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ABSTRACT 

By using a numerical method of solving stochastic difference equations, 
the level of genetic variability maintained in a finite population and the rate 
of gene substitution under several models of fluctuating selection intensities 
were studied. I t  is shown that mutation and random genetic drift both play an 
important role in determining genetic variability and the rate of gene substitu- 
tion. Compared with the case of neutral mutations, the fluctuation of selection 
intensity caused by temporal and spatial heterogeneity of environments gen- 
erally increases the rate of gene substitution, but the level of genetic varia- 
bility may be increased or decreased, depending upon the model and the 
parameters used. Although such a type of selection per se can not be ruled out, 
when mutation is taken into account, it is difficult to explain both the observed 
amount of genetic variability and the rough constancy of evolutionary rate 
within a framework of fluctuating selection models. 

I N  a previous paper, TAKAHATA and KIMURA (1979) studied the genetic varia- 
bility in a finite population under mutation and autocorrelated fluctuation of 

selection intensities. Recently, GILLESPIE (1977; 1979) investigated the same 
problem, as well as the genetic identity of NEI (1972) based on his mathematical 
model. His model is general in the sense that the effects of temporal and spatial 
heterogeneities in environments can both be treated by the same theory. However, 
the model is developed under the assumption that no mutation occurs, and the 
populations are so large that we can ignore the effect of random genetic drift. Al- 
though such a situation may be theoretically conceivable, it is not clear how real- 
istic the theory is. Lack of quantitative study on this point has brought about a 
controversy (see NEI and GILLESPIE 1980). Another model relevant to this issue 
was proposed by NEI and YOKOYAMA (1976). However, these authors made a 
simplifying assumption about the variance of gene frequency change, so that it is 
not clear whether their formula gives a correct prediction. 

Many fluctuating selection models, including those mentioned above, are 
formulated by using diffusion approximations, and it is possible to represent all 
of them in a single formulation. I shall not repeat the biological bases for those 
models, for which readers may refer to each paper cited above. In  this paper, I 
shall investigate the effects of fluctuating selection on the level of genetic varia- 
bility and the rate of gene substitution under the influence of mutation and ran- 
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dom genetic drift. Since it is difficult to obtain an  analytical solution for this case, 
I shall use a computer-simulation method. This method makes use of appropriate 
stochastic difference equations corresponding to the diffusion process. I t  has been 
applied to other problems in population genetics by MARUYAMA (1980) and 
MARUYAMA and NEI (1981). The results obtained will be discussed in relation to 
observed data on genetic variability and gene substitution. 

MODEL AND ANALYSIS 

Consider a panmictic population of diploid organisms with an effective size Ne. 
We assume that a gene consists of so many nucelotide sites that we can always re- 
gard a newly arisen mutant as a new, not pre-existing allele (KIMURA and CROW 
1964). Let U be the mutation rate per gene per generation. Suppose that there are 
n segregating alleles at a locus in the population, and let +(t ;  xl, x2, . . . , xn-1; 
~ 1 ,  y2 ,  . . . , yn-l) be the transition probability density that the frequencies of 
alleles A,, A,, . . . , A,-I change from xl, x2, . . . , xn-l to yl, y2 ,  . . . , yn-1 in time 
interval t. Then, the density + satisfies the Kolmogorov backward equation 

for the case of neutral mutations (CROW and KIMURA 1956), where Sii '= 1 and 
6 i j  = 0 if i # j .  The time denoted by t is measured in generations. 

In addition, we assume that natural selection acts on different genotypes in 
such a way that their selection intensities fluctuate randomly owing to environ- 
mental heterogeneities. A general diffusion equation for symmetric fluctuating 
selection models is then given by 

R 

where F = , E  xi2 and u2 is the strength of fluctuation of selection intensities (for 
example, see TAKAHATA, ISHII and MATSUDA 1975; FELSENSTEIN 1976; GILLESPIE 
1977, 1979; TAKAHATA and KIMURA 1979 and references therein). In  the above 
equation, /3 is a constant related to the so-called stabilizing effect (NEI and 
YOKOYAMA 1976) and it takes on nonnegative values depending on mathematical 
models. For instance, an appropriate extension of NEI and YOKOYAMA'S model 
(1976) corresponds to the case of /3 = 0. Also, the cases of p = 1 and p > 1 have 
been studied independently by TAKAHATA and KIMURA (1979) and GILLESPIE 
(1977). Recently, GILLESPIE (1980b) extended his symmetric model to an asym- 
metric one. When the asymmetry is incorporated into the theory through the 
mean difference in fitnesses among different genotypes, the parts responsible for 

