Divergent effects of extracellular and intracellular alkalosis on Ca2+ *entry pathways in vascular endothelial cells*

Ichiro WAKABAYASHI and Klaus GROSCHNER*

Institut für Pharmakologie und Toxikologie, Karl-Franzens-Universität Graz, Universitätsplatz 2, A-8010 Graz, Austria

Modulation by alkalosis of basal leak Ca^{2+} entry and storedepletion-induced Ca^{2+} entry was investigated in the vascular endothelial cell line ECV 304. Ca^{2+} entry was monitored as the endomenal cen line ECV 504. Ca⁻¹ entry was monitored as the increase in the intracellular free Ca^{2+} concentration $([Ca^{2+}]_i)$ increase in the intracentual free Ca⁻¹ concentration ($[Ca⁻¹]_i$) induced by elevation of the extracellular $Ca²⁺$ concentration. When ECV 304 cells were challenged with 100 nM thapsigargin when ECV soft central were changing with 100 nM thapsigarity and
in nominally Ca^{2+} -free solution, $[Ca^{2+}]_1$ increased transiently, and In noninary Ca⁻¹-rice solution, $[Ca^{2}]_1$ increased transiently, and
the increase in $[Ca^{2+}]_1$ during a subsequent cumulative elevation of extracellular Ca²⁺ (from nominally Ca²⁺-free up to 5 mM) was markedly enhanced compared with non-stimulated cells (i.e. basal Ca²⁺ leak). Prolonged elevation of the extracellular pH basar Ca⁻¹ leak). Prolonged elevation of the extracemial prior the (pH_0) from 7.4 to 7.9 did not affect resting $[Ca^{2+1}]_1$ or the (μ _n) from 7.4 to 7.9 and not affect results [Ca⁺_{1]}, or the thapsigargin-induced [Ca²⁺_{1]}, transient evoked in nominally Ca²⁺free solution, but increased leak Ca^{2+} entry as well as storedepletion-activated Ca²⁺ entry significantly. Basal Ca²⁺ leak and

INTRODUCTION

The vascular endothelium plays an obligatory role in the regulation of vasotone via mediators such as prostacyclin, endothelium-derived relaxing factor (EDRF; nitric oxide) and endothelin [1–4]. The production and release of vasoactive mediators are to a large extent controlled by the cytoplasmic free mediators are to a large extent controlled by the cytoplasmic rice
Ca²⁺ concentration ([Ca²⁺]_i), and are thus in principle enhanced Ca⁻⁺ concentration ($[a^{2+}]_i$), and are thus in principle enhanced
by any mechanism that allows Ca^{2+} entry into endothelial cells. In resting non-stimulated cells, Ca^{2+} influx is thought to occur via a so-called 'leak' pathway [5,6]. Activation of endothelial cells by hormones and neurotransmitters involves a discharge of intracellular Ca^{2+} stores which is accompanied by a dramatic increase in the plasmalemmal Ca^{2+} conductance, and consequently in Ca^{2+} entry [7,8]. This agonist-induced activation of quently in Ca⁻¹ entry [*1*,6]. This agonist-induced activation of endothelial cells is characterized by a biphasic increase in $[Ca^{2+}]_1$, endomenal cens is characterized by a orphasic increase in $[\text{Ca}^{2+}]$, which is composed of an initial Ca^{2+} transient due to Ca^{2+} mobilization from internal stores triggered by inositol 1,4,5 trisphosphate, and a subsequent sustained elevation due to agonist-stimulated Ca^{2+} influx from the extracellular space [9,10]. The mechanisms that link the stimulation of membrane receptors to the activation of plasmalemmal Ca^{2+} channels have not yet been clarified. The depletion of intracelluar Ca^{2+} stores has been proposed as a key event in the signal transduction cascade leading to enhanced Ca^{2+} conductance of the plasma membrane [11,12], and this Ca^{2+} entry pathway has been termed storedepletion-activated Ca^{2+} entry or capacitive Ca^{2+} entry. This pathway has pharmacological properties distinct from those of the leak Ca^{2+} entry pathway [6].

