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ABSTRACT

The linkage disequilibrium expected in a finite, partially selfing population
is analyzed, assuming the infinite allele model. Formulas for the expected sum
of squares of the linkage disequilibria and the squared standard linkage
disequilibrium are derived from the equilibrium values of sixteen inbreeding
coefficients required to describe the behavior of the system. These formulas
are identical to those obtained with random mating if the effective population
size N, == (1—14S)N and the effective recombination value r,= (1—8)r/
(1—%8), where § is the proportion of selfing, are substituted for the popula-
tion size and the recombination value, Therefore, the effect of partial selfing at
equilibrium is to reduce the population size by a factor 1—1%S and the recom-
bination value by a factor (1—S8)/(1—1S).

THERE have been several studies on the amount of linkage disequilibrium

found in natural populations. Most of these studies found no significant link-
age disequilibrium between loci that are not associated with an inversion
(LEwonTIN 1974; LaNcrLEY, ITo and VoeLkEr 1977). However, in plant popu-
lations that are partially selfing, a significant amount of linkage disequilibrium
is consistently present (Brown 1979). This observed linkage disequilibrium
could be generated either by selection with epistatic interactions between the
loci or by random drift. In order to determine whether or not this observed
disequilibrium could be a result of random drift, it is necessary to know the
amount of linkage disequilibrium expected in a partially selfing finite population
without selection.

The expected amount of linkage disequilibrium in a finite population with
random mating has been studied extensively. These studies have assumed two
alleles at each locus with no mutation (Hirr and RoserTson 1968; Omra and
Kimura 1969) or an infinite number of alleles at each locus with mutant alleles
differing from all pre-existing ones (Hirr 1975)i.¢., the infinite-allele model of
Kimura and Crow (1964). In this paper, the amount of linkage disequilibrium
expected in a finite population assuming the infinite allele model and partial
selfing is derived using inbreeding coefficients. It is shown that the formulas
for the expected sum of squares of the linkage disequilibria and the squared
standard linkage disequilibrium are quivalent to those from random mating with
areduced recombination value and a reduced population size. -
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THEORY

Before considering random drift of two loci in a finite population that is
primarily selfing, the one-locus model is developed.

Let the population consist of V diploid individuals that produce offsepring by
both selfing and outcrossing. Let S be the proportion of the offspring of an indi-
vidual that are produced by selfing and 1-S the proportion of offspring produced
by outcrossing. Each of the N individuals in the next generation is the offspring
of either one individual selected at random (if it is produced by selfing) or two
individuals selected at random without replacement (if it is produced by out-
crossing) from the present generation. If § = 1/N, then there is random mating.

Two inbreeding coefficients or descent measures are needed to describe the
behavior of the system from one generation to the next. One coefficient, ¥ (4/4),
is the probability that the two genes of an individual are identical by descent.
The other coefficient, ®4)(4), is the probability that two genes selected from two
different individuals are identical by descent. (The notation used for the sub-
scripts is explained when considering the two-locus model.) Since the proba-
bility of an offspring having its two genes identical by descent is % -+ 4% (4,4)
if it is produced by selfing and @4 (4 if it is produced by outcrossing,

Yun' = (1=p)? [t ¥ /) + (1—8) Pusa ] (1a)
1 1
@asa) = (1—p)? [ﬁ(%“"%‘l’m/m) + (1'_—ZV) ®a/a) ] (1b)
where p is the mutation rate to unique alleles.
1 . .
It N>>1 and u=0 (-N) , then these equations can be approximated by
Tiaray =S(YVot16¥ ) + (1=8) 2w w (2a)

if terms of O (%) or less are neglected, and

1 1
D4y a) = W(1/2+1/2‘I’<A/A)) + (1— " —21) @ (4) () (2b)

) or less are neglected. At equilibrium

if terms of O ( ]\1/.2

o %8+ (1=)eww

from (2a) and substituting this value into (2b)

A 1 1
D = prd
WO T TINy — NS 1+ 4Ne *

(3a)
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and therefore

4 142NuS _1+2NuS
WA T T ANL —2NpS ~ 1T+ 4Ng °

(3b)

where N, = (1—14S)N. It can be verified that these are the approximate equi-
librium values of equations (la) and (1b) by substitution or from the theory
of perturbed matrices (section 5.5, NosLe and DanieL 1977). If @, is the proba-
bility that two genes chosen randomly from the population without replacement
(not necessarily from two different individuals) are identical by descent, then

PO ( 1 ) . o
®, = oy Ywa + 1"‘2]\,—_1 Py = Py
since N>>1 .

