
Biochem. J. (1996) 314, 401–404 (Printed in Great Britain) 401

RESEARCH COMMUNICATION

Activation of a protein tyrosine phosphatase and inactivation of Raf-1 by
somatostatin
Dean B. REARDON*, Steven L. WOOD*, David L. BRAUTIGAN†, Graeme I. BELL‡, Paul DENT* and Thomas W. STURGILL*§
*Howard Hughes Medical Institute and the †Markey Center for Cell Signaling, Departments of *Internal Medicine and †Microbiology, University of Virginia,
Charlottesville, VA 22908, and ‡Howard Hughes Medical Institute, University of Chicago, Chicago, IL 60637, U.S.A.

Human somatostatin receptor 3 (‘hsstr
$
’) was transiently ex-

pressed in NIH 3T3 cells stably transformed with Ha-Ras

(G12V). Somatostatin activated a protein tyrosine phosphatase,

INTRODUCTION
Somatostatin is a widely distributed, neuroendocrine peptide

that mediates diverse physiological actions in the central nervous

system and in peripheral tissues. These physiological functions

include neurotransmission and inhibition of secretion by en-

docrine and exocrine cells. Somatostatin also inhibits the growth

of a variety of cancers in animals, as well as the growth of a

variety of transformed cell lines in culture (reviewed in [1]). The

mechanisms involved in growth inhibition by somatostatin are

incompletely understood.

The ability of somatostatin and somatostatin-related peptides

to inhibit growth of cells in culture suggested to others [2] that

somatostatin might activate effector(s) which negatively regulate

mitogenic signalling. Schally and co-workers demonstrated [2]

that somatostatin stimulated dephosphorylation of tyrosine-

phosphorylated epidermal-growth-factor (EGF) receptors in

membranes isolated from pancreatic cancer cells (Mia PaCa-2).

This result implied activation of a protein tyrosine phosphatase

(PTPase) by somatostatin. Stork and co-workers implicated

G-proteins in the PTPase activation mechanism [3] by showing

that the GTP analogue guanosine 5«-[β,γ-imido]triphosphate

(p[NH]ppG) stimulated PTPase activity, assayed with p-nitro-

phenyl phosphate as exogenous substrate, and that pertussis

toxin (PTx) blocked stimulation of PTPase activity by p[NH]ppG

or somatostatin. Preparations of activated somatostatin receptors

(sstrs), partially purified by immunoaffinity chromatography,

contain PTPase activity and a 66 kDa protein detected

by immunoblotting with a polyclonal anti-peptide antibody

to a sequence in Src homology domain 2-containing PTPase

(SHPTP)1 [4]. Despite these reports and others, modulation of

mitogenic signalling by G-protein-coupled receptors via stimu-

lation of PTPase activity has not been widely studied or

appreciated.

Raf-1 is a serine}threonine kinase which functions downstream

of Ras in a mitogenic signalling cascade (reviewed in [5]). A

portion of Raf-1 in v-Ras-transformed cells is membrane-

associated and constitutively active [6]. Raf-1 immuno-

precipitated from membranes isolated from v-Ras-transformed

cells is recognized by anti-phosphotyrosine antibodies and can be

inactivated by protein-tyrosine phosphatase 1B [7]. This pool of

active Raf-1 in membranes from v-Ras-transformed NIH 3T3
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Src homology domain 2-containing PTPase; PTx, pertussis toxin ; MAPK, mitogen-activated protein kinase.
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and inactivated the constitutively active, membrane-associated

form of the Raf-1 serine kinase present in these cells in �i�o and

in �itro.

cells can be inactivated by protein phosphatases stimulated by

GTP [8]. Here we have studied whether transient expression of

human somatostatin receptor 3 (hsstr
$
) in v-Ras transformed

NIH 3T3 cells can confer somatostatin-dependent activation of

PTPase activity and inactivation of Raf-1.

MATERIALS AND METHODS

Materials

Somatostatin-14 and guanine nucleotides were purchased from

Sigma–Aldrich and Boehringer-Mannheim respectively. NIH

3T3 cells transformed with Ha-Ras (G12V) [9] were a gift from

L. Feig (Tufts University, Boston, MA, U.S.A). ["#&I-Tyr""]-

somatostatin-14 was purchased from Amersham International.

