
SOME NATURAL VIABILITY SYSTEMS FOR A MULTIALLELIC 
LOCUS: A THEORETICAL STUDY* 

SAMUEL KARLIN 

Department of Mathematics, Stanford Uniuersity, Stanford, California 94305 

Manuscript received August 8, 1980 
Revised copy received December 9, 1980 

ABSTRACT 

The maintenance of genetic polymorphism under various natural structured 
viability regimes us. general unrestricted fitness assignments are compared. 
The selection models considered include a generalized dominance fitness sys- 
tem, a generalized viability model based on allelic activity values, viability 
matrices based on multilocus activity levels, viability matrices defined by 
partitioned ‘‘resource’’ or “substrate” variables, and circulant-type viability 
matrices. A number of examples that support these formulations are discussed. 
Detailed results on the nature of the genotype frequency equilibrium configura- 
tions for the specified viability models are presented. An increased likelihood for 
a globally stable equilibrium is predicted for the more structured viability 
models. 

M U L T I P L E  alleles have been documented for many morphological, physio- 
logical, serological and electrophoretic markers (e.g., see reviews of FORD 

1975; HARRIS 1975; NEVO 1978; BROWN 1979). These include genes responsible 
for color and shape patterns (e.g., Cepaea, Papilio) , a host of red and white blood 
typings, (e.g., primates) , inversion regions (Drosophila) , incompatibility and 
sex determinants (e.g., Primula, Hymenoptera), segregation distorter genes 
(Drosophila) , protein variants (e.g., esterase IY, Xdh)  and representations of 
supergenes. These conditions frequently manifest a spectrum of dominance 
orderings and variable expressivity that may be influenced by environmental 
effects and specific and/or nonspecific genetic modifiers. 

The continued refinements and developments in biochemical separation tech- 
niques and sequencing methodology have led to a wider recognition of the ex- 
istence of multigene families (blocks of very tightly linked genes). These include 
chorion genes in the silkworm (GOLDSMITH and BASEHOAR 1978), immunoglobu- 
lin series (e.g., SEIDMAN et al. 1978; TONEGAWA et aZ. 1978), androgen-regulated 
major urinary proteins in mice (HASTIE, HELD and TOOLE 1979), copies of a- 
hemoglobin chains, other repeating units, etc. I t  is surmised that gene duplica- 
tion and subsequent partial differentiation tend not to be deleterious and, thereby, 
they can greatly augment allelic diversity (OHNO 1970; BODMER 1979). More- 
over, the discovery of the elaborate gene domain incorporating mRNA trans- 
cription of flanking regions, intervening (intron) segments with subsequent 
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processing of deletions and splicing further supplement the multiplicity and 
complexity of the allelic spectrum (GILBERT 1978). 

When tight linkage and fitness interactions occur together among several loci, 
the study of these multilocus models effectively reduces to one-locus multiallele 
models. Then, by invoking the small perturbation principle (KARLIN and MC- 
GREGOR 1 972a,b, 1973), the results available for multiallele one-locus selection 
models can be translated into a number of properties pertinent to multilocus 
multiallele systems associated with small recombination rates (see also KARLIN 
1979). 

To further our theoretical understanding of one-locus multiallelic systems, we 
developed and investigated a series of multiallele selection models founded on 
dominance rela tionships among phenotype classes, interactions accommodating 
biochemical allelic activity levels and symmetries or invariants endowed to 
heterozygote and homozygote genotype groups. Several results are presented on 
the nature of polymorphisms for these models. 

Section 2. The selection model 
The standard one-locus multiallele selection model has the following structure. 

Consider a population characterized by r possible alleles A,,A,, . . . , A,. at a given 
locus. The population frequency vector of the r alleles for the current generation 
is (xl, z2, . . . , x,). Random mating is assumed with discrete nonoverlapping 
generations and differential viability selection, where the fitness (viability) 
matrix is given by W = ((wij l l r i , j c 1 .  Under these ccnditions, the resulting 
frequency state in the next generation is given by 

r 
xi B wijxj 

z wi jxixj 

3=1 

x’, = , i =  1,2 ...., r. (1) 
i, 3=1 

r 

%, 3=1 
The denominator W (x) = , wijxixj is the mean fitness function at population 
state x, which is proportional to the mean number of progeny persisting to the 
next generation. 

This paper delineates three classes of one-locus multiallele viability selection 
structures that may possess biological revelance. These are: 

(i) Selection expressing partial or complete dominance relations 
among the allele types and associated heterozygote classes; 

(ii) Selection as a function of allelic activity level; (2) 
(iii) Selection induced by patterns of multilocus associations. 

We first highlight a number of concrete classes of viability matrices before 
describing results on their stable equilibrium forms. 

