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ABSTRACT 

The statistical properties of the standardized variance of gene frequency 
changes (a quantity equivalent to WRIGHT’S inbreeding coefficient) in a ran- 
dom mating population are studied, and new formulae for estimating the 
effective population size are developed. The accuracy of the formulae depends 
on the ratio of sample size to  effective size, the number of generations involved 
( t ) ,  and the number of loci or alleles used. I t  is shown that the standardized 
variance approximately follows the x 2  distribution unless t is very large, and 
the confidence interval of the estimate of effective size can be obtained by 
using this property. Application of the formulae to data from an isolated popu- 
lation of Ducus o l e a  has shown that the effective size of this population is 
about one tenth of the minimum census size, though there was a possibility that 
the procedure of sampling genes was improper. 

FFECTIVE population size is one of the important parameters that determine E the population dynamics of genes. At the present time, however, we know 
very little about the effective size of natural populations. Therefore, any attempt 
to estimate this size deserves special attention. In  some species of insects, effective 
population size can be estimated from the rate of allelism of lethal genes 
WRIGHT, DOEZHANSKY and HOVANITZ 1942; NEI 1968) , but this method cannot 
be used in other organisms since the system of balanced lethal chromosomes re- 
quired for surveying lethal genes is not available. KRIMBAS and TSAKAS (1971) 
used the relationship between the amount of gene-frequency change in a popula- 
tion and effective size for estimating the effective size of an olive fly population in 
Greece. Recently, PAMILO and VARVIO-AHO (1980) examined the validity of their 
method under a certain scheme of gene sampling; they concluded that the esti- 
mate obtained by KRIMBAS and TSAKAS’ method is subject to a serious error. How- 
ever, their conclusion is heavily dependent on the scheme of gene sampling they 
assumed. If we consider a different scheme of gene sampling, a quite different 
conclusion is obtained. Furthermore, it is possible to improve KRIMBAS and 
TsAKAs’ formula and estimate the effective population size from data on gene- 
frequency changes. The main purpose of this paper is to study the sampling prop- 
erty of KRIMBAS and TSAKAS’ formula and present improved methods. The sta- 
tistical errors associated with the estimates obtained by these methods will also be 
investigated. The formulae obtained will be applied to data from olive flies. 
Genet.cs 98: 625-640 July, 1981 



626 M. NE1 AND F. TAJIMA 

MATHEMATICAL THEORY 

Consider a random-mating population of effective size N ,  and suppose that the 
allele frequencies in the 0th and tth generations are determined by sampling So 
and St individuals, respectively. Let xi and yi be the frequencies of an allele at the 
ith locus in the samples from the 0th and tth generations, respectively. KRIMBAS 
and TSAKAS (1971) proposed the following formula for estimating N from this 
type of allele-frequency data for n loci (one allele from each locus). 

1 1 
2s, 2St 

f i ~ ~ = t / [ Q { F a -  (-'+-)}I , 

where Fa is a measure of standardized variance of gene frequency changes (a 
quantity equivalent to WRIGHT'S inbreeding coefficient) and given by 

and :he expectation of Fa was assumed to be approximately 

1 1 t -+-f-. 
2So 2St 2N 

( 3 )  

Conducting an extensive numerical computation, PAMILO and VARVIO-AHO 
(1980) have shown that, under their scheme of gene sampling, formula (1) gives 
a totally erroneous estimate when t is small. However, they did not investigate 
the reason for this. In the following, we shall show that the poor performance of 
KRIMBAS and TSAKAS' formula is caused by the fact that the expectation of Fa is 
not given by ( 3 ) .  

In studying the expectation of Fa, it is important to note that the effective 
population size of a population is often substantially smaller than the actual size, 
N A ,  and that there are two different possible ways of sampling genes from the 
population. The first scheme is that of PAMILO and VARVIO-AHO (1980), which 
assumed that N A  is equal to N and that the gene frequency is determined by sam- 
pling S individuals out of N .  It is also assumed that sampling S individuals in a 
particular generation does not affect the effective population size. The latter as- 
sumption holds if the individuals are sampled after reproduction or if they are 
returned to the population after examination of genotypes. In human populations, 
this certainly applies, but in other organisms this may not necessarily be true. 

In  the second scheme, we assume that N A  is much larger than N ,  and that in- 
dividuals for determining gene frequencies and those for the next generation are 
sampled separately from the population of N A  individuals. This scheme is similar 
to that considered by SCHAFFER, YARDLEY and ANDERSON (1977) and WILSON 
(1980) in their studies of the effect of selection on gene-frequency changes. In the 
following, we consider these two sampling schemes separately. 

Sampling scheme I: We now consider the first sampling scheme mentioned 
above. Let p be the frequency of an allele in generation 0. I t  is not simple to com- 
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pute the exact expectation of Fa (SOURDIS and KRIMBAS 1980), but the approxi- 
mate value can be obtained in the following way. 

