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ABSTRACT 

All possible combinations of equilibria and fitnesses in two-locus, two-allele, 
deterministic, discrete-generation selection models are enumerated. This 
knowledge is used to obtain limits (which can be calculated to arbitrary pre- 
cision) to the relationships among disequilibrium, selection and recombination 
for fixed values of allele frequencies. In all cases, the inequality IrDl < s/10 
holds, where T is recombination and D is disequilibrium, and all selection co- 
efficients lie between l - s and l + s times that of the double heterozygote. 
Linear programming techniques are used to calculate the minimum strength 
of selection needed to explain several observed nonzero values of D reported 
in the literature. One conclusion is that the failure to observe nonzero values 
of D is not surprising. 

HE complete dynamic behavior of discrete generation, deterministic, one- 
locus, two-allele diploid selection models has been well known for over fifty 

years. Yet, knowledge of the behavior of two-locus, two-allele models is much 
more limited (KARLIN 1975; EWENS 1979). Even a knowledge of possible equi- 
librium-fitness combinations has heretofore been incomplete. However, in de- 
termining the effect of selection, two-locus models may be more important than 
one-locus models. When considering two loci, which adds the effect of recombina- 
tion, measurements of linkage disequilibrium have been used in attempts to de- 
tect selection. 

These attempts to use disequilibrium to infer selection have been based on 
results from an equilibrium analysis of special fitness models (see review in 
KARLIN 1975; EWENS 1979). As noted by LANGLEY (1977), efforts to detect link- 
age disequilibrium have not been very successful, although there have been some 
exceptions, such as in the study of Drosophila montana (ROBERTS and BAKER 
1973; BAKER 1975). Two obvious questions are why have these efforts not been 
successful and what can one infer from a nonzero value of linkage disequilibrium? 

More specific questions concerning the possible equilibrium behavior of de- 
terministic two-locus, two-allele models with general viabilities can be formulated 
in the spirit of the general questions above. If the rate of recombination between 
two loci is known and a nonzero value of disequilibrium is observed, what is the 
minimum strength of selection? If the value of disequilibrium and strength of se- 
lection are known, what is the largest value of recombination possible? If recom- 
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bination and strength of selection are specified, what is the largest value of dis- 
equilibrium possible? 

A complete answer to these questiom would require a complete knowledge of 
all stable equilibria for the general two-locus, two-allele model. Although, using 
the techniques in this paper, such results may be possible, they would almost 
certainly be too unwieldy to be useful. Instead, in this paper, I provide a partial, 
but extremely useful, answer based on a complete knowledge of fitnesses corre- 
sponding to all equilibria of the general two-locus, two-allele model. 

The approach is to reverse the usual procedure of specifying fitness values and 
solving for equilibria. Instead, I specify the chromosomal frequencies and then 
solve for the fitnesses. Then, the questions posed above can be answered by using 
linear programming (DANTZIG 1963). 

Not only does this technique provide new results, but additionally it corre- 
sponds more closely to how population genetics models are used to interpret data. 
Fairly accurate observations of chromosomal frequencies are possible, and these 
are the inputs here. Judgments about selective strengths are possible, and these 
are outputs or can be used as constraints. 

EQUILIBRIA OF THE TWO-LOCUS, TWO-ALLELE MODEL 

The model is the standard two-locus, two-allele model (reviewed in KARLIN 
1975). Let the alleles at locus A be A and a and at locus B, B and b. Then fitnesses 
can be expressed in terms of a symmetric (wij = wji) 4 x 4 matrix: 

AB Ab aB ab 
AB w11 Wl? w13 U 1 4  

Ab w2 1 W2? w23 w24 ( 1 )  
aB w3l W3? w33 w34 

ab W4l w42 w43 w4 4 

Also, assume that there are no position effects, so that w14 = wZ3. Let xl, xz3 x3, x4 
be the frequencies of chromosomes AB, Ab, aB, ab, respectively. Define the dis- 
equilibrium as 

D = x1x4 - 22x3 ( 2 )  

Let r be the recombination rate between A and B. Finally, let 

e i  = -1,1,1,--1 for i=  1 to 4. (3) 

Then, the dynamics of the deterministic two-locus, two-allele model for discrete 
generations are given by (letting ’ denote the next generation) : 

for i = 1 to 4 , (4) 

where 
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and 
4 

iij = .s wixi . 
Z=1 

To solve for equilibria of (4), set xi’ = xi, yielding: 

xiW = xiwi 4- cirDwlL for i = 1 to 4. (7) 

Note the following about (7 ) .  First, if (7)  holds for i = 1 to 3, then it holds 
€or i = 4, since the xi satisfy 

4 

s x i = 1 .  i=l 
Second, note that if r and xl, x2. x3 and x4 are specified, (7)  is a linear system of 
equations €or the wij-a system of three equations with nine unknowns. Finally, 
if fitnesses are normalized so that w14 is one, and just xl, x2, x3 and x4 are specified, 
system (7) becomes a linear system of equations for r and the fitnesses. 

