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ABSTRACT 
The covariance of inbred relatives from a population in linkage and identity equilibrium in the 

presence of dominance and epistasis is formulated using a similar procedure to that which B. S. WEIR 
and C. C. COCKERHAM used to derive a general expression for the genotypic variance. An alternative 
model based on the description of a genotype in terms of the homozygotes of its constituent alleles is 
defined which leads to an equivalent set of 21 quadratic components, but when the relatives are 
descended from a common ancestor by selfing some confounding occurs and only 12 are necessary. 
This covariance can be subdivided into components arising among families at different levels of the 
hierarchy generated by a selfing series, and the component among descendants of distinct members 
of the base population has a different form from those arising at lower levels of the hierarchy. The 
12 quadratic components together with an error variance can be estimated using the 20 statistics 
provided by analyses of variance and covariance of families generated by four generations of selfing. 

general expression for the genotypic variance of A a population arising from two loci with no re- 
strictions on genotypic structure or gene action was 
given by WEIR and COCKERHAM (1977). If linkage 
disequilibrium is excluded, this expression involves 2 1 
quadratic components. The model underlying this 
derivation describes the genotype in a noninbred for- 
mat and inbreeding is catered for by allowing nonzero 
values for the probability of identity by descent of 
alleles at a locus within a genotype. The quadratic 
components familiar from the description of a non- 
inbred population are used in the company of others 
which allow for the effects of inbreeding. A similar 
method is used here to derive an expression for the 
covariance of inbred relatives in a population in link- 
age and identity equilibrium in the presence of dom- 
inance and epistasis. 

WRIGHT and COCKERHAM (1 986) showed that for 
one locus an alternative but equivalent set of quadratic 
components can be specified which includes the vari- 
ance of homozygous genotypes instead of the usual 
additive genetic variance, and for relatives which are 
descended from a common ancestor by selfing there 
is confounding and fewer components are needed. In 
this paper the homozygote-based model is used ex- 
plicitly in an extension of the covariance of relatives 
to include epistasis. 

THE CONVENTIONAL GENOTYPIC MODEL 

Definitions of effects and descent measures: Using 
a similar notation to that of WEIR and COCKERHAM 
(1 977), the genotypic values of typical individuals x 
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and y with genotypes G #  and GkL, respectively, can be 
expanded as 

x = Cys = /.lo + ai + ~j + b, + b, + d$ + d:s 

+ (ab)ir + (ab)is + (ab)jr + (ab)js + (adb)irs 

+ (Ud"jrs + (bd"),, + (bd"), + (d"db)ijr,, 

y = GtL = po + ah + ai + bu + b, + dti  + de, 

+ (ab)ku + (ab)k, + (ab)lu + (Ub)l ,  + (Udb)kuu 

+ (adb)iu, + ( b d " ) ~ ,  + (bd")nu + (d"db)uu,. 

Here i, j ,  k and 1 are alleles at locus A and r ,  s, U and 
v those at locus B .  The term p, is the mean of the 
noninbred population, the a's are the additive effects 
of alleles at locus A, the b's those at locus B,  and d" 
and d b  are the dominance effects at the two loci. Also 
included are the epistatic terms ab, adb, bd", and dadb,  
which are, respectively, the additive by additive, ad- 
ditive by dominance, dominance by additive and dom- 
inance by dominance interactions of the two loci. All 
effects are indexed in sequence according to the alleles 
involved. The terms are defined so as to have the 
usual summation properties in the noninbred refer- 
ence population: 
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TABLE 1 

Identity measures 

A. J. 

When 
General term x = y  

F. = P(i = j )  = P(r = s) F 
Fy = P(k = 1) = P(u = U )  F 
40, = P(i = k) + P(i = 1) + P( j = k) + P ( j  = 1) 

= P(r = U) + P(r = U) + P(s = U) + P(s = U) 

= P( r = s = U) + P(r = s = U) + P(' = U = U) + 

2(1 + F )  

47, = P(i = j  = k) +P(i = j = 1) +P(i  = k = 1) + 4F 
P ( j  = k = 1) 

P(s = U = U) 

ZP(2 = j  = k = 1 )  

ZP(r = s = U = U ) 