2=1 
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fluctuation of selection intensities remain unchanged. It is not surprising that 
this asymmetry can efficiently reduce the level of genetic variability, but here I 
shall not consider the effect of mean difference in fitnesses, since the main purpose 
of this paper is to explore the relative roles of mutation, random genetic drift and 
fluctuating selection. The combined model of fluctuating selection with the effects 
of mutation and random genetic drift can be represented by the following 
Kolmogorov backward equation 

-- a+ - (L,+L2)+ 
a t  (3) 

where the operators L, and L, are given in ( 1  ) and (2), respectively. For conveni- 
ence, we change the time scale from one generation to T = 02t, dividing both 
sides of ( 3 )  by oz. Of course, i t  is possible to measure time in units of 2Ne genera- 
tions, as usually done. Actually, I used this unit of time in the case of neutral 
mutation. However, in the present formulation, time was measured in units of 
l/02 generations because I would like to treat the case of an infinite population, 
i.e., N e  = W. At any rate, equation ( 3 )  then becomes 

a+ - 1 (L ,+L, )+ .  
aT U‘ 

(4) 

Note here that we can derive an interesting property of the quilibrium dis- 
tribution that satisfies (L,  + L,) = 0, where Li (i  = I and 2) denotes the adjoint 
operator of Li. GILLESPIE (1977, 1979) has shown that the solution satisfying 
L,+ = 0 is given by the limit of a Dirichlet distribution with a parameter p (for 

> 1 ) , and it  is irrelevant to 2. On the other hand, the solution of L,+ = 0 for 
the neutral model is expressed by a similar function with a single parameter of 
4Neu (see WRIGHT 1949; KIMURA and CROW 1964). Comparing both solutions 
obtained for the above cases separately, it is shown that the parameter j3 plays a 
role analogous to 2Nev + 1 in the neutral model, as pointed out by GILLESPIE 
(1977). Therefore, i f  the relationship of p = 2Nev,+ 1 happens to hold, the 
solution of L2+ must satisfy L,+ = 0. This indicates that the distribution with a 
single common parameter p (or 2Nev + I )  is the solution of (L,  + Lz)+ = 0. 
These special cases will be used for a check of the present method described below. 

Unfortunately, however, it is not easy to solve (4) for other cases analytically, 
so that we simulate the process represented by stochastic difference equations 
relevant to (4). The simulation method in the infinite allele model has been re- 
cently applied to other problems in population genetics by MARUYAMA (1980), 
MARUYAMA and NEI (1981) and MARUYAMA, TAKAHATA and KIMURA (unpub- 
lished). If we use the theory of ITO (1944), we get the appropriate stochastic 
difference equations 

( 5 )  

- -  - 
Y 

- 

- - 
- -  

A X ~ ( T )  E x i ( T + A T )  - x ~ ( T )  
n-1 

j=1 
= - u ’ x ~ A T  + / ~ X , ( F - X ~ ) A T + . B  e z j B j ( A T )  



43 0 N. TAKAHATA 

for i'= 1, 2,. . . , n- 1, where U' = u / 2 ,  Bj(AT) is an independent Brownian 
motion with mean 0 and variance AT, and e i j  is the (i, j)th element of a posi- 
tive definite square root of the covariance matrix with the element of Vij '1 xixj 

xi ( & j  - xi). There are many other ways of repre- 

senting diffusion processes (for example, see ITOH 1979; KIMURA 1980), but 
equations ( 5 )  seem to be not only general, but also the only way of representing 
the present case involving fluctuating selection. 

In  the actual calculation of ( 5 ) ,  however, I modified the process by taking into 
account changes due to mutation. The modification seems unavoidable in order to 
make the process proceed in a reasonabl period of computation time. More im- 
portantly, several numerical studies suggest that we cannot simulate ( 5 )  accu- 
rately if we take the time interval AT larger than the initial frequnecy of mutants 
newly introduced into a population during ,AT, (although this finding is not 
rigorously justified). 