Transfection and membrane preparation

v-Ras cells (at E60% confluency in 100 mm dishes) were

transfected with 15 µg of total DNA of twice-CsCl-banded

pCMV-hsstr
$

[10] or a control plasmid pGEM-3 (Promega) by

the CaPO
%
precipitation method. Cells were used after 2 days of

recovery in complete medium and 2 h of serum starvation.

Membranes were prepared as described in [11], by flotation upon

39% (w}v) sucrose, washed, and resuspended to 1 mg}ml total

protein in buffer A [25 mM Hepes (pH 7.6 at 4 °C), 8.6% (w}v)

sucrose, 10 mM EDTA, 10 mM EGTA, 0.2% (v}v) 2-mercapto-

ethanol (2-ME)] containing the cocktail of proteinase inhibitors

used in [11].

Superose 6 chromatography

Treated membranes were solubilized on ice by addition of

Triton X-100 to 1% (v}v) final concentration with gentle

trituration. Extracts were clarified by centrifugation (4 °C,

10 min) at E100000 g in an Airfuge (Beckman). Equal portions

of supernatant (100–200 µl) were chromatographed (4 °C,

0.25 ml}min, 0.25 ml fractions) on a Superose 6 column

(1 cm¬28 cm) (Pharmacia–LKB) equilibrated in buffer B
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Table 1 Somatostatin inactivates membrane-associated Raf-1 in vivo

Membranes were isolated (as in the Materials and methods, except buffers contained 1 µM

microcystin-LR) from intact transfected v-Ras cells that had been treated with or without 1 µM

somatatostatin for 10 min (30 ° C), and then assayed (20 µl) for membrane-associated Raf-1

activity (see the Materials and methods section). Results are averaged from two independent

experiments ; 100%¯ 6300³250 c.p.m.

Membrane-associated

Raf-1 activity

Transfection Control ­ Somatostatin

pCMV-hsstr3 100³4.4 41.3³3.2

pGEM-3 100³1.7 100³3.3

[25 mM Hepes (pH 7.4)}2 mM MgCl
#
}0.1 mM EGTA}0.1 mM

EDTA}10% (v}v) glycerol}0.01% (v}v) Triton X-100}0.2%

(v}v) 2-ME}1 mM benzamidine}1 mM PMSF].

Assays

PTPase activity was measured by incubating (30 °C) portions

of samples (0.5–5 µl) with 3 µl of reduced, carboxymethylated

and maleylated (RCM) lysozyme containing phosphotyrosine

[Tyr(P)] [12] [40 pmol of protein Tyr($#P)] in buffer C [25 mM

Hepes (pH 7.4)}0.1 mM EGTA}1 mM MgCl
#
}0.2% (v}v) 2-

ME}1 mg}ml BSA] (20 µl total assay volume). Reactions were

terminated by sequential additions of 200 µl of cold 20% (w}v)

trichloroacetic acid and 10 µl of 10 mg}ml BSA with mixing.

Samples were centrifuged, and 210 µl of supernatants were

counted for radioactivity in scintillant. Data were expressed as

percentage release of total $#P in the assay.

Column fractions were assayed for Raf-1 deactivating activity

(see Figure 3 below), essentially as described [8], by incubation

(30 °C, 15 min) of 2 µl of each fraction with 0.1 µg of partially

purified FLAG-Raf-1, isolated from Sf9 cells co-expressing Ras

and SrcY&#(F , in buffer C containing 2.4 µM microcystin-LR;

Raf-1 activity was then determined by MEK1 phosphorylation

[8].