(4) 
- E ( s  - y)' - E ( s  - p)' + E ( y  - 

E [ z ( l -  s> l  
- - Fa = 

p ( 1 -  p )  - E ( z  - P)' 
We note that E (s - p )  2, i.e., the variance of 5, is 

since 2S0 genes are sampled from a total of 2N;  thus, sampling is hypergeometric 
(see FELLER 1957). To evaluate the variance of y ,  i.e., E ( y  - p )  2, we first con- 
sider the case of t = 1. In this case, the individuals in generation 0 produce a large 
gamete pool from which 2N genes are sampled to produce the individuals in 
generation 1. The sampling is obviously binomial. The gene frequency in gen- 
eration 1 is then determined by sampling 2S, genes from a pool of 2N genes. This 
two-step sampling is, however, equivalent to one-step binomial sampling of 2S1 
genes from the parental gamete pool. Therefore, 

E ( y  - PI' = P(1 - P>/(2Sl)  * (6) 
E ( y  - p)' for the case of t > 1 can now be easily derived, if we note that 

1 
2N E ( y  - p) '  for the ( t  - 1)th generation is ~(18- p )  [ 1 - (1 --)'-'I (e.g., 

CROW and KIMURA 1970). Since the sampling in generation t is binomial with a 
size of 2St, we have 

Therefore, Fa is approximately given by 

where R = 2 ( N  - S0)/[2S0(2N - l)]. When N is large and N >> So, St,  the 
above formula can be approximately written as 

1 1 +--I/[ t - 2  1 --+--I 1 1 
"= [K+z  2N 2S0 2N 

Furthermore, if So is sufficiently large, Fa can further be approximated by 

- 1 1 t - 2  Fa=--I--+---. 
2S0 2St 2N 

(9) 

The validity of our formulae can be checked by examining the special case of 
So = St = N .  In this case, our formula (9) or (10) gives t / ( 2 N )  as expected; 
whereas, (3) gives ( t  + 2 )  /( 2 N ) ,  which is incorrect under the present scheme of 
gene sampling. It is clear from this comparison that the error involved in (1) is 
particularly large when t is small. It is also noted that when So, St Q N and t is 
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small, a large part of Fa is due to the sampling error at the gene-frequency survey 
rather than to random genetic drift. 

Theoretically, (8) gives a more accurate value of is', than (9), but for esti- 
mating N from the value of Fa, (9) is more convenient. Replacing Fa by Fa in this 
equation, we get the following formula for estimating N .  

A t - 2 - F a  
Nu = 1 1 1 

2SO 2SO 2 S t  
2 [Fa ( 1  - -) - (- + ->I 

When So and t are large, the formula obtainable from (IO) can also be used. 
Namely, 

We note that (12) cannot be used when t = 2. Actually, when t is small, both 
( 1  1 )  and ( 1 2 )  do not give a reliable estimate of N ,  since in this case the contribu- 
tion of So and St to Fa is very large. 

PAMILO and VARVIO-AHO computed the expected value of Fa by using the 
Markov chain method and estimated N from this expected value by using ( 1 ) for 
several values of N and S (= So = S , ) .  Their results are reproduced in Table 1. 

TABLE 1 

Estimates of effective population size obtained from PAMILO and VARVIO-AHO'S (1980) ? values 

N i 

100 1 
2 
4 
8 

16 

250 1 
2 
4 
8 

16 

500 1 
2 
4 
8 

16 

1000 1 
2 
4 
8 

16 

OM70 
0.0520 
0.0618 
0.0813 
0.1191 

0.0504 
0.0524 
0.0564 
0.0644 
0.0800 

0.0516 
0.0526 
0.0546 
0.0586 
0.0665 

0.0522 
0.0527 
0.0537 
0.0557 
0.0597 

-165 
512 
169 
128 
116 

1117 
409 
31 1 
279 
267 

309 
382 
433 
465 
484 

224 
370 
540 
702 
826 

125 
-37 

95 
101 
1 05 

61 1 

195 
232 
249 

-24 

-1696 
-20 
301 
41 6 
470 

-588 
-19 
413 
690 
849 

0.0203 
0.0253 
0.0353 
0.0546 
0.0924 

0.0235 
0.0255 
0.0295 
0.0374 
0.0530 

0.0246 
0.0256 
0.0276 
0.0316 
0.0395 

0.0251 
0.0256 
0.0266 
0.0286 
0.0326 

-107 1 03 
3492 778 

197 101 
135 103 
119 105 

-335 285 

446 238 
323 250 
285 255 

-1190 724 
1727 -46 
777 43 7 
610 481 
553 498 

4202 2398 

1236 778 
1107 92 1 
1054 971 

1992 - 70 

1617 -46 
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The estimate ( f i a )  of N by (1 1) is also presented. It is clear from this table that 
ha is generally much closer to N than is f i K T  except for t = 2. When t = 1, f i a  is 
not a good estimate of N at all, but it is still closer to N than is f i K T  except for So = 
St = 20 with N equal to 500 and 1000. It is noted that ni, as an estimate for N is 
good when S/N and t are large. The poor performance of f i a  when S/N and t are 
small is due to the approximation we made in the derivation of (9). Our formula is 
certainly better than (3),  but a small error generated in this approximation 
process apparently affects the accuracy of ha considerably. 

