ ( A ) ( A )  ( 2 4  

if terms of 0 (&) or less are neglected, and 

1 if terms of 0 (F)  or less are neglected. At equilibrium 

from (2a) and substituting this value into (2b) 
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and theref ore 

A 1+2N,uS - 1 + 2 N d  
q ( A / A )  = 1 + 4Np ’- 2NpS - 1 + 4 N , p  ’ 

where N e  = ( I - i / S ) N .  It can be verified that these are the approximate equi- 
librium values of equations ( la)  and (Ib) by substitution or from the theory 
of perturbed matrices (section 5.5, NOBLE and DANIEL 1977). I f  @ A  is the proba- 
bility that two genes chosen randomly from the population without replacement 
(not necessarily from t w o  different individuals) are identical by descent, then 

since N>>1 . 
We now turn our attention to the two-locus model. Denote the two loci by A 

and B, and let I be the recombination value between them. Let N be the number 
of diploid individuals, S be the proportion of selfing and p and v be the mutation 
rates to unique alleles at the A and B loci, respectively. 

Sixteen inbreeding coefficients are required to describe random drift of two 
loci in a finite population that is partially selfing. These inbreeding coefficients 
involve randomly choosing chromosomes without replacement from one, two, 
three or four different individuals and are denoted by *, @, r and 4, respectively. 
The following notation is used in the subscripts: parentheses are used to separate 
the genes contributed by different individuals, and slashes are used to separate 
the genes contributed by different chromosoms of an individual. For example, 
+ ( A 8 )  ( A / B )  is the probability of identity by descent at both loci if the genes at  the 
A and B loci are chosen from one chromosome of one individual and from differ- 
ent chromosomes of another individual. If the genes on the two chromosomes 
of an arbitrary individual are denoted by a&l and ai& respectively, then 
the sixteen inbreeding coefficients are given in Table 1. 

The recursion equations for these sixteen inbreeding coefficients are given 
in the APPENDIX. At equilibrium, 

?hs + ( l - s ) G ( A ) ( A )  

1-ss G ( A / A )  = 
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TABLE 1 

Definitions of the sixleen inbreeding coefficients 

The genes of the two chromosomes of an individual are denoted by ailbil and aizbiz, respec- 
tively. (“E” is read “is identical by descent to.”) 

i6UV[2(U+V)+3]+3~(U+V)3+~(U+V)1R+i6(U+V)R1+80(U+V)P+76(~+V)R+SR~+54(U+~)+26R+9 
Pwm(*’(B’= (1+4~)(1+4V)[32(U+V)~+4S(U+V)~R+l6(U+V)R~+SO(U+V)’+7fi[~+V)R+SR~+54(U+V)+~6R+91 

- 32W+32(U+V)a+48(U+V) *R+16(U+V)R*+RO(U+V)~+76 (U+V)R+SR’+54(U+V)+26RtS - 
(1  f 4 U )  (1 +4V) [32(U+V) ’+48 (LTCV) SE-16 (-SO( U+V) Z+7fi ( Uti’)?2+SR9+54( U+V) +26R+91 ’ 

from (AI ) and substituting these values into (A2) 



LINKAGE DISEQUILIBRIUM 78 1 

where 

The equilibrium values of the other inbreeding coefficients are obtained by 
substituting the equilibrium values (4b) into (4a). 

In order to compare these results for a partially selfing population to the 
equivalent results for a random mating population, it is necessary to define five 
further inbreeding coefficients. Three of these inbreeding coefficients involve 
choosing at random two chromosomes without replacement from the population; 
one coefficient, choosing three chromosomes; and one coefficient, choosing four 
chromosomes. (The chromosomes are not necessarily from different individuals.) 
If an arbitrary chromosome is denoted by a&, then the five inbreeding 
coefficients are 

@ A  = P ( a l = & )  
@B =P(bl=b2) 

@AB = P(alzaz and bl=b2) 
r A B  = P(QSQ2 and bl=b3) 
A A B = P ( ~ , = ~ ~  and bz=b*) . 

(STROBECK and MORGAN 1978). In terms of the previous sixteen inbreeding 
coefficients, 
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1 2N-4 
( @ ( A / A )  ( B / B )  + 2'(-4/.41 ( B / B ) )  f (2lv-1) ( 2 ~ ~ 3 )  (2N-1) (2N-3) AAB = 

( r ( A / A )  (3) (B) f r ( B / B )  (A) ( A )  f 4r(-4B) ( A )  ( B ) )  

(2N-4) (2N-6) 
(2N-I) (2N-3) A ( A )  ( B )  ( A )  ( B )  A ( A )  ( B )  ( A )  (B) 

if N > > 1. Therefore, the equilibrium values of these inbreeding coefficients are 
given by (4b), which are identical to those obtained assuming random mating 
with a population size N ,  = ( l - % S ) N  and a recombination value re = ( 1 - 4 )  r/ 
(I-%S) (STROBECK and MORGAN 1978). Therefore, the effect of partial selfing 
at equilibrium is to reduce the population size by a factor 1 - X S  and the 
recombination value by a factor (1 -S) / ( 1 -%S). 