Hence, given the chromosomal frequencies and recombination fraction, the 
possible fitnesses for which those frequencies are an equilibrium can be found, 
using a method for solving a linear system of equations, such as Gauss-Jordan 
elimination (DANTZIG 1963). There will be six free parameters. Similarly, if fit- 
nesses are normalized, I and the fitnesses can be found once the chromosomal fre- 
quencies are specified. Hence, all possible combinations of equilibria and fitnesses 
for the two-locus two-allele model have been found. 

However, the general solution is both unwieldy and difficult to interpret. In- 
stead, in the following section, knowledge of the equilibrium-fitness combinations 
will be used to answer the questions posed above. 

LINEAR PROGRAMMING A N D  EQUILIBRIA 

Here, the methods used to answer the questions posed will be described. Using 
linear programming (DANTZIG 1963), one can maximize a quantity that is a 
linear function where the unknowns are subjected to inequalities that are linear 
in the unknowns. (The most practical method for doing this is the simplex 
method.) Hence, the goal is to express the questions in the introduction as linear 
programming problems, which will thefi be solved using standard (IMSL) com- 
puter routines. 

The first problem is the following. Giuen equilibrium chromosomal freque’n- 
cies, with a nonzero value of D and limits to the strength of selection, what is the 
maximum value of r possible? This can be phrased as a linear programming prob- 
lem. Specify xl, x2, x3, x4. Normalize fitnesses so that w14 = 1 .  Assume that all 
other fitnesses satisfy 

l - s I w , j I l + s ,  

so that s is a measure of the strength of selection. (Note that three of the wij can 
be found linearly in terms of the other wij and I ,  as indicated in the previous 
section.) Maximize r for a fixed value of s. The reason I pose the problem as 
above, with s entering additively, is that then r,,, (maximum value of r )  becomes 
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a linear function of s (as is easily seen by writing out the linear programming 
problem) j thus, it is necessary only to report rmaX/s for different values of zl, xa, 
z3, x4. To find the minimum value of s for a given r, one uses l / ( r m a x / s ) .  

Since disequilibrium is of interest, it is more informative to report the results 
as a function of p.4, pn  and D, where pA is the frequency of allele A,  and pe that 
of allele B.  Here 

P A  x1 + 5 2  

and 

P B  = x1 f x3 . 
Note that given the values of pa, pB and D, the frequencies xi can be found. 

The second linear programming problem is more useful when dealing with 
specific data, knowing pa,  pe, D and r.  Here, one may not wish to normalize wI4, 
but to allow all fitnesses to satisfy 

l - s < w i ~ < l f s ,  

so that w14 can vary. Then, minimizing s, with r, pa, pB and D fixed, is a linear 
programming problem. The disadvantage of this slightly more general approach 
is that smin/r is no longer a constant, so that it is not as useful for reporting 
general results. However, for small r (or s), smin/r for this problem is very close 
to l/(rmax/s) from the previous problem; therefore, the loss of generality in the 
previous problem is not very great, 

RESULTS 

There are two sets of results reported here: ( 1 )  general results for the first 
problem of the previous section, and (2) specific results for the second problem, 
corresponding to experimental estimates of nonzero D reported in the literature. 

For the general results, I used values of p A  from 0.5 through 0.9 and pB from 
pa through 0.9, in intervals of 0.1. (Given the symmetry of the problem, this ac- 
counts for all possible combinations of pa and pB, as explained below.) The values 
of D used were determined as follows. For given values of p A  and pB, the maxi- 
mum (Dmax) and minimum (Dmin) values of D are (LEWONTIN 1964.) : 

U,,, = minimum of p.4 (1-pB) and pe ( l -pA) , 
D,,, , = maximum of -p-1pn and - ( 1 -pB) ( 1 -pB) . 