Now, let: Ai be one of the segregating alleles at time T,  and xi (T) be the fre- 
quency in a population. To study the rate of gene substitution, we associate an 
integer N ( A i )  with each allele, which is referred to as the number of mutational 
events leading to Ai from the ancestral allele, say A,, at T = 0. For convenience, 
we assume that N ( A , )  '= 0. The number of mutational events for each allele at 
any time T can be easily obtained by counting all mutations involved in the 
course of evolution of Ai from T '= 0. For example, suppose that Ai mutates to 
Ai, in the time interval AT in which Ai, represents a new, not pre-existing allele 
under the assumption of the infinite allele model. Then, the number of mutational 
events associated with Ai,  is increased by one from that of Ai, i.e., N ( A i l )  = 
N ( A i )  + 1. If Ai still exists in a subsequent time and again mutates to another 
allele Aia (Z Ai , ) ,  N ( A i 2 )  is equal to N ( A i )  + 1, as before. But if  Ai, mutates 
to Ai,, the number becomes N ( A i l )  + 1 ': N ( A i )  + 2. Thus, the difference be- 
tween N(Ai,?)  and N ( A i )  corresponds to the number of mutational events in a 
certain time interval during which A i ,  has been introduced into a population 
through the lineage of Ai -+ Ai, + Ai,. If we continue this procedure from an 
initial population, we can unambiguously associate the number to all segregating 
alleles at any time. Note here that the same number of mutational events does 
not necessarily mean the same allele as shown in the above example. 

Instead of ( 5 ) ,  we stochastically introduce mutants every AT to avoid the neces- 
sity of taking AT as an indefinitely small value when U' becomes small. Let E be 
an arbitrary but small positive number. Then, we choose AT as U' AT/. < 1 for 
each existing allele Ai at time T ,  whether or not a mutation occurs until T + AT 
is decided with probability U' AT/&. If a pseudo-uniform random number gen- 
erated is less than this value, we mutate Ai to a new, not pre-existing allele Ai 
with the initial frequency E X ;  ( T )  . Ai the same time, the frequency of Ai is re- 
duced by the same amount, and the number of mutational events for Aj is asso- 
ciated according to the above rule. This process is repeated for all n segregating 
alleles at time T before we compute changes due to fluctuating selection and 
random genetic drift. The formal representation may be written 

1 
2N,u2 

( 6 i j + F - x i - x j ) + -  
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zi(T+AT) (l-&)X;(T), 

and 
z j ( T + a T )  = &zi (T)  

N ( A j )  = N ( A i )  + 1 , 
with probability U‘ .AT/&. When more than one mutations occur in the above n 
repeats, each Ai should be chosen as new by incorporating the contribution com- 
ing from the mutant alleles that have already been generated in the present 
time interval. 

After mutations, using the frequencies of (6) and ignoring the alleles with 
frequencies less than a certain small value (I tentatively set it at lo-”, I com- 
puted the changes of frequencies caused by fluctuating selection and random 
genetic drift according to the method mentioned above. Namely, 

1-1 

j=1 
Axi ( T )  = pzi ( F  - xi) AT -k X ei$j ( A T )  (7)  

1-1 

2=1 
for i = 1,  2, . . . , 1-1 and x1 = 1 - ,X si, where I denotes the number of all 

existing alleles, including new mutants introduced in the time interval AT. AS 
noted by MARUYAMA and NEI (1981), it is important to take AT as small as possi- 
ble. I used AT = 0.001 or less and E = 0.005. These parameters, however, are 
somewhat arbitrary; therefore, the accuracy of the present method based on (6) 
and (7) should be checked from various aspects. This will be discussed later. 