ZA, = P(t = k and j = 1 )  + P(i = 1 and j = k) - 1 - F  

= P(r = U and s = U) + P(r = v and s = U) - 

6, = P ( i = j = k = I ) = P ( r = s = u = u )  F 
a, = P(i = j a n d  k = 1) = P(r = sand U = v )  F 

= P(i = j and U = u) = P(k = 1 and r = s) 

in which p ,  is the population frequency of the ith allele 
at locus A, q, that of the rth allele at locus B,  and E$, 

The covariance of x and y depends on the probabil 
ity that two, three or all four genes defined for a locus 
are descended from a common gamete. Although the 
effects in the above model are designated as though 
dependent on nonidentical genes (nibd), genes may be 
identical by descent (ibd) when either x or y is inbred. 
F, and Fy are the usual coefficients of inbreeding of x 
and y, and Table 1 gives five other descent measures 
which were described by COCKERHAM (1 97 1) and are 
equivalent for either locus. For the sake of simplicity, 
a general three-gene descent measure yxr is written 
for the mean of the two measures which individually 
specify whether it is x or y which carries two of the 
three genes involved. With linkage equilibrium and 
identity equilibrium the genotypic distributions of the 
two loci are independent and all two-locus probabili- 
ties can be expressed as products of single-locus meas- 
ures. 

The covariance of relatives: The covariance is 
derived in the usual way as the difference between 
two parts, the expectation of the product of x and y 
and the product of the expectations: 

= Erqr = 1. 

C xy = EG'!, GiL - EGa EGi;  

in which E denotes an expectation taken over the 
populations of interest which are inbred to an arbi- 
trary degree. The latter term is the most easily found 
as it depends only on determining which effects do 
not sum to zero over the population. Using co to 
denote an expectation taken over effects of a partic- 
ular type as defined for the noninbred population, the 
conditions 

coat = cobr = cod; = = eo(ab),, 

= &O(Udb),, = &o(bd"),, = &o(d"db),, = 0, 

Wright 

are equivalent to those given earlier. In the inbred 
population derived from the noninbred reference, 

&Id: = pid:, = Er q,ddR, and 

&r(dadb) i i rr  = Ei Er piqr(dad b) i iw 

are not necessarily zero. There are also terms whose 
expectations cannot logically be taken over either the 
inbred or noninbred populations as they belong to a 
hypothetical population which is inbred for one locus 
and noninbred for the other. However, they can be 
explicitly expressed in terms of allele frequencies and 
effects. Retaining the expectation notation but with- 
out the subscript 0 or Z 

&(ad*)irr = CC piqr(adb)irr = 0, 

@d")iir = CC Piqr(bd")ii, = 0, 

i r  

i r  

4d"db)iirs = CCC Piqrqs(d"db)iirs = 0, and 
i r s  

&(dadb)+ = CCC Pipjqr(dadb)ijrr = 0- 
i j r  

These expectations are zero because at least one un- 
matched random subscript is involved. Thus, the 
mean of a population inbred to degree F is 

pF = po + F(t1d:  + &Id!,) + F 2  ~ , ( d " d ~ ) ~ ~ , , .  

as shown by WEIR and COCKERHAM (1977). 
The next step in the procedure is to determine 

which quadratic components can contribute to 
EGYsGiL. All cross products between effects in x and y 
are involved, but some of these have zero expecta- 
tions. This is the case for any product in which sum- 
mation of effects over an unmatched subscript has a 
zero expectation. This applies to all products of het- 
eroallelic effects and those of the effects of different 
loci, and also leads to 

&~i(bd")j;, = ~ ~ ; ( d " d ~ ) j i , ~  = & ~ i ( d " d ~ ) q ~ ~  = &d$dpi 

= &d$(bd")i, = &d;{adb)jr, = &d;(d"d*)iirs 

= &dQ.(d"db)lirr tl = &d:(ab)l, = &d:(bd"),, 

= &&(bd")iI, = &d:(bd")i, = ed:(d"db),, 

= &&(d"db)ii, = &dZ(d"db),,, = &(ab)ir(d"db)iirs 

= &(Ub)i,(d Qdb)yrr = &(adb)irs(ud b)i71 

= &(Ud")i,( d"db)qrr = &(ad b)j,,( d "d b)iir,  

= &(Udb)irr(d"db)ijrs = &(adb)irr(d"db)iirs 

= &(adb)i,,(d"db)ijrr = &(adb)i7s(bd")jir 

= &(Udb)i,,( bd ")i jr  = &(d "d b)iirs( d"db),,, 

= &(d "d b)ijrs( dad b)lirr 

= &(d"db)yrr(d"db)iir, = 0 
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TABLE 2 