I. Generalized dominance fitness model (fitness correlated with a dominance 
hierarchy among the possible alleles) : The alleles (or haplotypes) are assumed 
to possess an intrinsic dominance ordering, say, 

A,  < A ,  < A ,  < . . . < AT-, < A ,  (3) 
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such that allele Ai is dominant to allele Ai for i < i, where 

459 

(4) 
wij = fitness (AiAj) = aj for all i < j 
wii = fitness (AiAi) = al ,  j = 1,2,. . . ,r 

so that only the dominant allele determines the fitness expression in a heterozy- 
gous state. Note that the homozygote fitness a, need not agree with ai, thus also 
allowing a distinction in the dominance relation between heterozygotes and 
homozygotes, possibly due to pleiotropic effects. 

This model of multiple alleles subject to complete or partial dominance rela- 
tionships is motivated by numerous natural examples. A classical case is the me- 
lanic trait in the moth Biston betularia involving three main color morphs with 
a dominance ordering black > grey > white (KETTLEWELL 1973). In  the lady- 
bird beetle, Adalia bipunctata (CREED 1971a,b) , a complete dominance series of 
at least 12 morphs exists. Shell color for Cepaea nemoralis (CAIN and SHEPPARD 
1952; FORD 1975) involves a dominance hierarchy, including phenotypes white < 
pale yellow < yellow < dark yellow < pale pink < pink < dark pink < brown, 
further exhibiting strong (epistatic) linkage of the brown phenotype with band- 
ing pattern. There are relevant dominance structures in melanic feral pigeons 
( MURTON, WESTWOOD and THEARLE 1973), in melanic Skua ( O’DONALD 1979) 
in colors of the male ruff, Philomachus pugnaz, and a polar dominance series 
polymorphism in the guppy, Poecilia reticulata. The classic example of Papilio 
dardenus ( SHEPPARD 1958; FORD 1975) exhibits a hierarchy of (not complete) 
dominant alleles in a supergene structure. Only a few combinations are present, 
mostly those that produce mimics. 

Fitness with dominance ordering may relate to the period of maturation in 
plant populations, mating pattern, competition, predation and other ecological 
correlates. Coat color in a variety of animals and plants, spot formation and de- 
gree of smoothness often fall under simple gene control (or involve a few genes 
that are not always closely linked) that exhibit a hierarchical dominance structure 
(e.g., SHEPPARD 1958; SEARLE 1968; O’DONALD 1980; FORD 1975; JONES. LEITH 
and RAWLINGS 1977). 

Some traits relevant to sexual selection, preferential and assortative mating 
propensities can also be mediated in terms of multiallelic models subject to forms 
and levels of dominance relations (O’DONALD 1980; KARLIN and O’DONALD 
1981). The frequency distribution of phenotypes in relation to their dominance 
hierarchy can, in some cases, be directly interpreted in terms of a behavioral 
model for the mechanism of mating choice. 

Further, there is a wide scope of dominance relations for biochemical activities, 
e.g., a single autosomal locus governs lactase production and involves at least 
three alleles, L, I, and Z, with L dominant to 1, and I,, and 1, dominant to Z, (EHR- 
MANN and PARSONS 1976, p. 50). The mode of inheritance of many genetic 
diseases that are classified as dominant or recessive also frequently entails multi- 
ple alleles (MCKUSICK 1978). Partial dominance structures abound in serological 
identifications (e.g., ABO, Duffy and the Rh blood types, Gm series). 

11. A generalized viability model based on allelic activity values: A determi- 
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nation of fitness induced by an appropriate (e.g., biochemical or physiological) 
performance level has an activity vi associated with allele Ai, with the genotype 
fitness expression 

wij = f ( ~ i ,  ~ j )  = f ( ~ j ,  U ; )  . ( 5 )  
Generally, wi j values of the above form may relate to an enzyme kinetic mecha- 
nism that is translated into some kind of genetic selection. Without loss of gen- 
erality, we will stipulate different activity levels, vl, uz, . . . , vr for each allele, so 
that allele Ai and its activity level vi are equivalent descriptions. 

An important special case of ( 5 )  has 

f ( %  Vi> = f(lvi-uii> = C[i- i [  , (6) 
SO that the fitness of A,Aj depends only on the difference of the indices involved. 
We refer to a fitness matrix of the form (6) as the distance index viability model. 

One possible situation for a sequence of alleles whose fitnesses depend on the 
difference of the allele indices is the set of temperature-sensitive monomers in- 
dexed by the temperature of peak activity. Suppose: (i) The organism containing 
the alleles passes through a range of temperatures on a regular basis. (ii) At 
optimal temperature, the monomer provides sufficient activity to saturate the 
system. Then, if the horizontal axis is temperature-scaled to reflect the extent of 
time that the organism spends at each temperature, and the vertical axis describes 
the activity level for an allele functioning at the indicated temperature, a possible 
schematization is shown in Figure 1. 