From the theoretical point of view, ( 11 ) has one deficiency. Namely, when So 
is small, the estimate is considerably affected by sampling error. Particularly 
when xi is 0, Fa becomes w .  This happened in KRIMBAS and TSAKAS' (1971) data 
analysis. To  avoid Fa = 00, they simply replaced xi by yi whenever xi = 0. Fa = 
00 also occurred in PAMILO and VARVIO-AHO'S (1980) and SOURDIS and KRIMBAS' 
(1980) computation of Fa, but they ignored this event simply because the proba- 
bility of the event was extremely small. (Actually they defined Fa by excluding 
the case of Fa = a.) However, a better way to avoid this difficulty is to use the 
following quantity in place of Fa. 

1 "  (Xi - Yi)' 
F b = -  X 

i=1 

2 2 

F b  is generally expected to be a better measure of standardized variance of gene- 
frequency changes than Fa, since the sampling error of (xi + y i ) /2  would be 
smaller than that of s,, unless t is large. The expectation of (s,+ y )  [2 - (X -I- 
y)]/4 is p(1 - p )  - [ E ( z  - p)' + E ( y  - p ) ' ] / 4 .  Therefore, if we make the 
simplifying assumption of (1/2S, + 1/2St) >> ( t  - 2)/2N, N can be estimated 
by 

Another measure of standardized variance is 

1 "  (Xi - Yi)' F , = -  
i=1 (Xi +yi)/2'- xiyi 

One nice property of (15) is that the expectation of (x,+ y )  /2 - s y  is p (1 - p )  , 
so that N can be estimated by 

In practice, this gives an estimate close to that from (14). Another advantage of 
(15) is that it has a smaller variance than Fa and Fb because F ,  takes on a nar- 
rower range of values than do F ,  and F b .  Obviously, the minimum values of 



630 M. NE1 A N D  F. TAJIMA 

these quantities are all 0. On the other hand, the maximum value of F ,  for a 
single allele (locus) is m, as mentioned earlier; whereas, the maximum values 
of Fb and F ,  are 4 and 2,  respectively. Indeed, our computer simulation, which 
will be presented later, has shown that F ,  has the smallest variance. Therefore, 
for the purpose of estimating N ,  F ,  seems to be the best. 

In  the above formulation, we assumed that the effective population size re- 
mains the same for all generations. In  many cases, this assumption will not 
hold, but our formulae can easily be modified to accommodate these cases. For 
example, when N varies with generation, Fa in (8) is given by 

1 1 t-1 1 
l - R  

- 
F , = - [ R + l - , n  1=1 (I---)(I--)] 2Nj 2St , 

where Ni is the effective size of the jth generation, and R =  2 ( N 0  - So)/[2So 
(2N0 - I)]. When Nj >> Sj and Si is sufficiently large, the above formula is 
approximated by 

1 1 
- +&I , 

1 +-+- 1 t-I -]/[I--- 
2St 2N 2No 2so 

where R is the harmonic mean of N I ,  N 2 ,  . . . , and Nt-,. Therefore, if N o  is close 
to R, (1 1) can be used for estimating N. Similarly, (14) and (16) will estimate 
the harmonic mean R when N varies with generation. 

Sampling scheme ZZ: In this scheme, it is assumed that the actual population 
size is larger than the effective size, and S individuals for the gene-frequency 
survey and N individuals for the next generations are independently sampled 
from N A  individuals, as mentioned earlier. Therefore, 