The Ca^{2+} -dependent production of vasoactive factors by endothelial cells is known to be remarkably sensitive to changes

store-depletion-activated Ca^{2+} entry were enhanced either by acute elevation of pH_o from 7.4 to 7.9 or by chronic alkalosis (pH_o = 7.9). Stimulation of Ca²⁺ entry by extracellular alkalosis was observed both in normal and in high extracellular K^+ (110 mM) solution, suggesting that the effects of alkalosis are independent of membrane potential. The intracellular $pH (pH_i)$ increased slightly during both acute and chronic extracellular alkalosis (from 7.22 ± 0.01 to 7.37 ± 0.04 and 7.45 ± 0.05 respectively). Elevation of pH_i to 7.60 \pm 0.06 at constant pH_o by administration of 20 mM $NH₄Cl$ failed to stimulate, and in fact administration of 20 film $N_{4}C_{1}$ ranea to summate, and in fact
inhibited, store-depletion-activated Ca^{2+} entry. Our results demonstrate that a decrease in the extracellular but not the intracellular proton concentration promotes both basal and stimulated Ca^{2+} entry into endothelial cells.

in the extracellular $pH(pH_0)$. This pH -dependence of endothelial function is thought to be of physiological and pathological significance. In rat aortic rings, extracellular- Ca^{2+} -dependent prostacyclin production increases as the pH_0 is increased from 6.5 to 8.0 [13]. In cultured vascular endothelial cells, extracellular alkalosis was reported to induce the release of EDRF, which was dependent on the presence of extracellular Ca^{2+} [14]. Thus the $Ca²⁺$ -dependent formation of vasoactive factors in endothelial cells is clearly stimulated by extracellular alkalosis. *In io*, alkalosis is often associated with vasospasms [15,16], which are the result of an effect of pH_0 on smooth muscle cells [17,18]. Alkalosis-induced stimulation of Ca^{2+} entry and formation of vasodilator substances in endothelial cells may thus serve as a mechanism that protects blood vessels from alkalosis-induced vasospasms.

Up to now, only a few studies have addressed the question of how Ca^{2+} entry into vascular endothelial cells is promoted during extracellular alkalosis. Alkalosis (pH_0 8.5) was reported to augment Ca^{2+} influx into store-depleted endothelial cells [19,20]. Since Ca^{2+} influx into activated cells generally comprises the background leak Ca^{2+} influx and the Ca^{2+} influx occurring via activated Ca^{2+} channels, the relative contribution of pH modulation of either component to the overall effect is still unclear. Moreover, extracellular alkalosis necessarily results in intracellular alkalosis, the effect of which on Ca^{2+} influx is not yet known. We demonstrated recently that protons are able to block the store-depletion-activated Ca^{2+} entry pathway by interaction with an extracellular site [21]. It was thus of interest to test the hypothesis that the stimulatory effect of alkalosis is simply due to the removal of protons from this extracellular inhibitory site which controls the store-operated Ca^{2+} entry pathway. In the

Abbreviations used: [Ca²⁺]" intracellular free Ca²⁺ concentration; pH_o, extracellular pH; pH_i, intracellular pH; EDRF, endothelium-derived relaxing factor; BCECF, 2',7'-bis-(2-carboxyethyl)-5(6)-carboxyfluorescein.

^{*} To whom correspondence should be addressed.

present study, we report on stimulation of both leak Ca^{2+} entry and store-activated Ca^{2+} entry by alkalosis, and present evidence for divergent effects of pH_0 and intracellular $pH(pH_1)$ on these $Ca²⁺$ entry pathways.

MATERIALS AND METHODS

Cell culture

ECV 304 cells were kindly provided by Dr. K. Takahashi (Fifth Department of Internal Medicine, Tokyo Medical College, Ibaraki, Japan) $[22]$, and were cultured in 65 cm² dishes with Dulbecco's modified Eagle's medium containing antibiotics and 3% foetal bovine serum in a humidified atmosphere at 37 °C under 5% $CO₂/95%$ $O₂$. Cells were subcultured at a ratio of 1: 6, and the confluent cells were used for experiments measuring $[Ca^{2+}]$ _i and pH _i.

Measurement of [Ca2+*]i and pHi*

 $[Ca^{2+}]$, and pH₁ were ascertained using the fluorescent Ca^{2+} and pH indicators fura-2 and 2',7'-bis-(2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF) respectively. Fura-2/AM and BCECF/AM were initially dissolved in DMSO at 5 mM and 2.5 mM respectively, and were used at final concentrations of 10 μ M and 5μ M respectively. Confluent cells from one dish were collected and suspended in 5 ml of physiological solution [10 mM Hepes} Tris, pH 7.4, containing (in mM) 135 NaCl, 5 KCl, 2.5 CaCl₂, 1 MgCl_2 , $1 \text{ KH}_2\text{PO}_4$ and $10 \text{ glucose at } 37 \text{ °C}$. The suspended cells were loaded with fura-2 or BCECF for 60 min at 37 °C. After loading, the cells were washed once with Ca^{2+} -free solution containing $0.01 \text{ mM } EGTA$ (nominally Ca^{2+} -free), and then resuspended in nominally Ca^{2+} -free solutions of different pH values. Experiments at elevated pH_o were started 20 min after resuspension of cells in a solution of pH 7.9 (chronic alkalosis).