Define 

D i n t  = ( D m a x  - Drnin)/’IO. 
I have calculated values of rmax/s for D ranging from Dmin + Dint to D,,, - Dint 

in intervals of Dint (Figure 1 ) .  To illustrate the relationship for  small D, the 
values of r !,,x/s for  D ranging from -Dint(0.8) to (0.8)Dint (in intervals of 
0.2Dint) are in Figure 2. In all cases, D = 0 is omitted, since for that value rmax/s 
would be infinite. Also, D = D,, (and D = Dmin) are omitted, since for these 
values rmal/s would be zero. Since r,,,/s is a monotone decreasing function of D 
for positive D (increasing for negative D), the values in the table can also be 



SELECTION, RECOMBINATION DISEQUILIBRIUM 663 

Pa= 0.5 Pb= 0.5 n -.ZOO -.150 -.lo0 -.OS0 0.050 0.100 0.150 0.200 
RraxlS 0.2925 0.5867 0.9450 1.6800 1.6800 0.9450 0.5867 0.2925 

Pa= 0.5 Pb= 0.6 
D -.EO -.120 -.080 -.040 0.040 0.080 0.120 0.160 
Rrax/S 0.2852 0.5927 1.0035 1.9240 1.9240 1.0035 0.5927 0.2853 

Pa= 0.5 Pb= 0.7 
D -.120 -.090 - . O M  -.030 0.030 0.060 0.090 0.120 
Rrax/S 0.2790 0.6293 1.1760 2.5013 2.5013 1.1760 0.6293 0.2790 

Pa= 0.5 Pb= 0.3 
D -.080 -,060 -.040 -.020 0.020 0.040 0.060 0.080 
RraxlS 0.2610 0.5973 1.1340 2.4960 2.4960 1.1340 0.5973 0.2610 

Pa= 0.5 Ph= 0.8 
D -.040 -.ON - . O X  -.010 0.010 0.020 0.030 0.040 
Rrax/!i 0.2430 0.5653 1.0920 2.4480 2.4480 1.0920 0.5653 0.2430 

Pa= 0.6 Pb= 0.6 
J -.I20 -.030 -.040 0.040 0.080 0.120 0.160 0.200 
RnaxlS - 0.3627 0.837 1.7760 2.0000 1.0183 0.6440 0.4320 0.2232 

Pa= 0.6 Pb= 0.7 
k " S  0.3720 0.9440 2.3520 2.5000 1.2720 0.7840 0.4720 0.2232 
3 -.090 -.060 -,030 0.030 0.060 0.090 0.120 0.150 

Pa: 0.6 Pb= 0.8 
D -.060 -.040 -.GZO 0.020 0.040 0.060 0.080 0.100 
RBaxlS 0.3480 0.8960 2,2580 2,5000 1.2480 0.7560 0.4480 0.2088 

Pa= 0.6 Pb= 0.9 - .-- . _  _._ 
D -.030 -.020 -.010 0,010 0.020 0.030 0.040 0.050 
RraxlS 0.3240 0.8480 2.1840 2.5000 1.2240 0.7280 0.4240 0.1944 

Pa= 0.7 Pb= 0.7 
D -.069 -.WO 0.030 0.060 0.090 0.120 0.150 0.180 
Raax/S 0.5580 i . 8 m  2.5440 1.2500 0.7520 0.4535 0.3392 0.1770 

Pa= 0.7 Pb= 0.8 
D -.04% - . O N  0.020 0.040 0.060 0.080 0.100 0.120 
Rmax/S a.5220 1.7920 2.4960 1.2500 0.8320 0.5670 0,3564 0.1740 

Pa= 0.7 Ph= 0.3 
3 - . 3 3  -.Cl0 0.010 0.020 0.030 0.040 0.050 0.060 
RaaxlS 0.4860 1.6960 2.4480 1.2500 0.8160 0,5460 0.3392 0.1620 

0 -.020 0.020 0.040 4.060 0.080 0.100 0.120 0.140 
ZaaxlS 1.0440 2,2680 1.2480 0.3333 0.5760 6.4032 0.2773 0.1440 

D -.010 0.010 0.020 0.034 0.040 0.050 0.060 0.070 
r?#ax/S 0.9720 2.1840 1.2240 0.8333 0.6i20 0.4368 0.2827 0.1389 