Components and coefficients of the covariance of G# and Gt\ in terms of the conventional heterozygote-based model* 

Components 

Terms Coefficients Model Summary 

with obvious reflections between loci where necessary. 
These expectations are defined for products of terms 
which may be drawn from different populations; 
inbred, noninbred or the hypothetical type described 
earlier. However, they can always be written in ex- 
panded form by noting that summation is taken over 
the product of allele frequencies specified by the 
subscripts carried, but ignoring any repeated sub- 
scripts in ibd effects. For example: 

&(dad b)ijrr(dadb)iirr = Z pipjqr(dadb),j.r,(dadb)ii,,. 
ijr 

Noting that no terms involving the mean po can 
contribute to the covariance, the 38 remaining are 

given in Table 2 using the above convention for 
expectations. 

The usual terminology familiar from the descrip- 
tion of outbreeding populations is used for additive, 
dominance and epistatic variance components arising 
from single alleles or nibd combinations. The lower 
case subscript refers to the locus involved, but then 
summation is taken over all individual loci for single 
locus effects and over all pairs for epistatic terms. One 
or more asterisks added to the subscript of a variance 
indicates that effects of ibd combinations are involved. 
For example, variances involving (dadb)  terms can 
have none, one, or two asterisks according to whether 
the interacting dominance effects are due to identical 
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alleles at neither, one, or both loci. Covariances are 
written in a similar fashion, the subscripts for the two 
effects being separated by a dot. 

The coefficients for U% and H* are obtained to- 
gether from a single argument. In EGYsG!\ there is a 
probability aq that both genotypes have alleles which 
are identical by descent and this includes the proba- 
bility 6, that they are ibd for the same allele. The 
coefficient of ( & d f , c d t )  in EG?sEGt\ is FxFy. Altogether 
the terms for locus A are 

6xy&(dz)' + (axy - 6, - FxFy)8df,&d& 

= &y[&(d11)2 - (~dt t ) ' ]  + (axy - F,F,)(&df,)' 

since &df,&dgk = (Ed:)'. There are cross products be- 
tween the two loci (&df,&db,,) but the contributions from 
EG?,G:\ and EGYsEGt\ are equal with identity equilib- 
rium and cancel (COCKERHAM and WEIR 1984). The 
coefficients for uD* D** and J* and for uiD** and L* 
are obtained by similar arguments. Coefficients for 
other components are given by direct probability ar- 
guments in which the probabilities for the two loci are 
independent. 

Of the 2 3  summary components, nine are variances, 
11 are covariances and three arise as products of 
expectations for ibd effects. However, because of the 
similar coefficients for U A  DD** and AD* and for 
uAA DD** and u A ~  D A * ,  these are confounded and the 
original 2 3  components can be reduced to 21. The 
covariance can be written in full as 

c, = 2 8 4 ~ :  + 2A,& 482f& 48,A,& 

+ 4A:y& + 6,&* + 2 8 , y 6 x y ~ : D *  + 2 A V 6 , U ~ n *  

+ 6 : y d D * *  + 4 7 z y U A  D* + 2(Fx + F y ) o x y u A  AD* 

+ 2(F, + F y ) ~ x y ( ~ A  DD** + UD* AD*) 

+ 2(F* + Fy)Axru~ DD* + (Fx + F ~ ) ~ , u D *  OD** 

+ 8 8 x y y z y U A A  AD* + 8?';(UAA DD** + DAD* DA*) 

+ ~ Y , A , ~ A D  DD* + 4 y x ) ~ x y @ A D *  DD** 

+ (a, - FJy)H* + (dY - FZF,2)L* 

+ (.xy - F J y ) ( F x  + F y ) J * .  