Fluorescence measurements were carried out with a dualwavelength spectrophotofluorimeter (Hitachi F2000) using a wavelength spectrophotonuorimeter (Finachi F2000) using a
2 ml cuvette maintained at 37 °C. For $[Ca^{2+}]_i$ measurement, excitation was at 340 nm and 380 nm, and emission was measured at 510 nm. For pH_i measurement, excitation wavelengths were 506 nm and 455 nm, and emission was collected at 530 nm. Using ratios (*R*) of fluorescence intensity (*F*) of F_{340}/F_{380} and Using ratios (*K*) of interescence intensity (*F*) of F_{340}/F_{380} and F_{506}/F_{455} , the fractional changes in [Ca²⁺]_i and pH₁ respectively were determined. The fluorescence after sequential addition of 0.1% Triton X-100 and EGTA to the cell suspension provided the maximum fluorescence ratio (R_{max}) and minimum the maximum interescence ratio (R_{max}) and minimum
fluorescence ratio (R_{min}) respectively. $[Ca^{2+}]$ was calculated using the formula described by Grynkiewicz et al. [23]:

$$
[\text{Ca}^{2+}]_{i} = (R - R_{\text{min}})/(R_{\text{max}} - R) \times \beta \times K_{d}
$$

where β is the ratio of the emission fluorescence values at 380 nm excitation in the presence of Triton X-100 and EGTA. Since the exchange in the presence of Thion X -Too and EGTA. Since the dissociation constant for $Ca^{2+}(K_d)$ of fura-2 is affected by changes in pH, the K_a was corrected using the following equation [24]:

$$
K_{\rm d} = 224 \times \{1/[3.1 \times (\rm pH_{\rm i} - 5.77)] + 0.73\}.
$$

To test for a possible pH-induced leakage of fluorescence dyes, we compared the ability of extracellular Mn^{2+} (100 μ M) to quench fura-2 fluorescence when cells were kept at normal (pH 7.4) and elevated (pH 7.9; 30 min) pH. The Mn^{2+} -induced quenching of fura-2 fluorescence was $14\pm2\%$ at pH 7.4 and $15 \pm 1\%$ at pH 7.9 ($n = 7$), indicating that an elevation in pH did not promote dye leakage from endothelial cells. Calibration of pH_i measurements was performed in a nigericin (7 μ M)-containing high- K^+ solution at various pH_o values. Fluorescence ratios obtained were analysed by linear regression analysis and the derived equation was used to calculate pH , values.

Results are expressed as means \pm S.E.M. The significance of differences was assessed by analysis of variance and subsequent Scheffe *F*-test. *P* values of < 0.05 were considered significant.

RESULTS

Extracellular alkalosis (pH_o 7.9) promotes Ca²⁺ entry into store*depleted endothelial cells*

Figure 1 illustrates a representative experiment in which $[Ca^{2+}]$, was measured at pH_o values of 7.4 and 7.9. Intracellular Ca^{2+} stores were discharged by the administration of 100 nM thapsigargin in nominally Ca^{2+} -free solution, which resulted in a gargin in hominary Ca⁻¹-Hee solution, which resulted in a
transient increase in $[Ca^{2+}]_i$. At 200 s after the addition of thapsigargin, the extracellular Ca^{2+} concentration was elevated in a cumulative manner, resulting in a concentration-dependent in a cumulative maliner, resulting in a concentration-dependent
increase in $[Ca^{2+}]_1$. Whereas the resting $[Ca^{2+}]_1$ and the thapsigargin-induced Ca^{2+} transient remained unaffected, the extragargin-induced Ca⁻¹ transient remained unanected, the extra-
cellular-Ca²⁺-dependent rise in $[Ca^{2+}]_i$ was clearly enhanced at a pH_o of 7.9. This enhancement was obvious at extracellular Ca²⁺ concentrations as low as 0.5 mM.

Table 1 compares the mean values of $[Ca^{2+}]$, measured at pH₀ Table 1 compares the mean values of $[Ca^{2+}]_i$ measured at pH_o values of 7.4 and 7.9. The basal $[Ca^{2+}]_i$ was not significantly

Figure 1 Representative changes in [Ca2+*]i measured by fura-2 fluorescence in solutions of pH 7.4 and 7.9*

In nominally Ca²⁺-free solution, thapsigargin (100 nM) was added at 100 s, and CaCl₂ ([Ca²⁺]_e; 0.5–5 mM) was increased cumulatively as indicated.