Using the number of mutational events and gene frequencies, we can define 
the mean number of gene substitutions K(T )until time T as 

K ( T )  = X N ( A ~ ) X ~ ( T )  , (8) 

where the sum is taken for all existing alleles. The mean rate is given by dividing 
K ( T )  by sufficiently large T.  The value of K(T) /T  is used as a measure of the 
rate of gene substitution. Fixation of a particular allele must occur with a very 
low probability in a polymorphic population where new mutations are continu- 
ously introduced. Therefore, we cannot apply the theory of fixation probability to 
get the rate of gene substitution. This is particularly true when selection is taken 
into account. MARUYAMA and NEI (1981) considered the rate of gene substitution 
in a slightly different way, whereby they recorded the full lineages of any allele 
from the start of simulations. They counted the number of “fixation of muta- 
tional codons,” which means complete loss of pre-existing alleles from a popula- 
tion. This number is equal to K ( T )  if the population eventually becomes mono- 
morphic at a specified time T .  Since K ( T )  in (8) has the contribution coming 
from polymorphic alleles, it is generally greater than that of MARUYAMA and 
NEI’S, but the discrepancy between the two becomes negligible after a sufficiently 
long time has elapsed. 

To obtain the mean rate of gene substitution per generation in units of mutation 
rate U ,  we divide K ( T )  /T  by U’. Then, we have 
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Based on (6) and ( 7), we can study various properties of both equilibrium and 
nonequilibrium populations. Starting from a monomorphic population, I repeat- 
edly calculated gene frequencies up to about T = 1100, which corresponds to 
103/u2 generations. For example, in the case of V* = the simulation was 
continued for 10' generations. To establish the equilibrium population, the first 
1 02/2 generations were discarded; thereafter, every 0.1/u2th generation gene 
frequencies were recorded, the total number of observations being I 04. This scale 
of simulation seems to be sufficient for studying various properties of equilibrium 
populations. However, it does not give a very accurate estimate of the rate of 
gene substitution. As will be discussed later, the rate has a large sampling error. 
Because of the limitation of computer time, however, I will present here rough 
estimates of the rate of gene substitution to show the rapid turnover of alleles in 
populations resulting from fluctuation of selection intensity. Also, the equilibrium 
distribution of rare alleles with frequencies less than E is probably unreliable, 
irrespective of the scale of simulation. The accuracy depends heavily on the 
values of AT and E .  

RESULTS AND DISCUSSION 

Before discussing the full details of my results, we first examine the validity of 
the present method of stochastic difference equations, because equations (6) and 
(7) with AT = 0.001 or less may not necessarily be warranted in regard to our 
requirements. This can be done in three different ways. One is to study the neutral 
case where we have rigorous solutions for many quantities. The results are given 
in Table 1, in which the mean and variance VF of homozygosity (KIMURA and 
CROW 1964; STEWART 1976), the mean number n, of different alleles observed in 

TABLE 1 

Comparison of the results of Monte Carlo experiments (obs.) with those (exp.)  
expected in the neutral model 

2N,u 0.001 0.01 0.1 0.5 1.0 

- exp. 0.9980 0.9804 0.8333 0.5000 0.3333 
F 

ohs. 0.9979 0.9816 0.8288 0.5005 0.3451 

exp. 0.0007 0.0063 0.0395 0.041 7 0.0222 

exp. 1.01 1.12 2.12 5.88 9.77 

exp. 1 .oo 1 .oo 1.00 1 .oo 1 .oo 

obs. 0.0008 0.0060 0.0406 0.0453 0.0253 VF 

obs. 1.01 1.11 2.27 5.70 9.20 n, 

ohs. 1.04 0.89 1.18 0.86 1.17 k/u 

- 
F and V ,  are the mean and variance of homozygosity, n, stands for the number of different 

alleles in a sample of 2n genes (n z 102) and k / u  for the rate of gene substitution relative to 
the mutation rate. The slight deviation of k from U is due to a sampling error at ohserved time 
T = 103. 
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a sample of 2n genes (EWENS 1972) and the rate of gene substitution k in units of 
mutation rate U are presented. I t  is seen from the table that the simulation results 
provide a quite satisfactory approximation in this case. In particular, note that the 
rate of gene substitution defined by (9) is roughly equal to unity, which is 
expected from the theory using the fixation probability (KIMURA 1968). The 
small discrepancy must come from sampling error. If we observe the rate at much 
later simulation stages or take the average for many independent repeats of 
simulation, it is expected that k is very close to U .  