When x = y, this covariance reduces to the population 
genotypic variance, and is equivalent to the expression 
given by WEIR and COCKERHAM (1 977) when linkage 
equilibrium and identity equilibrium are assumed. 

AN ALTERNATIVE MODEL BASED ON 
HOMOZYGOTES 

In a paper dealing with the covariance of relatives 
arising from a single locus, WRIGHT and COCKERHAM 
(1 986) found that in systems of self-pollination an 
equivalent but smaller set of quadratic components 

could be obtained by replacing the variance of addi- 
tive effects (U;) and their covariance with the domi- 
nance effects of identical alleles ( u A . D * )  by the variance 
of homozygotes (us) and their covariance with the 
same dominance effects (uM.H). The underlying model 
was not given explicitly, but for one locus (A) it is 

G'I = p, + (m3 + mj")/2 + d ;  - (dg + d 3 / 2 .  

This model contrasts with the conventional one 
treated above which is heterozygote-based, and will 
be referred to as a homozygote-based model. Al- 
though the overall mean remains that of the non- 
inbred population, the mean of the effects of the ith 
and j th homozygotes, equal to m9 = 2a, + d :  and 
mj" = 2aj + d:, is used instead of the additive allelic 
effects (ai and uj), and then the surplus d ;  and d a  
terms are subtracted. It can be expanded to include 
two loci: 

G:, = p0 + ( m f  + mj" + ml + m,b)/2 

+ d $  - (d:  + d 3 / 2  + db, 

- (d tr  + dt , ) /2  + 
+ (mamb),, + (mamb),,]/4 

+ [(madb)i,,  + (m'db)jrs + (mbdu),, 

+ ( . ~ ~ d " ) ~ ~ ] / 2  - [(madb)i,, + (madb)&, 

+ (madb),,, + (madb),,, + (mbda)iir + (mbdu)iis 

+ (mbda)j,, + (mbda)jjs]/4 + (dadb)qr, 

+ (m"mb)& 

- [(d'db),j,, + (dadb)qs, + (d"db)iirs 

+ (dadb)jj, ,]/2 + [(dadb)ii,, + (d'db)j,, 

+ (d"db)iiss + (d'db)jj,s]/4. 

This includes the two-locus interactions of homozy- 
gous genotypes (mumb terms) and the various interac- 
tions of homozygotes and dominance effects (madb 
and mbdu).  As before an effect designated as nibd in 
the noninbred model has a nonzero probability of 
being ibd with inbreeding but those explicitly desig- 
nated as ibd cannot be nibd. 

The dominance effects and their interactions have 
the same summation properties as in the earlier 
model, but effects and interactions involving homoz- 
ygote terms have properties which depend on those 
of the effects from which they have been made up. 
This complicates the detection of zero quadratic com- 
ponents for this model. The following relations hold: 

mf = 2a, + d z ,  

(mamb),r = 4(ab),, + 2(adb),,,  + 2(bda),,, + (dadb),,,, 

(mudb),,, = 2(adb),,, + (d'db)p,,5 and 

(mbda)tlr = 2(bd')zy + (dadb)yrr.  
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TABLE 3 

Quadratic components arising from the homozygotebased model and their coefficients in the covariance of inbred relatives 

In general 

&(ma)? + &(mb)? - H* 
&m;(m'mb)c + &mt(m'mb)i, - 1 s  
&(m"mbF, - L* 
&(dah$ + &(db)?$ 
&d;{mbmrC")#, + &d!,(m'db),,, 

&d;(mbd")b. + &d",modb)i, -J. 

&(madb):, + &(m'd")$ 
&(madb% + &(m'd"):, - 2L: 
&(dadb)& 
&(d4db)& + &(dEdb):., 
&(d "d ')k - L * 
&mfd; + &m%b - H I  
&dZ(mamb), + &d2m"mb)" -J. 
&mf(mbd")b, + &m!(m(nr"db)i, -J. 

&m:(m(nr'db)i, + &mt(mbdo)br -J. 

&(m"mb)i,(m"d 9," 
+ &(mDmb)i,(mbdd.)a, - 2L* 

&dt{m"db)+, + &dR(mbd")fi, -J. 
&(m"mb)i,(d"db)fi,, - L* 
&(m'db)dd "m ')+, - La 

E(d.2 + &(d?X - H* 

&mf(d'db)b, + &d(d"db)- -J. 