Table 1 Effects of extracellular alkalosis (pH_o 7.9) on [Ca²⁺]_i

 $[Ca²⁺]$, was measured in non-stimulated cells (basal), during thapsigargin (TG; 100 nM)induced Ca^{2+} release in nominally Ca^{2+} -free solution (peak value), and 2 min and 20 min after the addition of Ca^{2+} in the presence of thapsigargin. *Significant difference ($P < 0.05$) compared with values at pH 7.4.

Figure 2 Changes in [Ca2+*]i due to leak Ca2*⁺ *influx in solutions of pH 7.4 and 7.9*

(A) CaCl₂ ([Ca²⁺]_e; 0.5–5 mM) was elevated cumulatively as indicated. (**B**) Net [Ca²⁺]_i increase due to leak Ca²⁺ influx. Net leak Ca²⁺ influx was calculated by subtraction of basal [Ca²⁺], from $[Ca^{2+}]$ after the addition of Ca^{2+} . Asterisks denote significant differences ($P < 0.05$) compared with the values at pH 7.4.

different, and the transient peak level of $[Ca^{2+}]$, evoked by thapsigargin in nominally Ca^{2+} -free solution was slightly but not significantly lower, in the solution of pH 7.9 compared with that of pH 7.4. The thapsigargin-induced net increase in $[Ca^{2+}]_6$ induced by thapsigargin addition in nominally Ca^{2+} -free solution was slightly but not significantly decreased by extracellular alkalosis $[81.2 + 9.0 \text{ nM}$ (pH 7.4) compared with $58.2 + 6.4 \text{ nM}$ alkalosis [81.2±9.0 nM (pH 7.4) compared with 38.2 ± 6.4 nM
(pH 7.9)]. In contrast, the [Ca²⁺]_i values obtained in the presence of cumulative increases in the extracellular Ca^{2+} concentration were significantly higher at pH 7.9 than at pH 7.4. As shown in were significantly higher at pH 7.9 than at pH 7.4. As shown in
Table 1, $[Ca^{2+}]_i$ was higher when measured immediately (2 min) after initiation of Ca^{2+} entry as well as after a prolonged period (20 min) of Ca^{2+} entry at physiological extracellular Ca^{2+} concentrations (2.5 mM). Since both leak Ca^{2+} influx and storedepletion-activated Ca^{2+} influx contribute to the extracellulardepletion-activated Ca²⁺ initial contribute to the extrace
intervalse ca²⁺-induced increase in $[Ca^{2+}]_i$ in store-depleted cells, the two components were analysed separately.

Extracellular alkalosis promotes leak Ca2+ *influx*

Figure 2(A) shows representative changes in $[Ca^{2+}]_i$ in a nonstimulated (resting) cell induced by elevation of the extracellular $Ca²⁺$ concentration. An extracellular-Ca²⁺-dependent rise in Ca²⁺ concentration. An extracellular-Ca²⁺ dependent rise in $\left[Ca^{2+}\right]_1$ was observed when the extracellular Ca^{2+} concentration

Figure 3 Effects of extracellular alkalosis on the net [Ca2+*]i increase elicited by store depletion*

Thapsigargin (100 nM) was added for 200 s to deplete Ca^{2+} stores. Net activated Ca^{2+} entry was quantified as the difference between $[Ca^{2+}]_i$ in stimulated and non-stimulated cells (leak entry). Asterisks denote significant differences (P < 0.05) compared with the values at pH 7.4.

Figure 4 Net [Ca2+*]i increases in high-K*⁺ *(110 mM) solutions due to (A) leak Ca2*+ *entry and (B) store-depletion-activated Ca2*+ *entry at pH 7.4 and 7.9*

The high K^+ concentration was osmotically compensated for by an equimolar decrease in the NaCl concentration. Net increases in leak and stimulated Ca^{2+} entry were quantified as described for Figures 2(B) and 3. Asterisks denote significant differences (*P*!0.05) compared with values at pH 7.4.

was raised above nominally Ca^{2+} -free to concentrations of 0.1–5 mM. The observed extracellular- Ca^{2+} -induced rise in $[Ca^{2+}]$ _i was taken to represent measured Ca^{2+} entry via the leak $[Ca^{2+}]$ _i was taken to represent measured Ca^{2+} entry via the leak conductance of the cell membrane. Net leak Ca^{2+} entry, which conductance of the cell membrane. Net leak Ca²⁺ entry, which
was calculated by subtraction of basal $[Ca^{2+}]$ _i from $[Ca^{2+}]$ _i after elevation of the extracellular Ca^{2+} concentration, was significantly higher at pH_0 7.9 than at pH_0 7.4 (Figure 2B). The cantly higher at \mathbf{pH}_{o} /.9 than at \mathbf{pH}_{o} /.4 (rigure 2B). The alkalosis-induced elevation of $[\text{Ca}^{2+}]_{i}$ in non-stimulated cells