There is a simple relationship between these five inbreeding coefficients and 
the quantities used by HILL (1975) to measure the amount of linkage disequi- 
librium expected in a finite population (SERANT 1976; STROBECK and MORGAN 
1978). If pi is the frequency of the ith allele Ai at the A locus, q, the frequency 
of the jth allele Bj at the B locus, and f i j  = piqj -I- Dij the frequency of the 
chromosome AiBj, where Dij is the linkage disequilibrium between Ai and Bj, 

then the expected sum of squares of the linkage disequilibria 

16UV [2 (U+V) +I [4 (U+V) +2R+5] 
E(X.2 0 , , 2 )  = 

e ,  (1+4U) (1+4V) [ 32(U+V) "48 (U+V) ' R f 1 6  (b+V)R2t-80(U+V) '+76(U+V)R+BR'+54( U f V )  +26R+9] 

and the squared standard linkage disequilibrium 

4 (274-V) +2Rf5 
Dii2) 

2 . 1  - 
U 2  = E( i , k  Z j ,2  Z pimqj91)- 16(U-I-V)2+24(UfV)R+8R2+32(USV)+26R+11 

i f k  f # l  

(HILL 1975). In Figures 1 and 2, the equilibrium values of E(:: D2,2 )  and a d 2  

are plotted for 5 Nr 5 IO" and with Np = Nv = 0.25 and 1.0 and S = 0.0, 
0.5, 0.9, 0.99 and 1.0. It is seen that E(<? Dij2) and ud2 remain significantly 
greater than zero for increasingly larger values of N r  as S approaches one and 
are not functions of the recombination value if S = 1. If r = 0, E(:? Di j z )  has 
a maximum value when U = V 0.505, whereas ud2 is a decreasing function 
of U 4- V.  Therefore, increasing the proportion of selfing increases the value of 
ud2, but may increase or decrease E(<? D c J 2 )  when r = 0. Thus, the squared 
standard linkage disequilibrium is probably the better measure of the amount 
of linkage disequilibrium in a finite population that is partially selfing. 

DISCUSSION 

The results in the previous section show that there is significant linkage dis- 
equilibrium due to random drift in a partially selfing population if 

Nere= N(1-S)r I I 
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Np= Nv= 1.0 

0.08 

0.06 

E(I: D ~ )  
0.04 

0.02 

0 

Nr 
FIGURE 1.-The expected value of the sum of squares of the linkage disequilibria for 

N p = N v = 0 . 2 5  and 1.0 and with S=O.O, 0.5, 0.9, 0.99 and 1.0 (---- S z 0 . 0 ,  ___-__  ~ ~ 0 . 5 ,  ~ ~ 0 . 9 ,  ~ ~ 0 . 9 9 ,  s= 1.0). 

and the mutation rates f i  and v are of the order of 1/N. It  is, therefore, appro- 
priate to examine the experimental data collected from populations of partially 
selfing plants to see if the observed linkage disequilibrium can be explained by 
random drift. The magnitude of (l-S) r will be used as an indicator of whether 
the observed linkage disequilibrium could be due to random drift. Since the 
mutation rate is generally assumed to be between the population 
size must be larger than approximately IO4 if the variation is to be maintained 
in the population. Therefore, (l-S)r must be less than approximately 10" 
before the observed linkage disequilibrium is likely to be the result of random 

In barley, Hordeum uulgare, ALLARD and his co-workers (ALLARD, KAHLER 
and WEIR 1972; WEIR, ALLARD and KAHLER 1972, 1974) found significant 
linkage disequilibrium between four esterase loci in Composite Cross v. Three 

and 

drift. 
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- _ - ~ -  7 

Np = Nv = 0.25 
I 

ad2 0.30 

0.20 

Nr 
FIGURE 2.-The expected value of the squared standard linkage disequilibrium for Ng= 

Nv = 0.25 and 1 .O and with S = 0.0, 0.5, 0.9, 0.99 and 1.0 (- - - - S = 0.0, - - - - - - 
szo.5, s z 0 . 9 ,  s=0.99, S=l.O). 