&d;{d"d')g, + Cdt,(d"db)c,, 
Cdi{d'db)fiw + &ddR(dEdb)b, 
&(mad ')i,(d"d ')* + &(mbdd")&d"db)iw 
&(m"db)i,(d"db)c, + &(mbdn)b,(d"db)d, 
- 2L+ 

+ (cdk)' 
(Ed; + &dL)&(dEdb),., 
[~(d'd~)c,]* 

Fort=O With d i n g  

e 112 
2e 1 

e 2  114 

The nonzero components and their expectations 
are given in the first two columns of Table 3, with a 
similar convention in the use of asterisks in subscripts 
as before. The coefficients appear quite different from 
those for the heterozygote-based model, as the occur- 
rence of several dominance terms of the same type 
leads to coefficients which are often compounds of 
descent measures, notably (Fx + Fy - 2), (y, - 8,), 
and (exJ - 27, + Q. In addition the divisors of two 
or four applied to additive and other variances are no 
longer required and many factors of two disappear 
from the coefficients as a result of the divisors in- 
cluded in the model. 

Because ibd terms have been confounded into 
homozygous effects and interactions, many more 
quadratic components need to be corrected for the 
products of nonzero expectations than was the case 
for the heterozygote-based model. From the above 
relationships 

emf = Ed:, and e(mamb),, 

= &(m"db)i,r = &(mbdQ)Ii, = &(d"db);a,,. 

Contributions from EG!xGti to [(ed:)* + ( ed3*]  arise 
from correction of U$, U;* and u ~ . ~ * ,  whose coeffi- 
cients can be summed: 

0, + (8, - 27, + 6,) + 2(7, - 6,) = 6,. 

This equals the coefficient for (e&)' arising from 
EGFsG;\ in the heterozygote-based model (Table 2). 
In a similar fashion the summed coefficients for (e& 
+ edk)(edadb)i;,, and (&dadb)$, are found to be (Fx + 
FY)6, and 6; respectively, again matching those from 
the heterozygote-based model. This procedure serves 
as a check that the two models are in fact equivalent, 
and shows that the residual terms in H*, J *  and L* 
have the same coefficients in each case. In the interests 
of simplicity, the xy subscript is dropped from the 
coefficients which are given in the third column of 
Table 3. The coefficients have the property that all 
are positive except those of covariances which involve 
an odd number of homoallelic effects, denoted by an 
odd number of asterisks, as these include the negative 
term (y - 8) unsquared. 
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GENOTYPES RELATED UNDER SYSTEMS OF 
SELFING 

Confounding of quadratic components: As it 
stands, the model based on homozygote values fulfills 
the same function as the one used earlier, and uses 
the same number of parameters to express the covar- 
iance of relatives with arbitrary inbreeding and epis- 
tasis. However, it has particular properties under self- 
ing. When x and y are relatives produced after one or 
more cycles of selfing, then only three different gen- 
otypes can arise from the two alleles carried by their 
common ancestor. If x and y both have the heterozy- 
gous genotype, the quantities A,, and (e, - 27, + 6,) 
both equal 1/2, otherwise they are zero. This is also 
true if x is the ancestor of y. Thus, under selfing the 
equality 

Ax. = 6, - 2rXy + 6, 
always holds. 

COCKERHAM (1 983) defined the covariance between 
individuals in the gth and g’th generation of selfing 
(the noninbred source being generation zero) whose 
last common ancestor occurred in the tth generation 
as C,., and the various identity measures in an anal- 
ogous manner. With selfing the identity measures can 
be expressed as powers of ?h, and using results from 
COCKERHAM (1 983) and WRIGHT and COCKERHAM 
(1 986): 