Figure 5 Effects of acute extracellular alkalosis on net [Ca2+*]i increases due to leak Ca2*+ *entry (A) and store-depletion-activated Ca2*+ *entry (B)*

Acute extracellular alkalosis was induced by the addition of an adequate volume of Tris to elevate pH_o from 7.4 to 7.9 at 20 s before Ca^{2+} addition. Net increases in leak and stimulated Ca^{2+} entry were quantified as described for Figures 2(B) and 3. Asterisks denote significant differences (P < 0.05) compared with values at pH 7.4.

persisted for more than 20 min at physiological levels of extracellular $Ca^{2+} (n=3)$; results not shown).

Extracellular alkalosis promotes net Ca2+ *entry induced by Ca2*+ *store depletion*

Figure 3 shows the net store-depletion-stimulated increase in Figure 5 shows the net store-depletion-stimulated increase in $[Ca^{2+}]_1$, which was calculated by subtraction of the leak Ca^{2+} entry from total Ca^{2+} entry. At pH 7.9, the net store-depletionentry from total Ca²⁺ entry. At pH 7.9, the net store-depletion-
induced $[Ca^{2+}]_i$ increment was significantly higher than at pH 7.4.

Alkalosis-induced stimulation of leak Ca2+ *entry and storedepletion-induced Ca2*+ *entry is independent of the extracellular K*+ *concentration*

Figure 4(A) shows leak Ca^{2+} entry in a solution containing a high K^+ concentration (110 mM). In high- K^+ solution, which depolarizes endothelial cells, leak $Ca²⁺$ influx was significantly greater than that in normal K^+ solution [maximum leak Ca^{2+} influx in the presence of 5 mM Ca²⁺: 95.7 ± 6.1 nM (normal K⁺) compared with 139.4 ± 8.3 nM (high K⁺) ($P < 0.05$)]. Alkalosis (i.e. elevation of pH_o to 7.9) significantly increased leak Ca^{2+} entry in the presence of high extracellular K^+ (Figure 4A). Figure $4(B)$ shows net Ca²⁺ entry stimulated by store depletion with thapsigargin in high- K^+ solution. The net store-depletion-induced Ca^{2+} influx was clearly lower than in the normal-K⁺ solution [maximum stimulated Ca²⁺ influx in the presence of 5 mM Ca²⁺: 845.4 \pm 34.4 nM (normal K⁺) compared with 253.4 \pm 34.4 nM

Figure 6 Intracellular alkalosis is induced by extracellular alkalosis and NH4Cl

(A) Representative changes in pH_i measured by BCECF fluorescence during acute extracellular and intracellular alkalosis induced by the addition of an adequate amount of Tris or 20 mM NH₄Cl respectively. Note that, in fura-2 experiments, Ca^{2+} entry was initiated 20 s after the addition of Tris or NH₄Cl. (B) Comparison of pH_i under various experimental conditions. The stable pH, values in solutions of pH 7.4 (Con) and pH 7.9 (chronic), and the peak pH, values at the time corresponding to the addition of CaCl₂ in the protocol of $[Ca^{2+}]$ _i measurements in acute extracellular (acute) and intracellular alkalosis induced by 20 mM NH₄Cl (NH₄Cl) are compared. *Significantly different (P < 0.05) from control; **significantly different from NH₄Cl.

(high K⁺) (P < 0.05)]. Elevation of pH_o to 7.9 significantly increased store-depletion-induced Ca^{2+} entry in high-K⁺ solution (Figure 4B).

Acute extracellular alkalosis is sufficient to augment both leak Ca2+ *entry and store-depletion-activated Ca2*+ *entry*

In order to test whether the effect of alkalosis on Ca^{2+} entry is induced acutely or requires long-term elevation of pH_0 , we studied the effects of acute extracellular alkalosis (pH_0 7.9) on leak and stimulated Ca^{2+} influx. Acute alkalosis was induced by the addition of an appropriate volume of Tris base 20 s prior to the initiation of Ca^{2+} entry. Similar to the effects observed after prolonged exposure of the cells to alkaline solution (chronic effects), both leak Ca^{2+} influx and net Ca^{2+} influx stimulated by $Ca²⁺$ store depletion were augmented by acute extracellular alkalosis (Figures 5A and 5B).