We now turn our attention to the two-locus model. Denote the two loci by A
and B, and let r be the recombination value between them. Let /V be the number
of diploid individuals, S be the proportion of selfing and u and v be the mutation
rates to unique alleles at the A and B loci, respectively.

Sixteen inbreeding coefficients are required to describe random drift of two
loci in a finite population that is partially selfing. These inbreeding coefficients
involve randomly choosing chromosomes without replacement from one, two,
three or four different individuals and are denoted by ¥, @, T and A, respectively.
The following notation is used in the subscripts: parentheses are used to separate
the genes contributed by different individuals, and slashes are used to separate
the genes contributed by different chromosoms of an individual. For example,
®(4p)(4/8) 1s the probability of identity by descent at both loci if the genes at the
A and B loci are chosen from one chromosome of one individual and from differ-
ent chromosomes of another individual. If the genes on the two chromosomes
of an arbitrary individual are denoted by ai:b;: and ai»bi., respectively, then
the sixteen inbreeding coefficients are given in Table 1.

The recursion equations for these sixteen inbreeding coefficients are given
in the APPENDIX. At equilibrium,

b %St (U-8)éww
(474 = 1= 148

b St (A-8bme
(B/B) — 1— 1/28

(4a)

S _ %S+ (1—8)®um um
(AB/AB) — 1 — 1/28

A _ Y68 upyum + (1=8)Twusy ) ®
(4B) (4/B) = 1= 145
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TABLE 1

Definitions of the sixieen inbreeding coefficients

Taya) = P(a; =a,;,) ¥ p/5) =DP(b;,=b;,)
gy 0y = Pla;=a;y) ® 5) ) = Pby=bj))
(a8/am) = P(aj,=a;; and by =b;,)
® (4p) (ap) = Pla;;=a;; and b;;=b;,)
® 4p) (as5) = Pla;=aj, and by;=b;,)

® a5y (a) — Plaj =a;; and by, =b;,)
P 474y 3y = Pla=a;, and b;;=b;;)
P40y 878 = P(@;:=0; and bilsbjz)
®a/8)asp) = P(@;1=a; and bhzbjz)
T(48)(4)(B) = P(a;;=a;, and b;,=by,)
T (g/p) 4y (4) = Plaj;=ay, and b;,=b;,)

T'a/4) (B (B) = P(a;,=a;, and b;;=by,)
T (4/B)(4) (B) = P(a;,=a;, and b;,=by,)
A4y (B) (4) (B) = P(a;;=a;, and b,-lzbu)

_ The genes of the two chromosomes of an individual are denoted by a;,5;, and a;,b,,, respec-
tively. (“=" is read “is identical by descent to.”)

A A
Y@y + (1=8)T sy )&

A
P (as/By (1) = 1-158
1 A A
B asu s = Yod sy () T (1-8)Tum ) 3
5 =
1— 18
(4a)
Bonm oyt = %82y w + (1= Awm w e
1— 1S
Boarar 5y 3y = 1%Se@) @) + (1=8) A ) w )
1 — %S
x 1% ST + (1-8)A
Ta/5) 4y (5) = (4B8)(4) (B) ( ) (4) (B) (4) (B)

1— 18

ot oy = STV WYY MO V) RABTHV) +2REG]H32UHY YUV Y BIAGWUAV) R 80U+ V)16 U4V RESRHS4(UHV) +26R+0
Ay (V) B2 ULV T8 ULV R HI6 (UTV) R 80UV 76UV ) B8R F54(0+V) ¥e6RY9]

Samrcarey = STV UV I8+ )ALV P RHG(U+V) B0V YHTO -V ) RABRABHU+V) +96R+9
(1-+H40y (1+4V) B2 TV 48 (U VR H6 (U VYR80 (T+V)*+76 (U+V) RF8RF-64(U+V)+26R+9]

32UV+32(U+V) *+48(U+V)*R+16(U+V)R*480(U+V)2476 (U-+V)R+8R?*+-54 (U+V) +26R+9

A =
W (T30 A T4V B2 UV 48 (U TV R 16 (UFV) R 80UV ) 76 (U VY RTS8 I 54 (V) T26RT9] *

from (A1) and substituting these values into (A2)

A 1

Pww =T

N 1

Lm0 = gy (4b)
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3 A A 3 A
US(1+%8) + 78 (1= (2ww T 2w w + (1=)* U+ 5 dwmwm

Dasaymm = 1+ 1%8) (1 — 14S)®
A 3 A 3 A
. Y48 (1+148) @45 (am) TS U= unwe + (1= U+ 5N 2wmwm
Dasmasm = (1+1S8) (1 — 1.5)*
(4b)
where

U=N{1—%S)p=Nep
V=N(1—18)u=Naw
R=N({1—-8)r =N(1—1%8) (1—8)r/(1—148) = Nor, .