In the spirit of model (6), the fitness conferred by this activity performance is 
specified such that the amount of activity below the saturation level increases 
with the distance between the optimal temperatures. 

As a second example, some kinetic considerations of enzymes suggest the func- 

, a, 6 > 0 is appropriate to ( 5 )  (cf., GILLESPIE 1978). This 

is plainly monotone increasing in ( and 17. When f(t, 9 )  is monotone in the same 
G+t+rl tionf(5, 7) = 

FIGURE 1 .-The activity level for alternative alleles or  genotypes functioning over certain 
temperature ranges. 
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direction for both variables, it is easy to prove that a unique stable fixation evolves 
under (1  ) to the allele that maximizes f (vi, vi). 

Other prescriptions of f (v i ,  vi) can be based on crystallographic, structural, 
specificity, type of reaction, allosteric properties and inhibitor factors. If f (5 ,  17) 
is not monotone, perhaps with an intermediate optimum or when interaction from 
different activity levels enhances fitness (e.g., over a range of temperatures, or 
chemical environments), then the expression of ( 5 )  can lead to a stable poly- 
morphism. In this connection, see Results 3 and 5 of Section 5. 

111, Viability models based on multilocus activity values: A few examples of 
viability regimes for multilocus systems involving aggregate or compounded al- 
lelic effects have been investigated by numerical means. These are proposed as 
mechanisms relevant to quantitative and polygenic inheritance. We describe a 
general construction of viability values determined by the activity values of the 
allele components and the conglomerate genotype. 

Suppose that at locus k the feasible alleles consist of {AIk) , . . . , A:&)}. Consider 
an n-locus model based on interactions accruing from the allele-haplotype- 
genotype composition. For each allele, there exists an intrinsic activity value 
U F), e.g., activity level, performance index, reaction rate. Therefore, each gamete 
.$ = (At1) A!Z) , . . . ,A!")) has an associated activity vector [vI1), u ! ~ )  , . . . , 
u ( ~ ) ] .  We postulate that the fitness of the genotype 

'1 '2 'a 1 'a 

2.n 

is determined by an appropriate function of the constituent allele variables 
denoted by f(&,  tZ , . . , , &; vl, v Z  , . . . , yn). In particular, the fitness of g is 
w(g)  = f(v!" , . . . , ?I(?); u!1) , . . . , v!")) . 

11 " *  31 3, 
The simplest prescriphon for f has 

where the fitness depends on the aggregate allelic value. The selection is direc- 
tional when + is montone increasing in its argument. If + is unimodal, the 
expression of (8) is sometimes called the optimum (or intermediate) selection 
model. 

There is a qualitative divergence in the evolutionary (stable equilibrium) 
realizations for viability regimes of the structure (8) depending on whether + is 
concave or convex, as depicted in Figure 2. 

Other versions can reflect loci effects, dominance relations among gametes or 
more complex intra- and interlocus interactions. In this perspective, an 
assignment of interest takes 

n 

w ( g )  ,= +[.X '==I. 1.5 -vi11 (9) 

such that the viability value is  a function of the aggregate number of hetero- 
zygous loci (KARLIN 1977).  
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I 

- I 
convex concave 

FIGURE 2.-Examples of optimum fitness models. 

IV. Viubility mrrtrices defined by partitioned “resource” or “substrate” uariu- 
bles: An important parameterization used by MCARTHUR (e.g., 1971) for the 
study of ecological competitive systems pertains to the concept of species-specific 
resource utilization and production functions. In  a parallel manner, it is of 
interest to investigate the equilibrium structure fo r  a viability matrix W =  
Ilwijlj:with wij represented in the form 

(10 )  w . .  23 = [ ( x ( i )  , X(i)  ) ]  , i , j= l ,  ..., r 

where {x (~ ) } ;  constitutes a sequence of linearly independent vectors and [ (z,w) J 
stands for an appropriate bilinear function in the vectors z and w. Following (IO) , 
the vector x(<) = (zy), xIi)  , . . . , xr)) associated with the allele Ai is specified 
such that each component contributes to fitness in a prescribed manner. For 
allele Ai, the components in x(i)  may correlate with zge, an activity param- 
eter and/or performance indices with respect to chemical, electrical or other 
environmental conditions. 