Figure 7 Effects of acute intracellular alkalosis on net [Ca2+*]i increases due to leak Ca2*+ *entry (A) and store-depletion-activated Ca2*+ *entry (B) in normal-K*+ *solution, and to store-depletion-activated Ca2*+ *entry in high-K*+ *solution (C)*

The high K^+ concentration (110 mM) was osmotically compensated for by an equimolar decrease in the NaCl concentration. Acute intracellular alkalosis was induced by the addition of 20 mM NH₄Cl at 20 s before Ca²⁺ addition. Net increases in leak and stimulated Ca²⁺ entry were quantified as described for Figures 2(B) and 3. Asterisks denote significant differences $(P < 0.05)$ compared with the control treated with vehicle (20 mM NaCl).

Extracellular alkalosis is associated with intracellular alkalosis

Figure $6(A)$ shows representative changes in pH_i measured with BCECF. Addition of Tris base, which resulted in elevation of pH_0 from 7.4 to 7.9, induced a slow and gradual increase in pH_1 . At the time of initiation of Ca^{2+} entry (20 s after addition of Tris), elevation of pH_i by acute extracellular alkalosis was clearly less than the increase in pH_i induced at the same time by 20 mM $NH₄Cl.$ In cells kept for 20 min at pH_o 7.9 (chronic extracellular alkalosis), pH_i was significantly higher than in control cells (pH_o 7.4), but significantly lower than during acute intracellular alkalosis induced by 20 mM $NH₄Cl$ (Figure 6B).

Acute intracellular alkalosis inhibits store-depletion-induced Ca2+ *entry*

Addition of $NH₄Cl$ (20 mM), which evokes a substantial increase Addition of $NH₄Cl$ (20 mm), which evokes a substantial increase
in $pH₁$ (see above), suppressed leak $Ca²⁺$ entry slightly but not significantly (Figure 7A). The net Ca^{2+} influx stimulated by Ca^{2+} store depletion, however, was significantly inhibited by $NH₄Cl$ (Figure 7B). In order to test whether this inhibitory effect of intracellular alkalosis is related to changes in membrane potential, we studied the effect of intracellular alkalosis on storedepletion-induced Ca^{2+} entry under conditions which clamp the cell potential close to 0 mV, i.e. high extracellular K^+ . Cell depolarization failed to prevent the inhibitory effect of intracellular alkalosis (Figure 7C), indicating that this is independent of membrane potential.

DISCUSSION

The present study demonstrates that elevation of pH_0 results in complex modulation of endothelial cell $Ca²⁺$ entry mechanisms. We provide evidence that the observed stimulation of Ca^{2+} entry is based on a marked enhancement of both leak Ca^{2+} entry and the store-depletion-activated Ca^{2+} entry pathway by an extracellular mechanism of action. This extracellular effect is blunted by the inhibition of store-depletion-activated Ca^{2+} entry due to the elevation of pH_i , that accompanies extracellular alkalosis.

The results presented here are in keeping with a previous investigation in calf pulmonary arterial endothelial cells, which provided evidence that Ca^{2+} influx into store-depleted cells is increased by raising pH_0 from 7.4 to above 8.5 [20]. In contrast, in pig aortic endothelial cells, ATP-stimulated $45Ca^{2+}$ uptake was reported to be insensitive to severe extracellular alkalosis (pH_0 , 9.2) [6]. Several reasons for this discrepancy appear possible, e.g. differences in the methods of determination of Ca^{2+} influx; different types of cells; degree of alkalosis. In the present study we chose a rather moderate degree of alkalosis and found that this relatively mild change in $\rm pH_{o}$ was sufficient to affect $\rm Ca^{2+}$ entry into ECV cells. Interestingly, Demirel et al. [6] reported that leak $45Ca^{2+}$ influx was higher under conditions of extracellular alkalosis (pH 9.2). In the present study, which was aimed at analysing the effects of alkalosis on both leak and storedepletion-activated Ca^{2+} entry, we also observed promotion of leak entry. In addition, our results demonstrate unequivocally that the net $[Ca^{2+}]_i$ increase corresponding to store-depletionactivated Ca^{2+} entry is also increased by moderate extracellular alkalosis (pH $_{0}$ 7.9). Thus extracellular alkalosis augments both types of Ca^{2+} entry.