The equilibrium values of the other inbreeding coefficients are obtained by
substituting the equilibrium values (4b) into (4a).

In order to compare these results for a partially selfing population to the
equivalent results for a random mating population, it is necessary to define five
further inbreeding coefficients. Three of these inbreeding coefficients involve
choosing at random two chromosomes without replacement from the population;
one coefficient, choosing three chromosomes; and one coefficient, choosing four
chromosomes. (The chromosomes are not necessarily from different individuals.)
If an arbitrary chromosome is denoted by a;b;, then the five inbreeding
coefficients are

&, = P(a1=a,)

@ = P(b,=b,)
&5 = P(ay=a, and b=b,)
Tup = P(as=a, and b,=b;)
Ay = P(ay=a; and b.=b,) .

(StroBECK and Morean 1978). In terms of the previous sixteen inbreeding
coefficients,

1 1
@A:m‘P(A/A) +(1_m)q)(A)(A) = q)(A)(A)

1 1
Oy = o Tzm T (1“7]’\,‘_—1“)‘13(3)(3) = 2@

2N—1
Bup=——— W (apap) + (1‘—; D 4By (aB) == Prap) ()
oN—1 ¢ 2N—1
. ON—4
Tup = m(‘l’mmws) T Qusmy i T usmw) T g

Tamyaymy = T'ap) )
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1 _ IN—4
= ON—1) (2N—3) (@ /a5 T 280 873)) + BN—1) (2N—3)
(T @ T Dasm @ 4T as)y )

2N—4) (2N—6
+ EQN—1§ EQN“3; A ) @B T Au) e @)

Aap

if N>>1. Therefore, the equilibrium values of these inbreeding coefficients are
given by (4b), which are identical to those obtained assuming random mating
with a population size N, = (1—%S) N and a recombination value r, = (1—S)r/
(1—148) (StroBECK and Morcan 1978). Therefore, the effect of partial selfing
at equilibrium is to reduce the population size by a factor 1 — 1448 and the
recombination value by a factor (1—S)/(1—%S).

There is a simple relationship between these five inbreeding coefficients and
the quantities used by Hirr (1975) to measure the amount of linkage disequi-
librium expected in a finite population (SEranT 1976; STROBECK and MoRrGAN
1978). If p; is the frequency of the ith allele A; at the A locus, ¢; the frequency
of the jth allele B; at the B locus, and fi; = p;q; + D;; the frequency of the
chromosome A;B;, where D;; is the linkage disequilibrium between A; and Bj,
then the expected sum of squares of the linkage disequilibria

- 16UV[2(U+V)+][4(U+V)+2R+5]
(1440) (1+4V) [32(U+V)*+48(U+V) *R+H16 (U+V) R*+80(U+V ) *+ 76 (U+V) R+8R*+54(U+V ) +26R+9]

E(_EE?J Di?)

and the squared standard linkage disequilibrium

E(22 Dis?)
2 i _ 4(U-+V)+2R+5
¢ E( Fk ],El pipvgiqi) 16 (U+V)*+24(U+V)R+8R*+32(U+V)+-26R+11
ik jo£l

(Hrir 1975). In Figures 1 and 2, the equilibrium values of E(22 D;;*) and o4’
are plotted for 10~ < Nr < 10® and with Ny = Nv=0.25 and 1.0 and §= 0.0,
0.5, 0.9, 0.99 and 1.0. It is seen that E(32 D;;*) and o remain significantly
greater than zero for increasingly larger values of Vr as § approaches one and
are not functions of the recombination value if $=1. If r =0, E(22 D;;*) has
a maximum value when U =V = 0.505, whereas ¢4° is a decreasing function
of U + V. Therefore, increasing the proportion of selfing increases the value of
o, but may increase or decrease E(Z2 D;;*) when r= 0. Thus, the squared
standard linkage disequilibrium is probably the better measure of the amount
of linkage disequilibrium in a f{inite population that is partially selfing.