F, = Fg = 1 - (%)g 

F = F I = 1 - (1/2)g’ 
Y g  

Yxy = ytgg, = 1 - (%)g+2 - (%)g’+* - (,),+I 

This again demonstrates the equality A,.. = 8, - 27,  
+ 6,, and also shows that 4(8, - yxy) = ( 2  - F. - F,). 
These two substitutions lead to considerable simplifi- 
cation as now some quadratic components are com- 
pletely confounded and only 12 independent param- 
eters remain. The new coefficients in the covariance 
are given in the fourth column of Table 3. In partic- 
ular, the contributions of ibd and nibd effects can be 
pooled in the variances due to single locus dominance, 
homozygous by dominance, and dominance by domi- 
nance interactions. This phenomenon in the case of 
the single locus dominance terms was previously noted 
by WRIGHT and COCKERHAM (1986). There is similar 
pooling among the covariance terms and the following 
definitions can be made: 

0; = 2& + U:* + 4 U D . D M  + 2 u D * . D M * ,  

2 
( JMH = 2 u M D  + uMD* ,  

u;H = 4 & D  + 2 a i D *  + &D*L, 

UM.H = UM.D* + UMM.D* + UM.DM*, 

UM.MH = 2 0 M . M D *  + uMM.MD*, 

uM.HH = 2(UM.DDX* + uD*.MD*)  + uMM.DD** + uMD*.DM*,  

and 
uH.HH = 4 u D . D D *  + 2(uDO*.DD** + uMD.DD*)  + uMD*.DD**.  

Then 
C,, = e(& + 2uM.MM) + + ACT; + 

+ + 2(7 - e)~,,., 
+ 20(y - o)uM.MH + 2(7 - 8)‘uM.HH 

+ 2A(y - O)UH.HH + (a  - FgFg’)H* 

+ (a  - FgFg,)(Fg + Fg*)J* 

+ [a2 - (FgFg,)2]L* 
from which the subscripts (tgg ’) have been omitted. 

It may be noted here that some further simplifica- 
tion occurs when there are only two alleles at a locus. 
Although the single locus equality H* = U; generally 
fails in the presence of epistasis, there is a new rela- 
tionship L* = aiD. With equally frequent alleles, H * ,  
J * ,  and L* are confounded with 05, UH.HH and &H, 

respectively, uM.H and uM.HH are zero, and just seven 
components remain. This case corresponds to the 
descendants of a single FI,  for which MATHER and 
JINKS (1 982, pp. 172-1 73 )  also recognized seven com- 
ponents (their d 2 ,  h 2 ,  i 2 ,  j 2 ,  1 2 ,  d j  and hl). 

Components of covariance in the selfing series: 
Following HORNER ( 1  952), the total covariance C,, 
was subdivided by WRIGHT and COCKERHAM (1986) 
into the components arising at each level of the hier- 
archy of families. The component arising among fam- 
ilies in the gth and g’th generations with a common 
ancestor in generation zero is given directly as CO,., 
but for t > 0 the component for families with a 
common ancestor in the tth but belonging to a sub- 
population descended from a common ancestor in the 
kth is written as CAta,. This covariance can be found 
by difference as 

Ckigg‘  = ctgg’ - Ckgg’ 

where t > k 2 0. Along with CO=, it leads to a complete 
specification of the components of covariance in the 
hierarchical analysis of covariance when k = t - 1, as 
Ct-Ilgg, is the component arising between families in 
the tth generation within families in the (t-1)th. 

In the case o f t  = 0, eogg, = ?h and aOgg !  = 2aOggr = 
FgFgr, so that the covariance COg.! contains no contri- 
butions from H * ,  J*  or L *  and it involves only eight 
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parameters (Table 3, final column). For Cktgg , ,  the 
above relation among covariances holds for the de- 
scent measures which define the components of co- 
variance, and they can be obtained by subtraction in 
a similar way. Then ehtgg ,  = y k t g g ’  and U M . H  and UM.HH 

both vanish. In addition, 

- FgFg‘ - - F g F g ’ )  - akrgg’ = 2&tggJ ,  

and H* is confounded with U;. Again there are eight 
distinct parameters, but a different set from those 
necessary with CO,,. It should be noted that the coef- 
ficients of epistatic components in c k t , ,  involve the 
difference between products of descent measures for 
generations t and lz and not the product of the differ- 
ences. 