Since extracellular alkalosis did not affect the net increment in Since extracement atkanosis and not affect the net increment in $[Ca^{2+}]_i$ induced by Ca^{2+} release from internal storage sites, a process distal to store depletion appears to be modulated by $\rm pH_{o}$. These results are in line with a previous study which reported These results are in line with a previous study which reported
that basal $\left[\text{Ca}^{2+}\right]$ and Ca^{2+} release from the stores remained unaffected in alkalosis [20].

Membrane potential has been recognized as a major determinant of Ca^{2+} entry and consequently of EDRF production [$25-27$]. Ca²⁺ influx activated by store depletion after bradykinin stimulation was found to be suppressed in high extracellular K^+ conditions in bovine aortic endothelial cells [5,28]. In the present study, $Ca²⁺$ influx initiated by store depletion with thapsigargin was suppressed, whereas leak Ca^{2+} entry was increased, in high- K^+ solution. Thus these Ca^{2+} entry mechanisms exhibit different dependence on membrane potential. Since the stimulatory effects of extracellular alkalosis on leak and activated Ca^{2+} entry were not prevented in high- K^+ solution, the observed pH effects may not involve changes in membrane potential. We have recently

reported [21] that extracellular acidosis (pH_0 6.9) inhibits storedepletion-activated Ca^{2+} entry, but not leak Ca^{2+} entry, into ECV 304 cells. Again, this inhibitory effect of extracellular acidosis was not affected by membrane depolarization.

The degree of increase in pH_i induced by extracellular alkalosis varies among different types of cells [29–32]. In ECV 304 cells, acute extracellular alkalosis resulted in a gradual increase in pH_{i} , which was about 0.2 pH units higher under chronic extracellular alkaline conditions (pH $_{0}$ 7.9) than in normal solution (pH 7.4). Intracellular alkalinization has been considered as a process of intracellular signal transduction initiated by agonist stimulation [33,34]. Activation of the receptor by ligands such as ATP and thrombin induces phosphoinositide breakdown, resulting in protein kinase C activation and consequent stimulation of $Na⁺-H⁺$ exchange, which then results in intracellular alkalinization [35,36]. A previous study has shown that bradykinin stimulation of bovine aortic endothelial cells caused μ ₁ sumulation of bovine about endomenal cells caused
increases in $\left[Ca^{2+}\right]$ and pH_1 , both of which were suppressed by a $Na⁺-H⁺$ pump inhibitor [37]. Thus agonist-induced changes in Na $-$ H⁻ pump infinition [37]. Thus agonist-induced changes in
[Ca²⁺]_i and pH_i appear to be closely related in vascular endothelial cells.

 $NH₄Cl$ is frequently used as a tool to induce intracellular alkalinization. When cells are exposed to $NH₄Cl$, a weak base, at $\text{constant } pH_{\text{o}}$, intracellular alkalinization occurs due to the entry of NH₃, which is re-protonated in the cytoplasm to form $NH₄$ ⁺ [38]. In ECV 304 cells, $NH₄Cl$ (20 mM) induced acute in tracellular alkalosis, the degree of which was greater than that accompanying extracellular alkalosis. Acute intracellular alkalosis induced by $NH₄Cl$ clearly inhibited store-depletionalkalosis induced by $NH₄Cl$ clearly inhibited store-depletion-
activated $Ca²⁺$ entry, but did not significantly affect leak $Ca²⁺$ entry. It is thus obvious that the stimulatory effects of extracellular alkalosis on Ca^{2+} entry are not mediated by concomitant changes in pH_i , but rather are due to a direct action of extracellular protons. The observed inhibition of activated Ca^{2+} entry by intracellular alkalosis is in keeping with a previous study by Thuringer et al. [19] demonstrating that Ca^{2+} -activated K^+ channel activity induced by bradykinin, which reflects agonistchannel activity induced by brady kinin, which reflects agonist-
stimulated Ca^{2+} influx, is suppressed by application of $NH₄Cl$ (20 mM).

The mechanism of suppression of Ca^{2+} entry by intracellular alkalosis which counteracts the effects of extracellular alkalosis is as yet unknown. Danthuluri et al. [39] suggested that intracellular alkalinization by ammonium ions impairs the refilling of intracellular Ca^{2+} stores in bovine aortic endothelial cells. Recently, $NH₄Cl$ has been reported to induce membrane depolarization, N_{H_4} C₁ has been reported to modice membrane depotantization,
followed by trans-plasmalemmal Ca²⁺ influx through the voltagedependent Ca^{2+} channels in vascular smooth muscle cells [40,41]. dependent Ca⁻¹ channels in vascular smooth muscle cells [40,41].
However, inhibition of the activated Ca^{2+} entry by NH₄Cl in ECV 304 cells was not affected by membrane depolarization (Figure 7). Thus the mechanism of the inhibitory effect of $NH₄Cl$ does not involve changes in membrane potential, and remains to be clarified in future investigations.