More specifically, we consider the fitness of the genotype A,Ai determined in 
the manner 

where the coefficients hi > 0 are fixed weights (scalings to common measurement 
units) independent of the genotype. The first component, x i i ) ,  can be interpreted 
as providing the optimum contribution to viability for allele Ai, while the other 
variables x:), xi i )  , . . inhibit the natural functioning of allele Ai. In this con- 
text, the variable x i i )  corresponds to the natural substrate for the gene (enzyme) 
activity at appropriate temperature and pH conditions; whereas, the variables 
xli) , . . . , x:) can be construed as competitor substrates that detract from the 
effectiveness of allele Ai. For example, for a hemoglobin variant Ai, xli) may 
refer to a proper oxygen pressure, while x i i ) ,  x(3i) , . . . refer to the inhibitor 
molecules CO,, DPG and nonoptimal pH ambience. In  the model of ( 11 ) , the 
allele vectors x ( ~ )  are measured on a multiplicative scale, but other standardiza- 
tions can be handled by similar means. 

Consider the viability matrix 

w= 1 1  [ ( X ( V ) , X ( P ) ) ] I 1 ~  - (12) 
V 9 E L - l  

with the generalized inner product [ ( , ) ] calculated as in (1 1). 
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Result 1. Let W be defined as in (12). There exists a unique stable equilibrium 
(not necessarily an internal polymmorphism with all possible alleles segregating). 

In contrast, consider for [ ( , ) ]  the (usual) inner product ( , ), namely 

where ai are fixed positive weights. The viability matrix (12) now evaluated 
according to (13) has all its stable equilibrium states of the corresponding re- 
cursion (1)  among the fixation outcomes and there are at least two such stable 
states. 

V. Circulant type viability matrices: Consider 

where the subscript is reduced modulo r ,  that is if i + i > I, then wi+i is taken to 
be wL+] ,.. Now for any set of wi, there always exists a central internal equi- 
. .  1 1  1 librium x = (-, - . : . . , -) that, except for r = 2, is always unstable. We 

r r  r 
can represent the above fitness scheme in the form wii = f (u i ,  uj) = f ( u L  f vi)  
for a periodic function f. The following set of scenarios may help motivate the 
existence of periodic optimal phenotypes. 

Whenever a quantitative trait is governed by additive contributions from the 
relevant alleles (e.g., net charge of a multimer enzyme, pigmentation, lethality of 
venom) and the optimum value is intermediate, there will be an optimum pheno- 
type. but no unique optimal genotype. Moreover, the optimal phenotype may 
depend on the environment. For example, habitat selection in the sense of 
TEMPLETON and ROTHMAN (1978) (“seek out best emironment”) may imply a 
varied environment consisting of a few distinct microenvironments. Also, there 
may be several optimal phenotypes with the fitness of other phenotypes de- 
creasing with distance from the optima. 

The side groups (Le., amino acids in a polypeptide chain) may significantly 
affect the pH of the medium. It may be appropriate to raise or lower the medium 
pH due to external causes (sources) in order to provide the optimal pH for an 
enzyme system. Thus, an organism should choose the “external” pH (e.g., food 
source) that its own proteins will bring closest to the optimal pH. 

If it is necessary to stun, but not kill, prey in order to capture it, yet keep it 
suitable for consumption, the ideal potency of the venom will depend on the 
hardiness of the prey (large prey may require more venom; too little venom per- 
mits escape, too much kills the prey). Assuming that a few prey sizes are avail- 
able, individuals should attack those prey for which their venom potency is most 
appropriate. There will be as many optimal potencies as prey sizes; lower via- 
bilities accompany those individuals whose venom potencies are farthest from 
all optima. 
Section 3. Leuels of multiallele ouerdominance. 

It is useful to distinguish different assessments of the strength of a stable com- 
plete (= internal) polymorphism. KARLIN (1981) singled out four levels of 
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multiallelic polymorphisms and discussed their interrslationships. For our pres- 
ent purposes, we recall two principal forms. The first is, in essence, a tautology. 

Definition 1. A n  r X r viability matrix W = liwLjll; corresponding to r alleles 
at a single locus is said to be simply overdominant if there exists a stable 
complete polymorphism (i.e., all alleles are segregating). 

A stable interior equilibrium is globally attracting (KINGMAN 1961). 
Definition 2. The viability matrix W is said to be totally overdominant if every 

principal submatrix of W is simply overdominant in the sense of Definition 1. 
Thus, with total overdominance in force, any subcollection of alleles can main- 

tain a stable equilibrium restricted to these alleles that is, however, unstable with 
the introduction of any new allele. 

Robust properties of totally overdominant viability matrices: Consider an 
overdominant viability matrix W in the sense of Definitions 1 or 2. Suppose W is 
modified to the new viability matrix 

where D is a positive diagonal matrix with ( d l ,  d,, . . . , d T )  down the diagonal 
and 0 < d i  < wii. After this perturbation, the fitness array of W* retains the 
identical heterozygote fitness values as for W ;  whereas, the homozygote fitness 
values may be diminished. We may inquire whether W* is overdominanc at least 
to the same extent as W .  There is the intuitive sense that overdominance is pro- 
mulgated owing to some combination of “heterozygote superior fitness,” so that 
with a reduction of the homozygote fitness values we may expect that the con- 
tribution of the heterozygotes and their interactions will be accented, enhancing 
the establishment of a stable polymorphism. 