whereas E ( y  - p )  is 

Thus, the expectation of F, is given by 

- 1  1 1 2N 
F “ - 2 S 0  --+-+-(1--) 2St 2N NA , 

approximately. It is clear that if NA = N ,  (17) reduces to (IO), but if N < NA, it 
becomes approximately equal to ( 3 ) .  The value of N/NA would vary considerably 
with organism. In  man it is expected to be close to 1, but in many small organisms, 
such as Drosophila, N could be considerably smaller than N A .  Recently, MALPICA 
and BRISCOE (in preparation) estimated the effective sizes of six cage populations 
in D. melanogaster from information on the allelism rate of lethal genes. Each of 
the cage populations contained about 5000 adult flies, but the estimate of average 
effective size was about 600. This suggests that the N/NA ratio in laboratory 
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populations is about 0.1. A similar N / N A  value was obtained by PROUT (1954) 
and MURATA (1970) in their experimental populations of Drosophila. Unfor- 
tunately, we do not know the N/NA ratio in natural populations, but in small 
organisms it is likely to be smaller than 0.1. It is also interesting to note that, if 
we consider one generation before the 0th generation and define p as the gene 
frequency in the gamete pool of this generation, N A  is effectively 00 and we have 
(3). Therefore, the validity of (3) depends partly on the scheme of gene sam- 
pling and partly on the definition of p .  Of course, if any information about N / N A  
is available, (1 7) would give a better estimate of N .  At any rate, if we assume 
N < N A ,  N can be estimated by (1) with a proper estimate of F .  We suggest that 
F ,  be used in place of F,  in (1 ) , since F ,  has a better statistical property. Namely, 

fi,, = t/[ 2( Fc - (,+,>}I 1 1 . 

In the above formulation, we assumed the same value of N for all generations. 
When N varies with generation, (18) again estimates the harmonic mean of N .  

COMPUTER SIMULATION 

Since our formulae involve some approximations and actual estimates are 
affected by sampling errors, we have conducted a computer simulation to see the 
accuracy of the estimates. In this simulation, we used sampling scheme I, since 
this scheme is more complicated than sampling scheme I1 and likely to lead to 
more erroneous results than the latter. We assumed N = 100, and the gene fre- 
quency change in a population was followed up to the 8th generation, starting 
from a given gene frequency ( p )  . The gene-frequency change was simulated by 
the usual Monte Carlo method. At the 0th and tth generations, So and St indi- 
viduals were sampled, and the sample allele frequencies (z and y )  were deter- 
mined. We used three different values of Sa (= s,), i.e., 20, 40 and 100. From 
these allele-frequency data, we computed Fa, Fb and F ,  by using single-locus data 
(n = 1). This was repeated 5000 times, and using the means (B) of F,, F b  and 
F ,  over 5000 replications, the estimates of N were computed. The results obtained 
for generations 1, 4 and 8 for the case of p = 0.5 are presented in Table 2, ex- 
cluding those for F b .  The results for Fa are not presented, because they are similar 
to those for F,, except that Fe has a somewhat larger variance than F,. In the case 
of S ’= 20, the fi value from F, is an overestimate for t 1, but an underestimate 
for t = 4. Table 2 also gives the standard deviation (s) of F and s2/p. These 
values are smaller for F ,  than for F,. The values fo r  F ,  were also smaller than 
those for Fa. This indicates that formula (16), which makes use of F,, is better 
than the others. 

As mentioned above, the fi values in Table 2 are based on the means of F over 
5000 replications that correspond to 5000 loci or independent alleles. In  practice, 
of course, the number of independent alleles or loci that can be used for esti- 
mating N is much smaller, and thus the estimate is expected to be subject to sam- 
pling error. To see this point, we examined the distributions of Fc’s based on 
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TABLE 2 

Means (@) of Fa and F, and estimates (A) of eflective population size 

S f E’ S s2/F fi 
F a  20 1 

4 
8 

40 1 
4 
8 

100 1 
4 
8 

20 1 
4 
8 

40 1 
4 
8 

100 1 
4 
8 

0.0476 
0.0638 
0.0822 

0.0203 
0.0361 
0.0555 

0.0052 
0.0193 
0.0387 

0.0447 
0.0601 
0.0775 

0.0198 
0.0353 
0.0543 

0.0052 
0.0193 
0.0387 

0.0698 
0.0898 
0.1136 

0.0286 
0.0504 
0.0752 

0.0075 
0.0266 
0.0540 

0.0615 
0.0797 
0.1010 

0.0274 
0.0482 
0.0719 

0.0075 
0.0266 
0.0540 

2.15 
1.98 
1.91 

1.99 
1.95 
1.83 

2.11 
1.90 
1.95 

1.89 
1.76 
1.70 

1.90 
1.86 
1.75 

2.11 
1.90 
1.95 

148 
80 
98 

102 
92 

100 

104 
108 
105 

95 
99 

109 

97 
97 

102 

104 
108 
105 

These results were obtained by a Monte Carlo simulation with 5000 replications. The actual 
effective size was 100, and the initial gene frequency was 0.5. s is the standard deviation of F.  