Raf-1 enzymic activity remaining in membranes after in �i�o

treatment of cells with somatostatin (Table 1) was measured by

MEK-stimulated phosphorylation of kinase-defective p42mapk

(K52R). Samples of isolated membranes (20 µl) were incubated

(30 °C) with: (i) 45 µl of buffer [55 mM β-glycerol phosphate

(pH 7.4)}40 mM MgCl
#
}2.5 mM MnCl

#
}0.25 mM vanadate}

2.5 µM microcystin-LR}0.45 mM [γ-$#P]ATP (5 c.p.m.}fmol)]

for 5 min; (ii) 3 µl of 1 mg}ml (His)
'
-MEK1 for 15 min; (iii)

Table 2 Somatostatin stimulates PTPase and inactivates Raf-1 in vitro

Membranes (150 µl) from transfected cells were GDP-treated (as in Figure 2) and then incubated (50 µl per condition) in vitro with one of (final concns.) : (i) 1 mM GDP, (ii) 0.1 mM p[NH]ppG

or (iii) 0.1 mM p[NH]ppG plus 1 µM somatostatin on ice for 10 min prior to assay of 3 µl or 20 µl portions for PTPase or Raf-1 deactivating activities respectively (see the Materials and methods

section). n ¯ 4, 100% K52R phosphorylation¯ 6700³300 c.p.m.) ; 100% 32P release¯ pGEM-3, 10.6%³2.1, pCMV-hsstr3, 15.3%³4.2 of total. *P ! 0.05.

PTPase Raf-1 activity

Treatment pGEM-3 pCMV-hsstr3 pGEM-3 pCMV-hsstr3

GDP 100 100 100 100

p[NH]ppG 95.0³5.6 102.0³4.1 98.3³11.8 94.3³9.1

Somatostatin­p[NH]ppG 91.8³4.0 184.8³10.2* 92.0³4.4 28.0³13.1*

20 µl of 0.1 mg}ml p42mapk (K52R) for 2 min. Reactions were

quenched, and $#P incorporation into K52R gel bands was

determined by CC erenkov radiation.

Raf-1 deactivating activity in aliquots (20 µl) of membranes

stimulated with somatostatin or guanine nucleotides in �itro

(Table 2) was measured after dilution to 200 µl with cold,

ultrapure water and pelleting the membranes. Membranes were

resuspended in 50 µl of buffer A containing sucrose, proteinase

inhibitors and 1 µM microcystin-LR, and incubated (10 min,

30 °C). Endogenous Raf-1 enzymic activity remaining after

incubation was then measured by MEK-stimulated phosphoryl-

ation of kinase-defective p42mapk (K52R) (see above).

Analysis

Data shown are representative of three to four experiments

unless otherwise indicated. Statistical comparisons were made

using a paired Student’s t test.

RESULTS AND DISCUSSION

NIH 3T3 fibroblasts do not appreciably express sstrs. Trans-

fection of NIH 3T3 cells transformed with Ha-Ras (G12V) with

a plasmid for cytomegalovirus promoter-driven expression of

human sstr
$

[10] resulted in readily detectable, high-affinity

binding for ["#&I-Tyr""]somatostatin in membranes (Figure 1).

Membranes from cells transfected with an equal quantity of

Figure 1 Somatostatin binding

Membranes were isolated as described in [13] from transfected Ha-Ras (G12V) NIH 3T3 cells,

and equal portions (200 µg) were analysed for titration of specifically bound [125I-

Tyr11]somatostatin-14 (ordinate) with somatostatin (abcissa), essentially as described [13]. E,

pCMV-hsstr3 ; +, control plasmid.
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a control plasmid did not exhibit any appreciable binding

(Figure 1).

Previous efforts to characterize the somatostatin-stimulated

PTPase activity by column chromatography have utilized pro-

teins solubilized from membranes isolated from intact cells or

tissues stimulated with or without somatostatin [14]. Homo-

genization buffers contained phosphatase and proteinase inhibi-

tors. This strategy is likely to be successful if the relevant PTPase

is regulated by phosphorylation in a signalling pathway. How-

ever, we recently demonstrated that a PTPase present in mem-

branes from v-Ras-transformed cells is an effector for PTx-

sensitive Gα subunits [15]. The hypothesis that somatostatin

liberates activated Gα subunits which regulate PTPase activity

suggests an alternative strategy for recovering a somatostatin-

stimulated increase in PTPase activity after chromatography.