loci, A, B and C, are closely linked and the fourth locus is unlinked to the other 
three. The recombination value between the three linked loci are estimated to 
be rAE 0.0023, rdc = 0.0048 and rBc = 0.0059 (KAHLER and ALLARD 1970). 
The estimate of the proportion of selfing is S = 0.9943 (ALLARD, KAHLER and 
WEIR 1972). Therefore, the value of (1-S)r between AB, A C  and BC are 
0.000013, 0.000027 and 0.000034, respectively. These values are in the range 
such that linkage disequilibria could be generated by random dr'ft. However, 
since Composite Cross v was initiated in 1941, a transient analysis is probably 
more appropriate than the comparison of the observed sum of squares of the 
linkage disequilibria or the squared standard linkage disequilibrium to that 
expected at equilibrium. 

Also, the linkage disequilibrium between six loci, four esterase loci E,, EA, 
E,  and E,,, a phosphatase P,, and an anedoal peroxidase APX,,  has been anal- 
yzed in Avena hrbata,  wild oats, by ALLARD et al. (1972). Three loci, P,, A P X ,  
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and E,,, are linked, and the recombination values are ~ - P , - . ~ P x ~  = 0.04, l ; l P I 6 - - B 1 o  = 
0.23 and n 5 - % 1 0  = 0.25 (MARSHALL and ALLARD 1969). The proportion of selfing 
has been estimated to be approximately S = 0.98 (MARSHALL and ALLARD 1970; 
HAMRICK and ALLARD 1972). Therefore, the smallest value of (1 - S) I, which 
is between P ,  and APX,, is 0.0008. This value is small enough that random drift 
might have a significant effect if the size of the effective population is relatively 
small. The actual population size was estimated to be approximately 50,000. 

These two examples show that random drift might explain some of the linkage 
disequilibrium observed in natural populations. However, random drift is 
unlikely to be the cause of the observed linkage disequilibrium between loosely 
linked loci. 

This work was supported by a National Research Council of Canada Postgraduate Scholar- 
ship to G. B. GOLDING and Grant No. A0502 to C. STROBECE. 
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(N-2) (N-3) 
(n1+ II2 + 2rII3) + N(N,-I)  A(A)  (E) (-4) ( B )  

N-2 
+ N ( N - I )  
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(N-1)  (N-2) + N 3  (II, + nz + 4n3) 

where 
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r ( B / B )  ( A )  (A)' = s [ ? h @ ( A )  ( A )  f ?hr(B/B)  ( A )  (111 f ( l - s ) A ( A )  ( B )  ( A )  ( B )  

r(A/A) (B) (B)' = s [ l / e @ ( B )  ( B )  + l / e r ( A / A )  ( B )  ( B ) ]  f (1-s) A ( A )  ( B )  ( A )  ( B )  

r ( A / B )  ( A )  (8)' = S [ % r ( A B )  ( A )  ( B )  f l / e r ( A / B )  ( A )  ( B ) ]  + (l-s) A ( A )  ( B )  ( A )  ( B )  

neglecting terms of O(A) or less, and N 
1 1 

@ ( A  ) ( A  1' = w [ % f l/e * @ / A  1 1 + ( 1 - m -2P ) @ ( A )  ( A  ) 

1 1 
@ ( B ) ( B ) ' = r  [?h+%*(B/B)I + ( l - T - 2 v ) @ ( B ) ( B )  

1 1 
N @(AB)(AB) '  =- [%*(AB/AB)I  + ( 1 - ~ - 2 ~ - " " - 2 ' ) @ ( A B ) ( A B )  $-2 '@(AB)  ( A / B )  

(AB) 1 
N r ( A B )  ( A )  (B)' = - [ % @ ( A )  ( A )  + % @ ( A B / B )  ( A )  + % @ ( B )  ( B )  + % @ ( A B / A )  ( B )  

+ % @ ( A B )  ( A B )  + % @ ( A B ) ( A / B ) l  

+ ( 1 - - - 2 p - 2 v - r ) r ( A B )  ( A )  ( B )  + ' r ( A / B )  ( A )  ( B )  
3 
N 

1 
A(A)  ( B )  ( A )  (B) '  z N [%+%@(A) ( A )  f % ~ ( B / B )  ( A )  ( A )  + % @ ( B )  ( 8 )  f % ~ ( A / A )  ( B )  ( B )  

6 
N + 2 r ( A B ) ( d ) ( B )  + 2 r ( A / B ) ( A ) ( B ) I  + ( 1 - - - 2 p - 2 v ) A ( A ) ( B ) ( A ) ( B )  

neglecting tenns of o(&) or less. 