Fa= 0.8 Pb= 0.8 

Pa= 6.8 ?b= 0.9 

Pa= 0.9 Pb= 0.9 
D GTOlo-- 0.02a' OI630 0.040 0.050 0.060 0.070 0.080 
RraxlS 1.6960 1,0920 0.8160 0.6250 0.4704 0.3430 0.2331 0.1193 

FIGURE 1.-The maximum values of I divided by s, rmax/s, where all fitnesses lie between 
( 1 - s ) ~ ~ ~  and (1-+s)wI4, for values of D, p A ,  pB.  (Read Pa as p A  and Pb as ps.) 
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Pa= 0.5 Pb= 0.5 
D -.040 -.030 -.020 -.010 0.010 0.020 0.030 0.040 
RraxlS 2.01 2.55 3.60 6.74 6.74 3.60 2.55 2.01 

Pa= 0.5 Pb= 0.6 
D -.OX -.024 -.016 -.008 0.008 0.016 0.024 0.032 
RraxlS 2.35 3.04 4.41 8.49 8.49 4.41 3.04 2.35 

Pa= 0.5 Pb= 0.7 
D -.OD -.oia - . o u  -.oo6 0.006 0.012 0.018 0.024 
Rrax/S 3.12 4.15 6.18 12.24 12.24 6.18 4.15 3.12 

Pa= 0.5 Pb= 0.8 
9 -.016 -.012 -.008 -.004 0.004 0.008 0.012 0.016 
ZraxlS 3.14 4.21 6.31 12.58 12.58 6.31 4.21 3.14 

Pa= 0.5 Pb= 0.9 
D -.008 -.006 -.004 -.002 0.002 0.004 0.006 0.008 
Rrak/S 3.09 4.16 6.26 12.53 12.53 6.26 4.16 3.09 

Pa= 0.6 Pb= 0.6 
D -.OX -.024 -.016 -.008 0.008 0.016 0.024 0.032 
RnaxlS 2.21 2.31 4.29 8.52 9.14 4.70 3.21 2.46 

Pa= 0.6 Pb= 0.7 
D -.024 -,OM -.012 -.006 0.006 0.012 0.018 0.024 
Rrax/S 3.0i 4.10 6.24 12.63 12.76 6.38 4.24 3.16 

Pa= 0.6 Pb= 0.a 
D -.016 -.0!2 -.008 -.004 0.004 0.008 0,012 0.016 
RraxlS 2.92 3.98 6.08 12.35 12.57 6.31 4.21 3.14 

Pa= 0.6 Pb= 0.3 
3 -.008 -.006 -.004 -.OK? 0.002 0.004 0.006 0.006 
RnaxlS 2.82 3.86 5.92 12-06 12.37 6.23 4.17 3.13 

Pa= 0.7 Pb= 0.7 
D -.024 -.Ole -.012 -.006 0.006 0.012 0.018 0.024 
RraxlS 2.51 3.51 5.50 11.41 12.06 6.15 4.16 3.i6 

Pa= 0.7 Pb= 0.8 
D -.0:6 -.012 -.008 -.004 0.004 0.008 0.012 0.016 
RNax/S 2.39 3.36 5.27 10.97 11.66 5.97 4.06 3.09 

fa= 0.7 PS= 0.9 
D -.008 -.006 -.CO4 -.002 0.002 0.004 0.606 0.008 
RMaxiS 2.27 3.20 5.04 10.52 11.27 5.79 3.35 3.02 

Pa= 0.8 Pb= 0.8 
a -.016 -.012 -.008 -.004 0.004 0.008 0.01Z 0.016 
RraxlS 1.52 2.30 3.82 8.32 9.51 5.03 S.51 2.74 

D - . O M  -.OW -.004 -.602 0.002 0.004 0.006 0.008 
Pa= 0.8 Pa= 0.9 

Rrax/S 1.42 2.15 3.59 7.85 9.06 4.80 3.36 2.63 

Pa= 0.9 Pb= 0.9 
D -.$OR -.ON -.004 -.002 0.002 0.004 0.006 0.006 
RraxlS 0.27 0.70 1.53 3.99 5.68 3.23 2.39 1.96 

FIGURE 2.-The maximum values of r divided by s, rmax/s, where all fitnesses lie between 
(I--s)wl4 and (I+s)w,,, for small values of D. Note that for D'= 0, r,,,/s is infinite. (Read 
Pa as pa and Pb asps.) 
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TABLE 1 

smin (see text) for significant nonzero values of D reported in ROBERT and BAKER (1973) 
and BAKER (1 975) for esterase loci in D. montana 

Pair of loci 
(“A” listed first) Year PA p 8  D SUllll 

I and 2 1970 0.274 0.637 - 0.109 0.003 

1 and 2 1973 0.236 0.627 - 0.081 0.002 

3 and 4 1970 0.568 0.346 - 0.163 0.006 

3 and4 1973 0.537 0.398 - 0.162 0.005 

A value of 0.002 was used for r in all cases. 

used to determine the maximum possible value of D ,  given P A ,  pB, r, and the 
maximum strength of selection. 