We prepared membranes from v-Ras cells expressing hsstr
$
for

in �itro experiments designed to foster somatostatin-stimulated

activation of G-proteins by p[NH]ppG}Mg#+. Membranes were

first incubated with GDP (see the Materials and methods section)

to ensure that G-proteins were in their basal state, and then

treated for 10 min (30 °C) with either GDP (control), p[NH]ppG,

or somatostatin plus p[NH]ppG. p[NH]ppG alone had no

appreciable effect on PTPase activity in membranes under these

conditions in comparison with GDP (results not shown). In

contrast, stimulation of membranes with somatostatin plus

p[NH]ppG increased [Tyr($#P)]RCM-lysozyme phosphatase

activity 1.5–2 fold, and this increase was blocked by PTx (results

not shown).

The stimulated PTPase was characterized by Superose 6

chromatography (Figure 2) after solubilization of the membranes

with 1% Triton X-100. Somatostatin plus p[NH]ppG robustly

activated a PTPase, which was eluted as a distinct peak in the

leading shoulder of a peak of PTPase activity that was not

altered by somatostatin (Figure 1). The constitutive peak has

been identified as PTP1B by Western blotting [15]. The apparent

molecular mass of the stimulated PTPase in these experiments

was 150–200 kDa, and may be affected by detergent binding.

Our success in recovering a large increase in somatostatin-

stimulated PTPase activity is likely due to somatostatin-stimu-

lated exchange of p[NH]ppG for GDP in G-proteins. p[NH]ppG

is not hydrolysed by Gα subunits, resulting in persistent activation

of G-proteins [16]. PTPase activity stimulated by somatostatin

and p[NH]ppG}Mg+# is co-eluted with Gα subunits following

Superose 6 chromatography (results not shown). Recovery of an

increase in PTPase activity after Superose 6 chromatography is

suggestive of high-affinity binding of Gα-p[NH]ppG}Mg#+ to an

effector. This complex appears to be more labile during ion-

exchange chromatography. When Superose 6 fractions con-

taining stimulated PTPase activity were pooled and subjected to

MonoQ chromatography, approx. 80% of the activity was lost

[15].

Activation of G-proteins by more prolonged incubation of

membranes with p[NH]ppG also activated PTPase in comparison

with incubation with GDP (Figure 3, bottom). Fractions con-

taining p[NH]ppG-stimulated PTPase inactivated exogenous

Raf-1, prepared from Sf9 cells co-expressing Ras and

SrcY&#(F (Figure 3, top). Raf-1 deactivating activity, like

[Tyr($#P)]RCM-lysozyme phosphatase activity, was robustly

stimulated by p[NH]ppG versus GDP (Figure 3, top). The

mobility of p[NH]ppG-stimulated PTPase during Superose 6

chromatography was nearly identical with that of somatostatin-

stimulated PTPase (results not shown). Thus we conducted

experiments to determine whether somatostatin could cause

inactivation of the pool of constitutively active Raf-1 present in

membranes from v-Ras-transformed NIH 3T3 cells.

Figure 2 Preservation of somatostatin-stimulated PTPase activity after
Superose 6 chromatography

Membranes (200 µg of total protein ; 1 mg/ml) from pCMV-hsstr3-transfected cells (see the

Materials and methods section) were incubated on ice with 1 mM GDP (final concn.) for 5 min,

and then for a further 15 min after adjustment to 2 mM Mg2+ (final concn. in excess of

chelators). GDP-treated membranes were recovered by centrifugation (4 °C, 10 min, 100000 g)

in an Airfuge (Beckman) and resuspended to 1 mg/ml in buffer A containing 1 µM microcystin-

LR, proteinase inhibitors and 2 mM Mg2+ in excess of chelators. Equally divided portions were

incubated (10 min, 30 °C) with 1 µM somatostatin plus 0.1 mM p[NH]ppG (_) or 0.1 mM

p[NH]ppG alone (^). Samples were solubilized, chromatographed, and 5 µl of the fractions

assayed for PTPase activity (see the Materials and methods section). Arrows indicate elution

of marker proteins : a, bovine γ-globulin ; b, BSA ; c, soybean trypsin inhibitor.