DISCUSSION

The results in the previous section show that there is significant linkage dis-
equilibrium due to random drift in a partially selfing population if

Np.=N{1-8)r<1
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Ficure 1.—The expected value of the sum of squares of the linkage disequilibria for
Nup=Nvr=025 and 1.0 and with §=00, 0.5, 09, 099 and 1.0 (———— §=0.0,
—————— §=05, —-—- §=09, —--—-. §=099, ———— §=1.0).

and the mutation rates p and v are of the order of 1/N. It is, therefore, appro-
priate to examine the experimental data collected from populations of partially
selfing plants to see if the observed linkage disequilibrium can be explained by
random drift. The magnitude of (1—S)r will be used as an indicator of whether
the observed linkage disequilibrium could be due to random drift. Since the
mutation rate is generally assumed to be between 10~ and 10-%, the population
size must be larger than approximately 10* if the variation is to be maintained
in the population. Therefore, (1—S)r must be less than approximately 10-*
before the observed linkage disequilibrium is likely to be the result of random
drift.

In barley, Hordeum vulgare, ArLarp and his co-workers (ArLrLarp, KAHLER
and WeIR 1972; Weir, Artarp and Kamcer 1972, 1974) found significant
linkage disequilibrium between four esterase loci in Composite Cross V. Three
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Ficure 2.—The expected value of the squared standard linkage disequilibrium for Nz =
Nv = 0.25 and 1.0 and with § = 0.0, 0.5, 0.9, 0.99 and 1.0 (— — —— 8§ =00, — — — — ——
§=05 —-—-8=09, —-—- §=099, ————— §=1.0).

loci, A, B and C, are closely linked and the fourth locus is unlinked to the other
three. The recombination value between the three linked loci are estimated to
be ra.z=0.0023, r4c = 0.0048 and 7z = 0.0059 (KamrLer and Arrarp 1970).
The estimate of the proportion of selfing is § = 0.9943 (Arrarp, Kamrer and
WEeir 1972). Therefore, the value of (1—S)r between AB, AC and BC are
0.000013, 0.000027 and 0.000034, respectively. These values are in the range
such that linkage disequilibria could be generated by random dr’ft. However,
since Composite Cross V' was initiated in 1941, a transient analysis is probably
more appropriate than the comparison of the observed sum of squares of the
linkage disequilibria or the squared standard linkage disequilibrium to that
expected at equilibrium.

Also, the linkage disequilibrium between six loci, four esterase loci E,, E,,
E, and E,,, a phosphatase P;, and an anedoal peroxidase APX;, has been anal-
yzed in Avena barbata, wild oats, by ArrLarp et al. (1972). Three loci, P;, APX;
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and E,,, are linked, and the recombination values are re;—srx; = 0.04, rarx;—s, =
0.23 and res—5;0=0.25 (MarsHALL and ALLarp 1969). The proportion of selfing
has been estimated to be approximately S = 0.98 (MarsuALL and ArLarp 1970;
Hamrick and Arrarp 1972). Therefore, the smallest value of (1 — 8)r, which
is between P; and APX;, is 0.0008. This value is small enough that random drift
might have a significant effect if the size of the effective population is relatively
small. The actual population size was estimated to be approximately 50,000.

These two examples show that random drift might explain some of the linkage
disequilibrium observed in natural populations. However, random drift is
unlikely to be the cause of the observed linkage disequilibrium between loosely
linked loci.

This work was supported by a National Research Council of Canada Postgraduate Scholar-
ship to G. B. GoLpiNG and Grant No. A0502 to C. STRORECK.
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APPENDIX
The recursion equations for the sixteen inbreeding coefficients in Table 1 are:
Yoy’ = (1=p)* [S(Yt¥¥u/mw) + (1=8)@ww]
Ym’ = (1) [S(Yet1%¥m/m) + (1-8) 2w m]

pww = =02 [ %) + (1= 5 20w ]

1 1
Sz’ = (1—v)? [—N(i/z‘f“i/z‘l’(s/m) + (1“7V")‘1’(B) (B)]
Yagram = (1‘—_/.L)2(1—v)2{8[(1"—r) 2Ag F2r (1—r) Az -+ r2A.] + (1—8) & ap (AB)}
r — 2 1 . 1
taman’ = =)= 1= a+ (1= 1) camian ] +
1 1 1 1
2r(1-r) [WAZ +(1'— N) Dz (A/B):I +r [TV—Al + (1“‘ jv‘)'I’wB) (A/B)] }