single-locus and 20-loci data. The F ,  for 20 loci was computed by sampling 20 
loci at random from the 5000 “loci” (replications) with replacement. The results 
for the case of S = 40 and t = 8 are given in Figure 1. This figure indicates that 
single-locus F,  has a large variation and that the distribuiion of F,/F, approxi- 
mately follows the x2 distribution with one degree of freedom. Since the sum of 
x2’s is again a x’, the nFc/Fc  for n loci is expected to follow the x’ distribution with 
n degrees of freedom. Indeed, our statisi-ical test confirmed this suggestion. How- 
ever, the x2 distribution applies only approximately, and, as t increases, the devi- 
ation from the x2 distribution increases. This can be seen from the s2/p value in 
Table 2. This value should be exactly 2, if F,/f?,  follows the x’ distribution. It is 
indeed roughy 2 for t = 1, but tends to be smaller than 2 for t = 8. This is par- 
ticularly so when S is small. In Figure 1, the distribution of F ,  for 20 loci is some- 
what narrower than the (Fc/n)x:nl distribution. This occurred because the s2/F2 
for the single-locus F,  is not 2, but 1.75 in this case. Nevertheless, for practical pur- 
poses, we can assume that Fa/Fa, F b / F b  and F J F ,  all approximately follow the x2 
distribution, unless t is large. The property that s 2 / p  is approximately 2 is also 
seen in PAMILO and VARVIO-AHO’S study of Fa. The same property has been noted 
by LEWONTIN and KRAKAUER (1973) when the inbreeding coefficient is computed 
from a number of subpopulations. 
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.075 .1 

FC 

FIGURE 1.-Distribution of F ,  based on single-locus (one allele) and 20-loci (20 independent 
alleles) data for the case of N = 100, S,= 40 and t = 8. Open circles: single-locus P,. Closed 
circles: 20-loci F,. These results were obtained by computer simulation. The curves represent the 
distributions of (F,/n)xz is the x 2  value with n degrees of freedom. The arrow 

sign indicates P,. 
where x 2  

( n ) .  ( n )  

Our simulation for the case of p # 0.5 has shown that F ,  is much more sensitive 
to the variation of p than are F b  and Fc. When t = 1 and S = 20, F ,  increases as p 
decreases from 0.5 to 0.1. Thus, the F, for p = 0.1 was 0.058 as compared with 
I?, = 0.048 for the case of p = 0.5. However, the F, for p = 0.05 was 0.041. The 
value of s 2 / e  also increased as Fa increased. For example, the value for p = 0.1 
was 4.43. On the other hand, the values of & and F, remained more-or-less the 
same as p decreased from 0.5 to 0.05. For example, the F ,  for p = 0.1 was 0.046. 
However, the s2/p value decreased gradually as p decreased in both F b  and F,. 

Table 3 shows the results for F ,  and F ,  for the cases of t = 1, 4 and 8, and 
p = 0.1. Comparison of this table with Table 2 indicates that the mean and 
standard deviation of F,  for p = 0.1 are substantially larger than those for p = 0.5, 
unless S = N .  Furthermore, the value of s2/p is considerably greater than 2, 
indicating that the variance of F,/F, is greater than that for the x2  distribution. 
The values of Fc for p = 0.1 are, however, more-or-less the same as those for 
p = 0.5 in all generations examined. The only difference between the two cases 
is that the values of s2/p for p = 0.1 tend to be smaller than those for p = 0.5. 
From this point of view, therefore, F ,  seems to have a better statistical property. 
The sampling properties of F b  were nearly the same as those of F,, but the vari- 
ance of F b  was almost always slightly larger than that of F,. It is clear from this 
study that the approximation of the distribution of F / F  by the x2 distribution when 
p is smaller (or larger) than 0.5 is not as good as that for the case of p = 0.5. 
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TABLE 3 

Means (F) of Fa and F, and estimates of effective population size 

S i F 
F a  20 1 0.0581 

4 0.0758 
8 0.0975 

40 1 0.0245 
4 0.0374 
8 0.0607 

100 1 0.0049 
4 0.0200 
8 0.0403 

20 1 0.0465 
4 0.0589 
8 0.0734 

40 1 0.0202 
4 0.0337 
8 0.0530 

100 1 0.0049 
4 g  0.0201 
8 0.0396 

0.1224 
0.1 703 
0.2301 

0.0500 
0.0661 
0.1301 

0.0071 
0.0292 
0.0646 

0.05 99' 
0.0740 
0.0868 

0.0279 
0.0437 
0.0637 

0.0071 
0.0264 
0.0496 

4.43 
5.05 
5.57 

4.17 
3.13 
4.59 

2.10 
2.12 
2.57 

1.73 
1.58 
1.40 

1.92 
1.68 
1.44 

2.05 
1.72 
1.57 

-79 
40 
66 

633 
82 
85 

98 
100 
99 

111 
113 
128 

104 
115 
107 

99 
99 

101 

These results were obtained by a Monte Carlo simulation with 5000 replications. The actual 
effective size was 100, and the initial gene frequency was 0.1. s is the standard deviation of F .  

This is particularly so with F,. Nevertheless, the x2 approximation is useful for 
getting a rough idea about the reliability of the estimate of N ,  so that we shall use 
this approximation in the following discussion. 