Transformed NIH 3T3 cells were transfected with pCMV-

hsstr
$
, or a control plasmid, and then briefly treated with or

without somatostatin prior to isolation of membranes and assay

(Table 1). Somatostatin caused a significant reduction in Raf-1

enzymic activity in membranes from cells transfected with

pCMV-hsstr
$
, but had no effect upon Raf-1 in membranes from

cells transfected with a control plasmid (Table 1). To determine

whether inactivation of this pool of Raf-1 correlated with

activation of PTPase, membranes were isolated from pCMV-

hsstr
$
-transfected cells and assayed for the ability of somatostatin

to cause activation of PTPase and inactivation of membrane-

associated Raf-1. Somatostatin plus p[NH]ppG stimulated

PTPase activity and reduced Raf-1 activity in membranes from

pCMV-hsstr
$

transfected cells (Table 2). Inactivation of Raf-1

was blocked by inclusion of 0.1 mMvanadate, but not 2.4 µM

microcystin-LR in the deactivation assay (results not shown).

Neither p[NH]ppG nor GDP affected PTPase or Raf-1 activities

under these conditions, and somatostatin had no effect on

membranes from cells not expressing hsstr
$
(Table 2). Together,
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Figure 3 Inactivation of Raf-1 by p[NH]ppG-stimulated PTPase

Membranes (200 µg of total protein) isolated from v-Ras-transformed cells were incubated for

30 min on ice with 2 mM (final concn.) p[NH]ppG (+, _) or GDP (*, ^) adjusted with

a concentrated stock to 2 mM MgCl2 in excess of chelators, solubilized by addition of Triton

X-100 (1%, v/v, final concn.), and chromatographed (see the Materials and methods section).

Fractions were assayed (see the Materials and methods section) for PTPase activity (right

ordinate : _, ^ ; 5 µl aliquots) or activity deactivating exogenous active Raf-1 (left ordinate :

+, * ; 2 µl aliquots).

these data strongly suggest that activation of PTPase by somato-

statin is causally related to inactivation of the membrane-

associated form of Raf-1 in v-Ras cells. Our data also strongly

support direct activation of PTPase activity by activated G-

proteins, confirming and extending reports by the groups of

Schally [2], Stork [3] and Sussini [14]. Clearly more vigorous

investigation of PTPase regulation by G-proteins is warranted.

Mechanisms other than PTPase stimulation undoubtedly con-

tribute to Raf-1 inactivation in other contexts. Ras inactivation,

resulting from either decreased Ras guanine nucleotide exchange-

factor activity or increased Ras GTPase activating protein

activity, would be expected to play a major role in Raf-1

inactivation. Raf-1 is also regulated positively by phosphoryl-

ation on regulatory serine}threonine residues [11,17], and thus

serine}threonine phosphatases may negatively regulate Raf-1.

Regulation of Raf-1 [and mitogen-activated protein kinase

(MAPK)] by somatostatin is likely to be more complex than is

apparent from the studies described. In a different context and

Received 6 December 1995/15 January 1996 ; accepted 16 January 1996

temporal sequence, somatostatin has been reported to activate

MAPK. Addition of somatostatin to serum-starved Chinese-

hamster ovary cells, stably expressing rat sstr
%

activated both

p42mapk and p44mapk [18]. Ras-dependent and PTx-sensitive

activation of MAPK is also well established for a number of

other G-protein-coupled receptors, e.g. the α
#
-adrengergic re-

ceptor [19]. Activation of MAPK by G-protein-coupled receptors

is also in many cases very transient. These data could be

rationalized by a model in which MAPK activation by somato-

statin is mediated by activation of Ras by Gβδ [20] and MAPK

inactivation is initiated by Gαi/o
via activation of a PTPase.

Alternatively, PTPase(s) may also be required in steps leading to

activation of the MAPK pathway. Several reports have impli-

cated PTPases in both signal-generation and signal-termination

steps for growth factors or cytokines [21,22].
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