Another check of the method was made for some special cases of the parameters 
involved, i.e., b = 2Ne 4- 1 holds. In these cases, we fortunately know the rigorous 
solution of the equilibrium distribution of gene frequency, in addition to the 
mean and variance of homozygosity. The solution of the equilibrium distribution 
of (4) is then given by the limit of a Dirichet distribution with a single common 
parameter of either /3 or 2Nev, as mentioned earlier. Therefore, the frequency 
spectrum is equal to 6'zl ( 1 - x) = (2/3 - 2 )  z1 ( 1  - x) 2P-3, where 6' = 4'Ne~, 

and so forth. For instance, if the mean homozygosity to F = - - ~ 

2N,v = 0.1 and 6 = 1.1, or 2Neu = 0.5 and p = 1.5, the value of Ii'should be equal 
to 0.8333 or 0.5, (see Figure 1 for the frequency spectrum). These special cases 
are marked by the symbol f- in Table 2. We can see from Table 2 that the present 
stochastic difference equation method gives good agreement with the theoretical 
prediction. However, it is important that we can no longer expect that the rate 
of gene substitution k equals the mutation rate U ,  even in such cases. 

The other check is possible by comparing the results for the case of @ = 1 with 
those given by TAKAHATA and KIMURA (1979), where the underlying model 
population was simulated under the effect of autocorrelated selection. The agree- 
ment between the two is again satisfactory (see Figure 2 in their paper). How- 
ever, as noted by MARUYAMA and NEI (1981), the results on rare alleles thus 
obtained may not be accurate enough in some cases. The values of the frequency 
spectrum in a low frequency class and the number of different alleles in a sample 
n, tend to be smaller than the expected values. This  is mainly due to the values of 
AT and E used in the simulation. 

Now let us examine our results with special reference to protein polymorphism 
and molecular evolution. First of all, it is clear that the amount of genetic varia- 
bility depends heavily not only on the mutation rate relative to d, but also on the 
value of /I, particularly when the effect of random sampling of gametes is small 
(Table 2 ) .  For example, when 2Neo2 is greater than lo3,  /3 = 1.1 and v/u2 = 
0.001, the mean homozygosity F considerably decreases to about one-half, com- 
pared with the expected value of 0.8333 in the case of no mutation in an infinite 
population, while it increases from 0.3333 in the case of 2N,v = 1 for neutral 
mutations. This increase or decrease of genetic variability compared with the 
above two extreme cases must result from the so-called stabilizing effect in the 
drift term, as well as the diffusion caused by fluctuation of selection intensity in 
equation ( 3 ) .  However, the stabilizing effect plays a more important role than 
the diffusion effect in determining the level of genetic variability. Actually, 

- 1 -  1 
l f6 '  2 p = 1 '  
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FIGURE 1.-Frequency spectrum. The solid and broken curves are drawn according to the 

equation e z l ( 1  - -z)B-1, where e = 4Nev= 0.2 and 1.0. The results of simulations for the 
cases of V / U ~  = 0.001, 2Neu2 = 100 and p = 1.1, and of V / U ~  = 0.001, 2Neu?= 500 and p 
1.5 are, respectively, marked by open and solid circles. 

when there is no other effect but diffusion, the amount of genetic variability is 
kept very low compared with the neutral model (see the results for = 0 in 
Table 2). In the opposite case of u2 = 0 and J? # 0, which is equivalent to a sym- 
metrical overdominant model, the effect of p on genetic variability is quite pro- 
nounced (MARUYAMA and NEI 1981). Note here that in the range of parameters 
used in Table 2, the two-allele approximation of NEI and YOKOYAMA (1976) to the 
variance of gene frequency change seems to be fairly good. However, under 
more polymorphic situations, it somewhat underestimates the amount of genetic 
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variability. For example, in the case of U / $  = 0.2 and 2N,u2 = 10, F was about 
0.37 (k = 0 . 8 ~ ) ~  contrasted with 0.47 in Table 1 in their paper. 