To determine rmax/s for values of p a ,  p B  and D not listed in Figures 1 and 2, 
make use of the symmetry of the model. The following sets of values for P A ,  p B  

and D all yield the same value of rmax/s. 

Set 1: pA=a, pB=b, D = d  
set% pA=b,PB=a, D = d  
Set 3: p A  = a ,  p B =  1 - b, D = - d  
Set 4: P A  = (1-a) ,  P B  = b, D =-d 

By combining the operations above, values of pA, p B  and D not listed in the figures 
can be reduced to values listed in the figures. 

The first specific case of observed nonzero D that I will use to determine the 
minimum strength of selection (under a selection hypothesis) is that of Dro- 
sophila montana (ROBERTS and BAKER 1973; BAKER 1975). Here, significant 
linkage disequilibrium was observed among four different closely linked esterase 
loci, at several different times. I n  particular, grouping active alleles as one “al- 
lele” and null alleles as the other, significant nonzero values of D were observed 
between esterase loci I and 2 and between 3 and 4. The loci are in the order 
1-3-2-4. The total map distance between 1 and 4 is 0.37. To get an indication of 
the minimum strength of selection, smin r was calculated for r = .002, as in the 
description of problem two above (see TABLE 1 ) . The general picture that emerges 
is that selection coefficients (2 X smin) need be only 1 % to explain these observed 
gamete frequencies. 

Similar calculations were performed for several cases of significant nonzero 
values of D observed in Drosophila melanogaster (LANGLEY, TOBARI and KOJIMA 
1974) and the results are in Table 2. Here r was taken as one-half the map dis- 
tance reported in (LANGLEY, TOBARI and KOJIMA 1974), taking into account the 
absence of recombination in males. Indicated selection coefficients (2 x smin) 
ranged from 0.04 to 0.18. 
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TABLE 2 

smin (see text) for significant nonzro values of D reported in LANGLEY, TOBAR and KOJIMA 
(1974) for  isozyme loci on chromosome 3 of Drosophila melanogaster 

in the Katsunuma population 

Pair of loci 
(“IZ’’ listed first) PA P B  D r 

Octanol dehydrogenase 
Aldehyde oxidase 0.842 0.784 0.043 0.037 0.026 

Esterase C 
Leucine aminopeptidase 0.800 0.754 0.024 0.0465 0.092 

Esterase 6 
Phosphoglucomutase 0.170 0.667 0.023 0.033 0.021 

Value of r is map distance divided by two. 

DISCUSSION 

Given particular equilibrium values of chromosomal frequencies at two loci, 
constraints have been found on the relationship between the maximum value of 
recombination and the minimum strength of selection. The limits imposed by 
these constraints can in fact be achieved (there exist equilibria with this much 
recombination or that little selection) if only existence of equilibria, not stability, 
is included. (The more complex role of stability will be pursued elsewhere.) I t  is 
important to note that if the true situation involves more than two loci, the results 
of this paper remain in force if fitnesses are replaced by induced fitnesses (what 
would be observed at two loci), as noted by EWENS and THOMPSON (1977). 

Other results of a similar nature for general viabilities are those of NAGYLAKI 
( 1976), KARLIN and CARMELLI (1 975) and GINZBURG (personal communica- 
tion). NAGYLAKI (1 976), dealing with weak selection, deduced an asymptotic 
order of magnitude relationship between disequilibrium and selection coefficients, 
in the limit as the strength of selection goes to zero. KARLIN and CARMELLI (1975) 
reported numerical results for general viabilities indicating that large values of 
D and T were incompatible. Using a simple argument, GINZBURG demonstrated 
that IrDl < 3s/4. The distinguishing feature of the present paper is the precision 
of the results and that the limits can easily be calculated for any given equi- 
librium. Hence, general conclusions are possible. 