Because of the nature of the approximate x2 distribution, F,  has a large variance 
unless a large number of loci are used. From Figure 1, it is clear that, even if 20 
loci are used, the F ,  may deviate considerably from the expected value, and con- 
sequently the estimate of fi may deviate substantially from the true value. Figure 
2 shows the relationship between F ,  and fi for the case of S = 40 and t = 8. If F, 
is 0.055, I$' will be exactly 100. However, as F ,  decreases from this value, fi 
gradually increases and reaches 00 when F ,  0.025. When F ,  further decreases, 
fi suddenly becomes - and gradually increases up to - 120 when F ,  = 0. On 
the other hand, if F ,  increases from 0.055, fi gradually declines. The probability 
distribution of F ,  for t = 8 is given in Figure 2 under the assumption that F,/F, 
is x2-distributed. This distribution shows that in the case of n = 20 becomes 
negative with a probability of about 0.02 and becomes larger than 200 or negative 
with a probability of about 0.22. It may become smaller than 50 with a probability 
of about 0.05. Therefore,when the number of genes used is relatively small, the 
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FIGURE 2.-Relationship (solid line) between F ,  and k for the case of N = 100, S = 40 
and t = 8. The broken-line curve represents the distribution of F ,  based on data from 20 inde- 
pendent alleles under the assumption of x2 distribution. The arrow indicates F,. 

estimate of I$ may be drastically different from the true value. 
The sampling error associated with fi is large when N is large and t is small. 

For given values of N and t, it is large when S is small. For example in the case 
of N = 100, S = 20, t = 8 and n = 20, fi becomes negative with a probability of 
about 0.12. In general, if we use (18), F ,  must be larger than 1/(2S0) +1/(2St) 
for fi to be non-negative. Therefore, if sample size is small, fi becomes negative 
with a high probability. On the other hand, if t is large or N is small, F ,  is likely 
to be large, so that the effect of sampling error is small. 

When N ,  S and t are given, the only way to increase the reliability of fi is to 
increase the number of loci or alleles. If we assume that nF,/F, for n loci follows 
the x2  distribution with n degrees of freedom, the probability [ P ( F ,  < P , ) ]  that 
F ,  is smaller than a specific value, F,, can be computed from the table of x2 dis- 
tribution. For example, if we want to know the probability that F ,  leads to a 
negative value of N ,  we set F ,  = 1/(2S0) 4- 1/(2St), which is 0.025 for So = St = 
40. Therefore, x," = nF,/Fc = 0.460~~ for the case of N = 100 and t = 8, since 
B c =  0.0543 (Table 2). Thus, P ( F c  < F 8 )  or P ( x 2  < x;) is 0.02 for n = 2 0  and 
0.002 for n 40. This indicates a large number of loci must be used to avoid a 
negative estimate. To make N lie within a narrower range, of course, an even 
larger number of loci is required. For example, the probability of fi being larger 
than 300 o r  negative is computed by setting F,  = 0.035 (see Figure 2). This proba- 
bility [P(x '  < 0.652n)I is 0.15 for n = 20 and 0.045 for n = 40. Namely, even if  
we use 40 genes, fi can be larger than 300 (or negative) with a probability of 
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about 0.045. Of course, most investigators would be interested in getting only a 
rough idea of the effective size, and three-fold overestimates may not be very 
serious. 

As mentioned earlier, we did not use sampling scheme I1 in our simulation. 
However, the sampling property of F for this case is expected to be similar to that 
for sampling scheme I if a proper adjustment is made for t. It is clear from (1 0) 
and (1 7) that, when N Q NA the expected variance of gene-frequency changes 
( z - y )  for the case of sampling scheme I1 is larger than that for sampling 
scheme I by 2 X (1/2N) for a given value of t. Therefore, the distribution of F 
for t for the former is expected to be essentially the same as that for t -I- 2 for  the 
latter, This means that the approximation of the distribution of n F / F  by the x* 
for sampling scheme I1 is slightly less satisfactory, but for practical purposes it 
will not matter very much, unless t is extremely large. 

SAMPLING ERROR O F  N 
It is now clear that the estimate of fi has a large sampling error. LEWONTIN and 

KRAKAUER (1973) presented a formula for computing the sampling variance of fi 
when this was estimated by (1 ), assuming that nF/F  has a xz distribution. How- 
ever, because of the complex relationship between F and fi as shown in Figure 2, 
it is not meaningful to compute the sampling variance of fi unless n is very large. 
In this case, a better way to determine the magnitude of the sampling error of fi 
is to use the distribution of Fc, rather than that of 8. Since the distribution of 
nF,/F, is approximately x2, we can determine the F ,  values that give the 2.5 % (or 
0.5%) and 97.5% (or 99.5%) cumulative probabilities. We can then compute the 
6 values that correspond to these F ,  values. The true value of N is expected to be 
somewhere between these two 6l values with probability 95% (or 99%). In 
practice, since nFc/Fc tends to  have a variance smaller than that of x?, the con- 
fidence interval thus determined tends to be an overestimate. A somewhat similar 
procedure for estimating the upper bound of 8 has been discussed by WILSON 
(1980). 