A specialization of the foregoing problem is to compare the overdominance 
endowments for W and W = W - PI, I = identity matrix, where W is obtained 
from W in reducing the homozygote fitnesses by the same amount, 8. 

We know of classes of examples for which W is simply overdominant, while 
W* constructed as in (14) and even W I= W - PI for appropriate B is not simply 
overdominant. Indeed, the following three-allele viability matrix is simply over- 
dominant, but ceases to be overdominant after some decrease of all its homozygote 
fitnesses. Consider 

W * = W - D ,  (14) 

N - 

N 

cy - E l  a a + F’ 

(15) I I, W = (  a Y + &  
& + E 1  Y 

where y < a < 27 and E > 0 is sufficiently small. It can be directly verified that W 
is simply overdominant, while for W ,  = W-XI, h = ~ / 2 ,  no polymorphism exists. 
For all 0 < h < E, a unique globally attracting equilibrium prevails. But, for 
h = &/2, the unique stable equilibrium of the viability matrix WE,2. involves only 
alleles A, and A,, while for = 0 and h = E ,  a complete polymorph~sm is realized. 

It can be proven that, if W is totally overdominant, then W* of (14) is again 
totally overdominant. (A hierarchy of lcvels of Overdominance is compared in 
KARLIN 1981). 

N 

- 
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Section 4. Equilibrium structure for the generalized dominance fitness model. 
The relevance of a fitness regime of the structure (4) was discussed in Section 2. 

In this section, we inquire as to the nature of its stable equilibrium configurations. 
The necessary and sufficient conditions for a polymorphism for the general case 
of the selection regime (4) are not known, but a workable sufficient condition is 
described in the next result. 

Result 2. For the general dominance fitness model ( 4 ) ,  a suffcient condition 
for a stable polymorphism is the fulfillment of the inequalities 

k = 3 ,  ..., r . (16) 
In the presence of these inequalities, the fitness matrix ( 4 )  is totally overdomi- 
nant in the sense of Definition 2. 

Observe that when 014 are nondecreasing, and ai > ai, i =I, . . . , r, then (16)  
holds. The relations of (16) are satisfied even where ark are decreasing, but not 
too rapidly. 

A stable polymorphism for a dominance fitness regime is preserved when 
reducing the fitness of any homozygote, i.e., if  W of the € o m  (4) admits a stable 
polymorphism, then W* = W - D as in (14) maintains a stable polymorphism 
for all diagonal D [compare to example (1 5) ] . 

The generalized ordered dominance selection regime can be construed as a 
multiallelic version of disruptive selection to the extent that no two co-existing 
stable equilibria can involve A, as a common allele. More generally, no two stable 
equilibria co-exist segregating A,t and At, 1 > k. 

Random dominance viability matrices: We inquire as to the chance for a poly- 
morphism when the parameters 

{al, a 2 , .  . . , a , ,  al, a 2 , .  . . , ay> (17) 
for r alleles, inducing the fitness matrix (4), are all independently uniformly dis- 
tributed on [0,1]. The viability matrix constructed in this way can be construed 
as a random dominance viability matrix. For this class of matrices, we can 
establish the theoretical bounds: 

(18) 
1 3 
2 4 (-) < Probability {existence of a polymorphism} 6 (-) 7-1 

and 

(19) 
1 1 
4 2 (-) < Probability {stable polymorphism} < (-) ?-l . 

In specializing a1 = cy2 '= . . . = aT = 01, ( a  uniformly distributed on [O,l]) we 

obtain the asymptotic relation: Probability of a stable polymorphism - - for 
some positive constant c. 

The orders of magnitude of (1 8) and (19) contrast sharply with the chance 
for a stable polymorphism in a general random viability matrix, i.e., where all 

C 

r 
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fitnesses of W = ~ / W ~ ~ I /  with r alleles are independent uniformly distributed 
random values, in which case the probability of a stable polymorphism is 

r2 miniscule (as r -+ a) of the order exp [ - - log r ]  . 
2 

Some numerical results on the existence of a complete polymorphism for the 
dominance viability model: We considered four general classes of dominance via- 
bility matrices. Class I (referred to as random dominance-diagonals and columns 
unordered) matrices of structure (4) are constructed with a, and at selected 
independently uniformly distributed over the unit interval [O,l] .  Class I1 ma- 
trices (diagonals ordered and columns unordered) first select the {a,} at random 
as in Class I, but these values are then arranged in increasing order (we refer to 
this determination “random increasing” on the diagonal), while {aL} the non- 
diagonal column elements are ascertained at random and unordered as before. 
Class I11 has {ai} generated random monotone increasing and {a,} random un- 
ordered. Class IV matrices are randomly generated with both {a,} and { a i }  

ordered (random-ordered). We generated 10,000 random matrices in each class. 
The tabulations in Table 1 show that when the dominance property across the 

allele combination is concordant with enhanced fitness such that {a,} and {a,} 
are %andomly increasing,” the opportunities for a stable internal polymorphism 
are considerably increased compared to the general random dominance viability 
matrices, i.e., where the {a,} and {a,}  are random and unordered. 