P ap) )’ = (1‘“#)2(1“")2{8{(1_”) [iAa“I'(l_i)Ql:l +r[1ﬁAs

+(1-%)a: [y + a-s) (- [ 4 Qg-l-]\l](h

+(1- __)r(,w)w(m] +r[ o+ g4+(1 ——)r(A,B,(A)(B)]}}
Senmay = (1= 0= g8 [ La+ (1= e ]+ -9 (- [ Lo
ot (1= 2)rmwe | +r[ 5o,
+ o+ (1 2 e umwm 13}
Sunn e’ = (=t As [ a+ (1= 1) e ] + 1-8) (-0 [ Lo,

+ ]1\194+(1 ”—)rms)mw)] +r[—1—92
1

N
+N Q.+ (1‘—— ]—V—)I‘(A/B) (4) (B} :I }}
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1
P asn iz = (1—=p)*(1—v)? {S[ A3+(1 )Qs] +8(1-8) [——‘P(AB/A)(B)

+ (1—N-)I‘(A/A) (3)(B) ] +8(1-S8) [W@(AB/B) (4)

2 2 4(N—2
+(1“N)1“<B/B)(A>(A)] + (1‘—3)2[N(N_1)96+ ( )Hs

N(N—1)
—9 —
+ W&A) (B) (4) (B) ] }

Beasmyam’ = (1—p)2(1—v)? {82[—A3+(1——-—)Qe] +28(1-8)[ 2 93+1\1794
1
N(V—1

N—2 N—2) (N—3
+N(N—1) (11, + 11, + 211,) +(—N()N(———1)")—A“’ ) (B)] }

£ (= 2rumww ]+ 4= gy s+ a0

’ 1 N—1
Tus m’ = (1‘“#)2(1'“")2{( 1-r) LWAS T (@ 0+ 00)

N—1)(N—2 N —1
( ___)TV(_Z____)__I‘(AB)(A)(B)]-i—r[Nz (92—1-93-1-94)

N—1)(N—2
(——%——Z‘I‘mw) (4) (B ] }

N—1) (N—2
T(B/B)(Am)’:(1*#)2(1'—02{3[;%1&3 +91 90, + 0, + 4 z)v( L, ]
1 4(N—2)
N (&) Ny
WA(AHB)M)(M ]}

+(1-8) [ HN2) o

+

1 N— N—1) (N—2
T i’ = (—u)*(1—)*{8 [zwAg o (205 1 20) + NHWN2)

N2
1 4(N—2
+ (1—=8) [—N*(N—D(&.‘l'ﬂs) +N——((N—1)) TIs
(N—2) (N—3),

+—N(NTA(AHB) (4)(B) :l}

1 N—1
Toasm o’ = (1—p) 2(1’“")2{3 ahs T (e + Qu+05)

(N—l)_(_N_%lng] + (1—8) [N(N £y (@5 90)

N—2 (N—2) (N—3)
+N(N—‘1) (H1+H2+2H3) +WA(A)(B)(A)(B)]}
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1 N—1
Ay ey )@ = (1—p) 2(1-—v)2[]-v-§A3 + _Ns_(293 4+ 20, + Q5+ 294)

+ ———————(N—lg\gv ~2) (1, + 10, + 411,)
N—1)(N—2)(N—3
+ ( ) N ) )A(A)(B)(A)(B)] )

where
Ay = Yo + Yo ¥ (un/am)
A= Yo ¥ asay -+ YoTs/m)
As = Yo+ Y4¥ aya) + YaT (a5 + Y4 ¥ un/am)
Q. = Y2 ®an) am) T Y2 P(ar) (arB)
Q2 = Y98 (un) (asm) + Y2 Pass) (arm
Qs = %@ ) T Y22 us/0) (8
Q= %) () T YoPus/n ()
Qs = Vo + Ya¥ aya) T Y%¥ /m) + Ya®asa) s/3)
Q6 = Ya®am) am + Yo @ram carmy T YaPiasm arm
IL = Y655 + YT wa )
IL = Y%® )y + ¥%lemww
s = YT sy T YTwm o -
It N>>1, p=0 (Ti]—) , v=0 (-]1\7) , and r=0 (71/—) , then these equations can be
approximated by
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LINKAGE DISEQUILIBRIUM 789
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neglecting terms of O(—le) or less, and
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neglecting terms of 0(1%2) or less.