NUMERICAL EXAMPLE 

In September or October of 1966,1967 and 1968, KRIMBAS and TSAKAS ( 1971 ) 
studied the gene frequencies at two esterase loci in an isolated population 
(Haghioi Apostoli) of the olive fly, Dams oleae, near Athens, Greece. This p o p -  
lation of olive flies infest an orchard of about 2000 olive trees and was subjected 
to an extensive spray of insecticide in 1968. Consequently, the census size of this 
population was reduced substantially in this year. The two esterase loci A and B 
were both highly polymorphic and included 18 and 13 electrophoretic alleles, re- 
spectively. However, some alleles were not observed in all years apparently be- 
cause of limited sample size. From the allele frequencies presented in KRIMBAS 
and TSAKAS’ paper, we computed F ,  and estimates of N. When there were n 4- 1 
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alleles at a locus, we treated n alleles as independent alleles. This treatment seems 
to be satisfactory as an approximation, though they are not completely inde- 
pendent (E. POLLAK, personal communication). KRIMBAS and TSAKAS state that 
there are about four generations in one year in this fly. We have therefore as- 
sumed t = 4 for each year period. In the case of a two-year period (1966-1968) , 
t = 8 was used. In  autumn, the actual size of this population is apparently very 
large compared with the effective size, so that we used (18) to estimate N, 
assuming N < N,. 

The results obtained are presented in Table 4. The fi values for A -I- B were 
obtained by using the average of F over the two loci and the harmonic means of 
So and St. Table 3 also includes the 95% confidence interval of fi, computed by 

the method in the foregoing section. For all of fis, this confidence interval is very 
large. In the extreme case of locus A in 1966-1967, it has an interval of 240 to W .  

If we combine data from the two loci, the reliability of the estimate of N increases, 
but the confidence interval is still substantially large. Although the sampling 
errors of the estimates are very large, the fi’s for 1967-1968 are smaller than 
those for 1966-1967. This is probably due to the application of insecticide in 
1968. However, the combined estimate of N for the period of 1966-1968 is quite 
large, so that the difference between the two periods could also be due to random 
error. 

Comparisons of our estimates of N with those of KRIMBAS and TSAKAS indicate 
that both estimates are more or less the same, though the former tend to be larger 

TABLE 4 

F and estimates (N) of N obtained from esterase loci A and B in an isokted population of the 
o2ive f ly Dacus oleae (KRIMBAS and TSAKAS’ 1971 data) 

A 

1966-1967 
A 
B 

A + B  

A 
B 

A + B  

A 
B 

A + B  

1967-1968 

1966-1968 

16 
12 
28 

17 
11 
28 

14 
11 
25 

0.0061 
0.0047 
0.0055 

0.0148 
0.0116 
0.0135 

0.0161 
0.0075 
0.0123 

583(240;w) 
1056(314;00) 
722 (332;7408) 

168( 86;538) 
234( 100;1984) 
189( 108;446) 

291 (145;965) 
762 (313;12069) 
400 (225;961) 

* Number of alleles per locus minus one. 

k was obtained by (18). The figures in parentheses give the 95% confidence intervals. The 
standard error of F is approximately given by F-\/2/n (see text). 
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than the latter in the 1966-1967 period. This rough agreement is of course ex- 
pected, since the formulae used are both based on sampling scheme 11. The effect 
of the assumption of sampling scheme can be seen by computing f i e  by using 
(1 6). I t  becomes i /z of iQ in Table 3 in the case of t I= 4 and % of fi in the case of 
t = 8. Therefore, the effect is substantial in the present case. However, as men- 
tioned earlier, sampling scheme I1 is likely to be more realistic than sampling 
scheme I in the present case. 

Our estimates of fi seem to be very small compared with the actual size of the 
Haghioi Apostoli population. KRIMEAS and TSAKAS state that the population size 
of olive flies becomes minimum in winter and, at that time, there are on average 
two flies per tree. If this estimate is correct, the minimum census size of the 
Haghioi Apostoli population is about 4.000. If we assume that all of these indi- 
viduals participate in mating and that the distribution of progeny size is approxi- 
mately Poisson, we would expect the minimum effective size of this population 
to be about 4000. Our estimate (the value for 1966-1968) is one order of magni- 
tude lower than this value. 