If covariance components for t = 0 and t > 0 are 
used jointly for the estimation of all parameters, then 
no further contraction is possible as the defined set of 
parameters needs to be common to both types of 
covariance. However, when a new set is defined 
uniquely for CO,! without reference to Cktgg’  further 
confounding occurs and only six separate terms re- 
main, their coefficients being multiples of (Vz), A, A’, 
(y - e), (y - 0)‘ and (y - 0)A. 

DISCUSSION 

It has been seen that confounding of quadratic 
components in the homozygote-based model takes 
place as a result of three successive restrictions. The 
assumption of selfing reduces the number of unique 
parameters from 21 to 12, and the two characteristic 
types of covariance component which arise at the first 
and later levels of the selfing hierarchy each require 
eight. Whether these reductions are to be regarded 
as advantageous or not depends on the purpose to 
which the analysis is to be put. Because of confound- 
ing, the parameters estimated under selfing are insuf- 
ficient for the prediction of the covariances of relatives 
under other inbreeding schemes, and in any case 
estimates of UL and related parameters are then prob- 
ably of less value than the conventional set. The usual 
use of estimates of quadratic components from ob- 
served covariances is the prediction of other covari- 
ances which cannot themselves be easily measured. 
For example, such estimates are necessary for the 
prediction of response to selection of different types, 
for which the covariances Ct,8 and Cktgg’ with high 
values of g and g’ are generally appropriate (WRIGHT 
and COCKERHAM, 1986). 

The confounding leads to much simpler expressions 
than with the conventional model, particularly as in- 
breeding advances. The variance of all homozygous 
lines descended from the base population is simply 

c m r ”  = & + 2uM.MM + U L M ,  

which conceals the complexity 

and 

The presence of the covariance uM.MM is an unex- 
pected anomaly. It arises because the conventional 
definition of effects in relation to the noninbred pop- 
ulation used for the heterozygote-based model was 
retained for the homozygote-based model. Although 
all extra correction terms necessitated by the use of 
the noninbred mean were explicitly allowed for, the 
array of homozygote by homozygote interactions, un- 
like the parallel array of additive by additive effects, 
is not constrained to have zero marginal mean values, 
and orthogonality with the single locus effects cannot 
be assumed. It is therefore apparent that this model 
is distinct from the one which would naturally be used 
to describe a fully inbred population by including 
homozygous effects and interactions which are de- 
fined to be orthogonal. This was the model assumed 
by WRIGHT and COCKERHAM (1986) when discussing 
the inclusion of epistasis into their expression for the 
variance of homozygous lines. 

In principle the parameters under selfing can be 
estimated from the twenty statistics which can be 
computed from analyses of variance of any four gen- 
erations and analyses of covariance of the six pairs of 
generations. Absence of selection is necessary in the 
development of these generations, and this assump- 
tion may be more difficult to fulfill under selfing than 
other systems as some homozygotes may be lethal. In 
some species twenty statistics may be estimated from 
measurements on noninbreds in generation zero and 
individuals in generations one to three, but for an- 
nuals and most important traits in perennials the 
retention of parents for evaluation alongside their 
offspring is not feasible. This means that statistics for 
which t = g are unavailable, and only twelve remain. 
In practice therefore, remnant seed from generations 
one to four has to be used, and if all plots are arranged 
in a single randomized design only one error variance 
needs to be estimated with the 12 genetic parameters. 
This estimation can be achieved using either weighted 
or unweighted regression as described by MATHER 
and JINKS (1982) and there are seven degrees of 
freedom for testing the overall goodness of fit and to 
provide estimates of standard errors. Some parame- 
ters are strongly correlated, notably the set U;, 

and L * ,  and consequently estimates derived from 
experiment will often have large standard errors. This 

UHH, 2 U M . H ,  U M . M H ,  UM.HH and UH.HH, and also H*,  J *  
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is a feature of selfing systems which arises from the 
rapid reduction of the contributions of dominance 
and dominance related epistasis as selfing proceeds. 
MATHER and JINKs (1 982) show the value of including 
statistics derived from additional generations such as 
backcrosses and biparental progenies for the estima- 
tion of components in the descendants of an F I ,  but 
their use has not been considered for this more gen- 
eral population. The fit of the full epistatic model can 
be compared with the simpler model which includes 
just the four parameters arising from the summed 
effects of single loci. 
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