First, consider the results presented in tabular form in Figures 1 and 2. These 
results provide limits to the relationship among three parameters in multilocus 
population genetics, recombination rate, T,  disequilibrium, D, and selection, s. 
Note that in all cases the stringent inequality 

/rD/ 5 s/lO, (9) 
holds. Note that, as D approaches 0 or D,,, or  Dmin, the left-hand side of (9) ap- 
proaches zero. Also, for values of pa and pB not near 0.5, the bound on D is stricter 
than that implied by (9), as demonstrated in Figures 1 and 2. 
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The general results provide a guide as to when the search for nonzero D (gen- 
erated by deterministic equilibria) is likely to be successful. In particular, the 
results suggest that many of the negative results obtained in the search for dis- 
equilibrium (see review by LANGLEY 1977) are not surprising. Given the map 
distances and observed gene frequencies, selection coefficients would have to be 
extremely large to generate values of D large enough to be detected. Table IV of 
BROWN (1975) lists the sample sizes (number of random zygotes) needed to be 
90% sure of rejecting the null hypothesis that D = 0, for given values of PA, p B  

and D. Combining the results of his table with the present paper, the difficulty of 
detecting deviations from linkage equilibrium is apparent. For example, let 
p A  = 0.9, pB = 0.5, s = . O l  (selection strength of about 2 percent) and let D be at 
the largest value possible as indicated by Figure 1. Then, if r .01, more than 
500 random zygotes are required, and if I = .025 more than 2300 random zygotes 
are required to be 90% sure of rejecting the null hypothesis that D = 0. 

From a theoretical point of view, the results presented here suggest that popu- 
lation genetics theory should concentrate on those situations in which D is quite 
small, except for very small r. In  both of these cases, ideas from one-locus theory 
may be useful in understanding equilibrium properties. Additionally, since these 
results imply that D is usually small, arguments for the evolution of recombina- 
tion (MAYNARD SMITH 1978) should not be based on the presence of large dis- 
equilibrium. 

Finally, for fixed values of the limits to the selection coefficients, the decline 
in the maximum possible value of D (say for D positive) as recombination, r, is 
increased does not fit any simple function. In  particular, Dmax(r)  is not an ex- 
ponential function of I. 

I will now turn to the interpretation of experimental estimates of disequi- 
librium (D), discussing first general questions and then the results reported in 
the previous section. Using the results of this paper, the minimum strength of 
selection necessary to maintain an observed disequilibrium D (at a deterministic 
equilibrium) can be calculated. There are three general categories into which 
smi, might fall. First, smln might be so small that selection would be impossible to 
detect directly. Another possibility would be for smin to be EO large as to stretch the 
credulity of a selective explanation for the observed D. Finally, smIn might fall be- 
tween the two cases above, suggesting that more direct measures of selection might 
prove successful. 

All three general classes are represented in the cases reported in the previous 
section of s m i n  calculated from observed nonzero D. In  particular the best docu- 
mented case, that of D. montuna, falls on the borderline of possibly detectable 
differences. However, since the s m i ,  values on the order of one percent represent 
lower bounds, a search for the selective differences might just prove successful. 
However, in case of disequilibrium between esterase C and leucine aminopep- 
tidase in Drosophila melanogaster (Table 2), where selective differences of at 
least 18% are indicated, an explanation for this D value based on selection seems 
improbable. 
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In applying the results of this paper directly to data, several cautions are in 
order. First, the census time assumed in the model is just after mating. However, 
if selective differences are small, census time should not greatly affect estimates 
of D. Second, the results of the present paper are for populations in equilibrium. 
However, if populations are near equilibrium, the results of this paper almost 
certainly would apply. 

Although the results of this paper do not apply directly to more loci, more 
alleles and the effect of mutation, the techniques used here can be applied. Re- 
search along these lines is currently in progress. The other avenue of research 
suggested by the results of this paper is to use the complete knowledge of all 
equilibrium-fitness combinations for general two-locus, two-allele models ob- 
tained here to examine these models in more depth. 

I am grateful to JOHN GILLESPIE, LEV GINZBURG and MIKE TURELLI for helpful discussions, 
and to SI LEVIN, MIKE TURELLI and the referees for comments on the manuscript. I am par- 
ticularly grateful to SARA ROSE HASTINGS for encouragement. The research was supported in 
part by National Science Foundation Grant DEB-8002593. 
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