The larger the value of 8, the more sensitive is the mean homozygosity to 
changes in the ratio of U / U ~  and the value of 2 N C d .  It is obvious that if we keep the 
ratio of u/02 constant, such as greater than lo-", we cannot ignore the mutational 
effect even in a large population. Unless we assume that u/02 approaches zero as 
2N,u2 becomes large, the combined model of (3) does not approach the simple 
fluctuating selection model of ( 2 )  (see Figure 2 ) .  Although such a limit is, of 
course, mathematically justified and conceivable, the biological meaning is ob- 
scure since neither U tends to be zero. nor can o2 be greater than unity. In this re- 
gard, GILLESPIE'S discussion on the effect of mutation in his model (1979, p. 752) 
is not very clear. 

Additionally, the effect of random genetic drift still plays a significant role in 
determining the level of genetic variability even when 2Neu2 exceeds lo3. There- 
fore, if 2 is lo3 times greater than U, the effect can be neglected only for the cases 
of 2N& >> lo3, although the critical value of 2N,u2 is dependent on p .  Thus, it 
is important to realize that the level of genetic variability is strongly influenced 
by values of 2 N , d  and u/a2 (TAKAHATA and KIMURA 1979; NEI 1980) and that 
this tendency is more pronounced as the value of ,8 increases. The heuristic argu- 
ments of GILLESPIE (1980a) in reply to NEI'S comment that genetic variability is 
much dependent on the value of 2N,v only when ,8 = 1 (namely, the case of auto- 
correlated fluctuation of selection intensities) are not supported. On the contrary, 

c A 

/ 

\ \  1 5 10 25 50 100 500 1000 00 

FIGURE 2.-Mean heterozygosity as a function of 2Ne+ when both values of U / +  and j3 are 
specified. The solid circles (for p = IB) ,  open circles (for p = 1.1) and open triangles (for 
/3 = 1.5) represent the results of simulations when u/uZ = 0.01 and 0.001. The solid (U/.? = 
0.001) and broken (U/.* = 0.01) curves are solely inferred from Monte Carlo experiments. 
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TABLE 2 

Mean and variance of homozygosity, mean number of different alleles in a sample of 200 
genes and the rate of gene substitution observed in Monte Carlo experiments 

2N,02 
W,u) Neutral (expected) .8 = 0 / 3 = l . O  p=1.1 J 3 ~ 1 . 5  

F 

(0.01) “a 

100 VF 

k/v 

V / G  .= 10-4 

0.9804 
0.0063 
1.12 
1 .oo 

0.9970 
0.0010 
1.03 

* __ 

0.9805 
0.0061 
1.13 

29.4 

0.9635 0.9436 
0.01 17 0.0178 
1.18 1.24 

63.6 19.6 

0.8333 
0.0395 
2.12 
1 .oo 

0.9988 
0.0001 
1.08 

t __ 

0.9506 
0.0143 
0.54 

41.8 

0.83381- 0.6161 
0.0402 0.0396 
2.38 3.83 

78.6 88.0 

- 
F 0.5000 0.9990 0.7913 0.7750 0.4880f 

na 5.88 1.06 3.75 4.02 6.48 
5000 VF 0.041 7 0.0000 0.0512 0.0445 0.0251 

__ * 145. 145. 117. 
(0.5) 

1 .oo k/v 

F 0 0.9982 0.7886 0.6883 0.4934 
c13 VF 0 0.0001 0.0429 0.0474 0.0377 

n a  00 2.15 3.83 5.88 8.12 
k / v  1 .oo -* 111. 118. 109. 

V/G = 10-3 

F 0.9980 0.9979 0.9986 0.9975 0.9980 
k/v 1 .oo 0.97 0.97 2.91 

1 VF 0.0007 0.0007 0.0004 0.0009 0.0007 

t -_ 

(0.001) na 1.01 1.01 1.01 1.01 1.01 

F 0.9804 0.9943 0.9886 0.9707 0.9484 
10 VF 0.0063 0.0016 0.0035 0.0096 0.01 79 

(0.01) n a  1.12 1.07 1.09 1.17 1.22 
k/v 1 .oo 1.94 3.65 3.88 8.05 

F 0.8333 0.9916 0.8961 0.8180$ 0.7520 
100 VF 0.0395 0.0012 0.0267 0.0406 0.0499 
(0.1) na 2.12 1.34 1.86 2.30 2.60 

k / v  1 .oo 1 .% 12.6 15.6 14.5 

F 0.5000 0.9873 0.7521 0.7581 0.59361 
500 VF 0.041 7 0.0028 0.0513 0.0553 0.041 1 
(0.5) na 5.88 1.63 4.13 3.99 6.50 

k/v I .00 2.40 17.9 14.6 30.8 

F 0.3333 0.9952 0.7688 0.5879 0.4321 
1000 VF 0.0222 0.0002 0.0443 0.0504 0.0289 

- 

9.77 1.68 5.34 7.58 10.6 
* 34.1 1.00 - 23.3 21.4 

(1.0) na 
k/v 
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TABLE 2-Continued 