TABLE 3 

The  nature of polymorphism of random dominance viability matrices* 

(Class I) nothing o r d e r e d  (Class 111) columns o r d e r s  
Size of matrix r (i) (ii) (iii) 6) (ii) (iii) 

0.4731 0.224,6 0.1018 
0.3344 0.0831 0.0269 
0.2381 0.0274 0.0062 
0.1728 0,0091 0.0017 
0.1176 0.0025 0.0003 
0.0882 0.0010 0.0001 
0.0647 0.0003 0.0000 

(Class 11) 
diagonal ordered 

0.5267 0.2341 0.1437 
0.4349 0.1004 0.0562 
0.3686 0.0405 0.0222 
0.3009 0.0160 0.0068 
0.2537 0.0064 0.0030 
0.2085 0.0022 0.0010 
0.1647 0.0011 0.0003 

0.4747 0.2483 0.1385 
0.3276 0.1146 0.0566 
0.2235 0.0546 0.0250 
0.1465 0.0290 0.0131 
0.1008 0.0132 0.0059 
0.0675 0.0062 0.0024 
0.0453 0.0027 0.0012 

(Class IV) 
__ diagonal and column ordered 
0.36% 0.3447 0.2056- 
0.2203 0.2537 0.1386 
0.1653 0.1994 0.1113 
0.1276 0.1691 0.0896 
0.1096 0.1462 0.0783 
0.0936 0.1293 0.0689 
0.0793 0.1127 0.0581 

* We ascertained for each fitness matrix the extent to which the following three properties 
hold: (i) When Wx ,= 1 admits a positive solution x > 0, i.e., whether W possesses an internal 
equilibrium (a polymorphism), stable or unstable. (ii) Whether the eigenvalues of W consist of 
one positive and n-1 negative values. (iii) Where properties (i) and (ii) hold together, impli- 
cating a stable polymorphism. 
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Section 5 .  Overdominance properties of the distance index viability model (6) .  
We discuss various aspects of the overdominance properties for the “distance” 

viability regime, where the allelic array { A l ,  A,, . . . , AT} possess an intrinsic 
ordering A, - A ,  - A ,  - . . . - A ,  such that the genotype fitness of (AiAj) = 
cli-jl depends only on the index distance defining its constituent alleles. In  
Section 2, we suggested some models of biochemical activity implicating a fitness 
scheme of the form (6). In ascertaining the existence and degree of overdomi- 
nance for some natural cases of (6), we commence with the following result. 

Result 3 .  (i) Let ck be a strictly concave sequence connoting 

Ck+l + cbl < 2 s  for every k = I, 2 , .  . . ,r-2 . (20) 

Then the only stable allelic configurations involve a contiguous group of alleles 

( A ~ , A J ~ + ~ ,  . . . , A l )  forsomekandsomel  (1 < k < 1 < r )  . 
(ii) If ck is also increasing, then a globally stable polymorphism exists and the 

A schematization of the {cL} conforming to the hypothesis (20), is shown in 
fitness matrix wij = cl 1 is totally overdominant (see Definition 2). 

Figure 3 .  

0 C 

FIGURE 3.-A concave increasing fitness function for the distance index viability model. 

In contrast to the concave case, the stable configurations markedly differ under 
the stipulation that {ck} is convex. 

Ck-1 + c T ~ + ~  - 2ck for all k = 1 ,2 ,  . . . , r--2 . (21) 
The shape of {ck} is shown in Figure 4. 
The following result describes the possible stable realizations in the convex case. 

Result 4. (i) If ck constitutes a strictly convex sequence, then any stable equi- 
librium is either a fixation state or involves only two alleles. 

(ii) Where the {ck} are strictly convex and strictly increasing, then the allele 
array {A1.A,} is  the unique stable equilibrium. 

A far reaching extension of Results 3 and 4 is as follows. 
Result 5. Suppose that f (&v) is increasing and concave in each variable on each 

side of the diagonal, i.e., 
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0 
C 

FIGURE 4.-A convex fitness function for  the distance index viability model. 