There are two possible explanations for  this discrepancy. One is that some of 
the individuals do not participate in mating and that the progeny size has a large 
variance compared with the mean. As mentioned earlier, the allelism rate of 
lethal genes in cage populations of Drosophila suggests that the effective size is 
considerably lower than the census size, even in an artificially controlled popula- 
tion. In  natural populations, some adults may not mate at all, or, even if they 
mate, their progeny may not survive. If this happens, it is possible that our esti- 
mate of the effective size is roughly correct. Another explanation is local sampling 
of allele frequencies. The Haghioi Apostoli orchard is about 2.5 km long and 0.5 
km wide (ZOUROS and KRIMBAS 1969), but the olive flies were apparently sam- 
pled from a small number of trees rather than from the entire orchard. KRIMBAS 
and TSAKAS (1971) state: “In the third (1968) sample, olive fruits bearing larvae 
were collected from three different locations, and the adults which hatched were 
electrophoresed.” It is therefore possible that most of the flies sampled came from 
a relatively small number of broods produced by a limited number of parents. 
If this is the case, the estimated allele frequencies would not represent the fre- 
quencies of the entire population, even if the sample size is large. If this type of 
local sampling is conducted in the 0th and tth generations, the estimated allele- 
frequency changes [ F ,  - 1/(2S,) - 1/(2St)] will be larger than the actual 
changes in the entire population, and the effective population size will be under- 
estimated. The effect of local sampling will be larger if there is local differentia- 
tion of allele frequencies in the population. In this connection, it is interesting to 
note that the estimate of WRIGHT’S FST is often larger when a small area is used 
as a unit of subpopulation than when a large area is used (NEI and IMAIZUMI 
1966b). At any rate, it is possible that our estimate of N is underestimated, not 
because of the deficiency of the statistical method, but because of inadequate 
sampling of allele frequencies. 
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DISCUSSION 

We have seen that the estimate of effective population size is subject to a large 
sampling error unless a large number of genes and a larger number of generations 
are used. This is unfortunate, but we must accept it, since it accrues from the 
nature of stochastic change of gene frequencies. There are three ways to  reduce 
the sampling error: (1 ) increase the number of independent alleles or loci used, 
(2) increase the number of generations involved, and (3) increase the ratio of 
sample size to effective size. In practice, however, most estimates obtained from 
the current scale of study would be subject to a large sampling error, since the 
number of genes that can be used is generally small. Nevertheless, even a crude 
estimate of effective size seems to be valuable, since we know very little at the 
present time about the effective size of natural populations. Furthermore, in the 
near future, the number of marker alleles that can be used for estimating N is ex- 
pected to increase, since polymorphic alleles are now detectable by the restriction 
enzyme technique. 

In  the present study, we have made a number of simplifying assumptions. One 
of them is discrete generations. In many organisms, generations overlap, and 
strictly speaking our formulation does not apply to these organisms. However, if 
we know the generation time and the number of individuals becoming adult per 
unit time, the gene-frequency change in the population can be treated as though 
generations were discrete (e.g. ,  NEI and IMAIZUMI 1966a; HILL 1979). There- 
fore, our assumption does not seem to lead to serious error. 

The second assumption we have made is no selection. Some polymorphic genes 
are certainly subject to selection; even if the genes themselves are selectively 
neutral, their behavior in populations may be affected by other adaptive genes 
that are closely linked to them. However, E. POLLAK (personal communication) 
has shown that the effect of selection on F is generally minor unless selection in- 
tensity is very large. Indeed, compared with the large sampling error of N ,  the 
effect of selection seems to be generally much smaller, as long as a relatively short 
period of time is considered. 

The third assumption is that the population under consideration is isolated and 
that no migration occurs from outside populations. This assumption would not 
hold in many natural populations. If a population is subdivided into many sub- 
populations and the gene-frequency changes are surveyed in one specific 
subpopulation, the estimate of effective size will be strongly affected by the 
migration rate among subpopulations. If the migration rate is very small, the 
estimate will be close to the effective size of the subpopulation studied. On the 
other hand, if it is very high (close to 1) and a large number of generations are 
included, the estimate would be close to the effective size of the entire population, 
provided that genes are sampled from the entire population. Therefore, it is im- 
portant to know the population structure in the estimation of effective population 
size. 

In  some cases, investigators are interested in estimating the effective size of a 
subdivided population without knowing the migration pattern in the population. 
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I n  that case, we recommend that the estimate of effective size be computed by 
using gene-frequency data sampled from the entire area of the habitat of the 
population. The estimate thus obtained would be close to the effective size defined 
by WRIGHT (1943) for a subdivided population, irrespective of the migration 
pattern. Furthermore, this procedure would also eliminate the effect of local 
sampling in a single random mating population. 

We thank R. C. LEWONTIN, E. POLLAK, P. PAMILO, C. B. KRIMBAS and two anonymous re- 
viewers for their valuable comments. This study was supported by grants from the Public Health 
Service and the National Science Foundation. 
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