43 7 

2N,oZ 
(2N,v)  Neutral (expected) /3 = 0 p z 1 . 0  P = l . l  f l z 1 . 5  

- F 0 0.9870 0.5969 0.4593 0.4077 
CO V F  0 0.0008 0.0557 0.0499 0.0341 

00 5.31 17.0 18.7 18.0 na 
v u  1 .oo 1.69 17.5 20.6 23.0 

ula2 = 10-2 

B 0.9804 0.9854 0.9831 0.9698 0.9820 
1 V F  0.0063 0.0042 0.0054 0.0102 0.0056 

(0.01) 1.12 1.12 1.12 1.16 1.13 
k/u 1 .oo 0.97 1.07 1.94 1.55 

B 0.8333 0.9454 0.8683 0.&1.37+ 0.7877 
10 V F  0.0395 0.0131 0.0326 0.0369 0.0469 

(0.1) n a  2.12 1.76 2.16 2.26 2.51 
k/u 1 .oo 0.78 2.23 2.62 4.27 

- F 0.5000 0.9569 0.6960 0.5646 0.5110+ 
50 V F  0.0417 0.0071 0.0528 0.0500 0.0393 

(0.5) na 5.88 3.77 6.50 7.30 7.13 
v u  1 .oo 0.76 3.79 4.81 4.69 

- 
F 0.3333 0.9042 0.5626 0.5488 0.4153 

100 V F  0.0222 0.0208 0.0507 0.0696 0.0309 
(1.0) n a  9.77 4.87 9.41 10.1 11.7 

k / v  1 .oo 0.96 4.30 4.89 5.74 

The columns indicated by “neutral” sh0.w the expected values when u2 tends to zero, keeping 

+Denotes the cases where p = 2N,v + 1 holds, and the values of P, VF and nu should be 

* Indicates the cases in  which no gene substitution occurred in  a simulation (for details see 

2Neu constant. 

equal to those in  the neutral case in the same row. 

text). 

it is much more sensitive to the increased value of 2N,v in the cases of p > 1 than 
when /3 = 1. General features of fluctuating selection models treated here indicate 
that if /3 is greater than 2Nev + 1, the level of polymorphism is larger than that 
expected in the neutral model having the same value of 2N,v; in the opposite case 
of < 2N,v + 1, it is reduced from the neutral level depending upon the value of 
2N,u2. Furthermore, if /3 = 2Neu + 1, the level does not differ from that pre- 
diceted in the neutral model, irrespective of the value of either v/o2 or 2 N d .  

The variance of homozygosity (or heterozygosity) can take a large value of 
fluctuating selection models. In  some cases where fluctuation of selection intensity 
predominates (e.g., v / d  = 0.01 and 2 N , 2  = 100 in Table 2 and also Table 1 of 
TAKAHATA and KIMURA 1979), the value exceeds 0.06, which is never attained in 
the neutral case. This trend is caused by the rapid changes of alleles with inter- 
mediate frequencies on which selection can act efficiently. As compared with the 
neutral alleles, the rapid turnover of alleles followed by fluctuating selection can 
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create a large variance of homozygosity. This circumstance is characteristic of the 
models of fluctuating selection. 