‘r-1 

then the Viability matrix (5) in this case admits a complete stable polymorphism. 
On the other hand, where 

then the extreme allele pairing {A1,A,} is uniquely stable. 
The implications of Result 5 for biochemically based selection regimes will be 

presented elsewhere. 
Some numerical results on the existence of a complete polymorphism for the 

distance index viability model: Table 2 indicates the relevant stable realizations 
when the fitness parameters {ci} of ( 6 )  are irregular or “random” for the cor- 
responding r allele models, r < 10. It  is of interest to assess the degree of poly- 
morphism when the {q} of ( 6 )  vary in an irregular manner. To this end, for the 
allelic activity model and more particularly for the index distance fitness model 

W =  
. .  

CY-1 Cr-2 . . . .  CO 

we generated 10,000 random matrices by the format: ci independently chosen 
uniformly in (0,l). The matrix obtained in this way is referred to as a random 
distance viability matrix W. Another 10,000 random selections of {ci} were gen- 
erated and the resulting ci arranged in increasing order to give {ci*}. The 
corresponding fitness matrices are then referred to as LLrandom monotone” index 
distance viability matrices. 

Table 2 summarizes the simulation results with respect to properties (i) to (iii) 
delimited in the legend of Table 1.  

The possibilities for the existence of a polymorphism for the random unordered 
distance index viability matrix contrast sharply with those for the random mono- 
tone distance index viability matrix. The probability of an unstable internal 
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TABLE 2 

For random uiability matrices of type (24),  the matrix order is r. 10,000 random matrices 
M and 10,000 random monotone W were generated (as described in Table 1)  

hlatrix 
size r 

4 
5 
6 
7 
8 
9 

10 

Proportion 
of cases 

of internal 
equilibrium 
property (i) 

0.5152 
0.2088 
0.1914 
0.0816 
0.0784 
0.0370 
0.0308 

W 

Proportion 
of cases with 
property (ii) 

Proportion 
of cases 
of stable 

polymorphism 

Proportion 
of cares of 

propmy (i)  

M 

Proportion 
of cases mth 
Property ($1 

Proportion 
of cases 
of stable 

polymorphl~ 

0.5746 
0.1568 
0.1206 
0.0554 
0.0448 
0.0240 
0.0206 

0.3464 
0.0796 
0.0636 
0.0192 
0.0156 
0.0064 
0.0056 

0.7726 
0.6530 
0.6212 
0.56% 
0.5532 
0.5076 
0.4772 

0.1904 
0.0694 
0.0424 
0.0194 
0.014.0 
0.0036 
0.0030 

0.1556 
0.0322 
0.0204 
0.0080 
0.0074 
0.0016 
0.0012 

equilibrium (and, therefore, the existence of multiple stable boundary equilibria) 
is surprisingly high, realized with a probability close to 0.5. A theoretical lower 
bound for stable fixation states is of order exceeding l / r .  The chance for com- 
plete stable polymorphism is of smaller order, but nontrivial even with 8 to 10 
alleles of the order 0.5%. For the random monotone model, the chance of a stable 
polymorphism exceeds by four-fold that for the unordered model. 

It is useful for comparative purposes to record numerical results on the exis- 
tence of polymorphism for general random viability matrices, i.e., each wij, 

i Q i is selected independently uniformly distributed on [O,l] . 
By theoretical considerations we know that asymptotically for columns (ii) 

and (iii) of Table 3 the rate of approach to zero is 

r2 
exp [ - - 2 log I] , 

which is incredibly small for large n (even n > 6). The chance for a polymor- 

TABLE 3 

Random viability matrices based on 10,000 samples 

hlatris order I 
Frequency of internal 

muilibrium: property (i) 
Frequency of sample 

satisfying property (ii) 

Fr nency of stable 
aymorphism; 
property (iii) 

2 
3 
4 
5 
6 
7 
8 
9 

10 

0.6731 
0.4148 
0.2160 
0.1341 
0.0660 
0.0324 
0.0189 
0.0086 
0.0034 

0.571 
0.175 
0.020 
0.002 
0.ooG 
0.000 
0.000 
0.000 
0.000 

0.338 
0.041 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
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phism goes to zero at a rate slower than (1/2)” for tine dominance fitness model 
(4) and the activity allele fitness forms (4) and ( 5 ) .  

A comparison of Tables 1-3 underscores the miniscule opportunities for poly- 
morphism under viability selection governed by general random viability 
matrices with n > 5 possible alleles. The results are poignantly of a different 
order for the dominance viability model and the activity allele selection models. 

Section 6. Discussion 
Several simulation studies for one-locus multiallele ‘‘random” viability sys- 

tems conducted by LEWONTIN, GINZBERG and TULJAPURKAR (1978) predicted 
miniscule probabilities (cf., Table 3) for the existence of a stable polymorphism 
involving a large number of alleles maintained by selection interactions. How- 
ever, real selection systems are not likely to be random, but are expected to pos- 
sess some intrinsic structure. The heterozygotes generally fall into natural classes, 
and it is in this perspective that one might better assess the likelihood and nature 
of polymorphisms. 