The rate of gene substitution relative to the mutation rate is also represented in 
Table 2, measured in units of the mutation rate. Except for the cases of neutral 
mutaiions and /3 = 0, the rate is accelerated as 2N,d increases. However, the 
value of k is not so large compared with value expected from the theory of fixation 
probability under the assumption of two segregating alleles (see for example, 
TAKAHATA, ISHII and MATSUDA 1975 for /3 = 1). This reduction has already been 
discussed by TAKAHATA and KIMURA (1979), who noted the intereference of 
alleles having higher fitnesses with the fixation of other alleles. More impor- 
tantly, however, when 2N,a2 is changed, we can no longer expect the rate to be 
constant. This acceleration of evolutionary rate is also explained by the stabilizing 
effect in the drift term. New mutants with low frequencies tend to be incorporated 
as common alleles into a population with the help of this factor. Indeed, when 
there is no such factor, i.e., p = 0, the observed rates are very close to the mutation 
rate. In  Table 2, I did not present the values of variance of gene substitutional 
rate, since I performed only a few independent simulations for each case where 
p, v/u2 and 2N,d were specified. Therefore, I could not estimate the variance of 
the rate at time T = IO3, but our studies suggest that this variance is great and 
that the standard deviation may be as large as 50% of the mean rate. If this is the 
the case, the mean rates obtained here give only rough features of gene substitu- 
tion. Nevertheless, it is unlikely that the rough constancy of the evolutionary rate 
holds in a wide range of 2 N d  values under fluctuating selection models. 

The rate of gene substitution used here is similar to that of ISHII, MATSUDA and 
OGITA (1978) , and may be useful when the ultimate fixation of alleles is rarely 
observed. However, their mathematical model so far studied is developed under 
the assumption that selection acts not on different genotypes, but on different 
states of N ( A i )  in the present notation. The biological meaning of the model is 
therefore quite obscure. We can also make use of NEI’S (1972) genetic distance 
as an appropriate measure of evolutionary distance. However, I did not use it in 
the present study because I had to perform simulations for a long time to obtain 
good information on equilibrium. Actually, except for a few cases marked by 
the symbol * in Table 2, I observed no common allele between ancestral and 
descendent populations even after several million generations elapsed. 

From the above studies, we can make the following conclusions. The stabilizing 
factor j3 caused by fluctuation of selection intensity increases the amount of 
genetic variability within a population and accelerates the rate of gene substitu- 
tion. However, a large value of /3 may not necessarily give a higher rate of gene 
substitution than a small value of /3 when 2N,v remains the same. This situation 
has been noted in the overdominant model (NEI and ROYCHOUDHURY 1973; 
MARUYAMA and NEI 1981). On the other hand, diffusion due to fluctua’rion of 
selection intensity plays a role in decreasing genetic variability without change 
of evolutionary rate. These opposite forces can balance each other and establish 
an  equilibrium in the case of /3 > 1, as studied by GILLESPIE (1977). The effect 
of mutation, however, is very important in determining the amount of genetic 
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variability and the rate of gene substitution. Now that we have several estimates 
of mutation rate, and knowing that gene is mutable, neglect of mutational effects 
leads to a serious misunderstanding of the evolutionary process in natural popula- 
tions. In addition, random genetic drift has the effect of decreasing the amount of 
genetic variability up to at least 2 N , 2  = IO3. 

as typical values in 
comparing his theoretical results with observed data on protein polymorphism 
and molecular evolution. In the case of p = 1 .O, MATSUDA, TAKAHATA and GOJO- 
BORI tentatively concluded that the value of u2 is about 100 times greater than the 
mutation rate, (see also NEI and YOKOYAMA 1976). On the other hand, spon- 
taneous band-morph mutation rate has been estimated as 10-6 to by MUKAI 
and COCKERHAM (1977), NEI (1977) , VOELKER, SCHAFFER and MUKAI (1980) 
and others. If we accept these estimates, the range of u/a2 may be from 10-1 to lo4, 
and the present simulations covered most of this range. If we assume that e 
1.0- 1.1, v = and u2 = Iw3, the effective size seems to be lo5 at most in view 
of the observed level of average heterozygosity (0 - 0.3; FUERST, CHAKRABORTY 
and NEI 1977). I therefore conclude that mutation and random genetic drift can- 
not be neglected in the study of protein polymorphism and molecular evolution, 
even within a framework of fluctuating selection models. 

and many useful suggestions. 

GILLESPIE (1979) estimated p =  1.1 and u2 = - 

I would like to express my thanks to T. OHTA, T. MARUYAMA and M. NEI for their interest 
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