In appraising the contribution of heterozygotes in maintaining polymorphism, 
it is essential to classify types of heterozygosity. This paper highlights three na- 
tural classes of viability regimes that are based on allelic dominance hierarchies 
and functional allele activity levels. I n  the context of a multiallele, multilocus 
model, we can order the extent of heterozygosity through criteria depending on 
the numbers, locations and composition at the various loci. The aggregate 
heterozygosity determination of KARLIN (1977, see also 1979) is a prototype case. 

The objectives of this study have been two-fold: (i) To describe natural classes 
of viability expression connected with biochemical activities or morphological and 
behavioral patterns; and (ii) To ascertain the nature of the equilibrium reali- 
zations for these highly structured selection matrices. 

The dominance selection models based on a series of alleles of increasing order 
of dominance may reflect degrees of fitness mediated by ecological conditions 
(e.g., relations to predation, dessication). The relevance and scope of this kind 
of viability expression is discussed in Section 2. Dominance hierarchies occur in 
connection with preferential mating patterns (O’DONALD 1980), in sex determi- 
nation mechanisms, in biochemical pathways (e .g . ,  EHRMANN and PARSONS 1976, 
Chap. 5 )  and elsewhere. 

Result 2 shows that the opportunities for polymorphism are greatly facilitated 
when a heterozygote carrying a larger dominance component implies greater 
fitness. On the other hand, when there is no concordance between fitness and the 
degree of dominance, the resulting stable allelic array gcnerally involves only a 
few alleles (cf., KARLIN and FELDMAN 1981 ) . 

For irregular patterns of the dominance selection matrix, i.e., where a, and ai 
are random unordered or random monotone, the possibilities are more varied. al- 
though not as unlikely as with general random viability matrices (compare Tables 
I and 3). 

A general tenet of polymorphism concerns the the influence of recognized pat- 
terns us. random fitness assignments. For mechanisms of fitness reflecting bio- 
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chemical, behavioral or physiological structure (e.g., dominance ordering, allelic 
activity influence) , a specified association (monotonicity, convexity, concavity) 
underlying the biological relationship tends to predict more regularity in the 
stable equlibrium possibilities, while random fitness values create more multi- 
plicity in the evolutionary outcomes, even when superimposed on a structured 
model. 

The allelic activity selection model ( 5 )  tends to exhibit more polymorphism, at 
least when fitness increases for genotypes involving more distant allelic combi- 
nations, provided the marginal increase in fitness is reduced for alleles of more 
diverse optimal activity (Result 5 ) .  This result is especially germane for the 
distance index selection form (6). 

On the other hand, if the marginal increase in fitness is strongest for alleles 
corresponding to indices furthest apart (i.e., their optimum activity occurs at the 
extremes of the environmental range), then the unique stable equilibrium segre- 
gates only the extreme allele types A, and A ,  (Result 4).  

For a viability matrix structured via “partitioned” variables (see paragraph 
IV of Section 2) where a single resource variable predominates in its contribu- 
tion to fitness, as in the case of (11)-( 12), there exists a unique globally stable 
equilibrium (not necessarily a polymorphism). 

To sum up, an increased likelihood for a globally stable (unique) equilibrium 
is predicted for the structured fitness models (as exemplified by the dominance 
ordering, distance index allelic and resource partitioning fitness models) consid- 
ered in this study, and also for the multilocus forms (aggregate heterozygosity 
model KARLIN 1977) and generalized nonepistasis (KARLIN 1979; KARLIN and 
LIBERMAN 1979). Accordingly, if the observed allele frequency data exhibit a 
reasonably consistent common set over different population areas and epochs, the 
contingencies for a structured selection mechanism may be relevant. On the other 
hand, where the allele frequency observations vary significantly in space or 
time with few segregating alleles in any particular sample, an explanation of the 
observed variability based on fitness interactions is unlikely. Other forces, such as 
migration, population structure, mating pattern, genetic frequency and/or eco- 
logical density factors and strong randomizing recombination interactions, may 
be important. 

The emphasis of this study is the involvement of an inherent structure of bio- 
logically relevant parameters in evaluating selection regimes and in classifying 
and comparing genotypes. The study of random viability matrices is arbitrary, 
independent of clear biological mechanisms and is likely to lead (as it does) to 
“pathological” results. An important step in advancing ecological theory was 
taken by MCARTHUR when he introduced concepts of resource utilization func- 
tions as a way to parameterize interspecies community competition. The domi- 
nance viability structure, activity allele form, distance index model, “resource” 
partitioning selection expression proposed in this paper and other well-conceived 
models derived from multilocus interactions (KARLIN and AVNI 1981 ) may 
serve as a point of departure for more insightful genotype fitness assessments. 
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