Our results demonstrate that decreases in the extracellular proton concentration augment, while increases in the extracellular proton concentration inhibit [21], store-depletionactivated Ca^{2+} entry. The changes in depletion-activated Ca^{2+} entry elicited by a decrease in pH_0 from 7.4 to 6.9 on the one hand and by an elevation to 7.9 on the other hand were comparable. In contrast, leak Ca^{2+} entry appears to be highly sensitive to extracellular alkalosis but barely sensitive to acidosis. Elevation of pH₀ to 7.9 produced a marked increase in Ca^{2+} influx, while acidification (pH_0 6.9) does not inhibit the influx pathway [21], indicating that the leak pathway is already maximally inhibited at a physiological pH $_{\circ}$ of 7.4. The regulation of trans-plasmalemmal Ca^{2+} entry by pH_i is biphasic, in that both

Table 2 Effects of pH on transmembrane Ca2+ *entry pathways in ECV 304 cells*

Extracellular alkalosis and acidosis correspond to pH_0 values of 7.9 (the present study) and 6.9 [21]. Intracelluar alkalosis and acidosis were induced by NH_4Cl (20 mM; the present study) and propionate (20 mM ; [21]) respectively.

intracellular acidosis and alkalosis inhibit store-depletionactivated Ca^{2+} entry in vascular endothelial cells (but the latter action is stronger than the former), indicating the existence of a pH_i optimum for depletion-activated Ca²⁺ entry into ECV 304 cells. We have summarized these findings in Table 2, which combines the present results with our previous observations in ECV 304 cells [21].

In summary, our results strongly suggest that extracellular alkalosis increases both leak and store-depletion-activated transplasmalemmal Ca^{2+} entry due to the direct removal of protons from extracellular inhibitory sites, while intracellular alkalosis inhibits store-depletion-activated Ca^{2+} entry and thereby blunts the overall effect on Ca^{2+} influx. It has been proposed that an as yet unidentified diffusible messenger, termed $Ca²⁺$ influx factor, is produced upon depletion of Ca^{2+} stores, and activates a specific Ca^{2+} channel [42,43]. Further studies are required to clarify the role of such cellular signalling cascades and of specific cellular structures in the pH regulation of endothelial cell Ca^{2+} entry mechanisms.

We thank Dr. Ben Hemmens for helpful comments on the manuscript, Dr. K. Takahashi for providing ECV 304 cells, and Mrs. R. Schmidt for her skilful technical assistance. This work was supported by the Austrian Research Foundation (SFB Biomembranes F708) and the Austrian National Bank (project 6073).

REFERENCES

- 1 Moncada, S. and Vane, J. R. (1979) Pharmacol. Rev. *30*, 293–331
- 2 Furchgott, R. F. and Vanhoutte, P. M. (1989) FASEB J. *3*, 2007–2018
- 3 Moncada, S., Palmer, R. M. J. and Higgs, E. A. (1991) Pharmacol. Rev. *43*, 109–142
- 4 Yanagisawa, M. and Masaki, T. (1989) Trends Pharmacol. Sci. *10*, 374–378
- 5 Schilling, W. P., Rajan, L. and Strobl-Jager, E. (1989) J. Biol. Chem. *264*, 12838–12848
- 6 Demirel, E., Laskey, R. E., Purkerson, S. and van Breemen, C. (1993) Biochem. Biophys. Res. Commun. *191*, 1197–1203
- 7 Adams, D. J., Barakeh, J., Laskey, R. and van Breemen, C. (1989) FASEB J. *3*, 2389–2400
- 8 Himmel, H. M., Whorton, A. R. and Strauss, H. C. (1993) Hypertension *21*, 112–127
- 9 Colden-Stanfield, M., Schilling, W. P., Ritchie, A. K., Eskin, S. G., Navarro, L. T. and Kunze, D. L. (1987) Circ. Res. *61*, 632–640
- 10 Schilling, W. P., Ritchie, A. K., Navarro, L. T. and Eskin, S. G. (1988) Am. J. Physiol. *255*, H219–H227
- 11 Putney, Jr., J. W. (1992) Adv. Second Messenger Phosphoprotein Res. *26*, 143–160
- 12 Jacob, R., Merritt, J. E., Hallam, T. J. and Rink, T. J. (1988) Nature (London) *335*, 40–45
- 13 Ritter, J. M., Frazer, C. E. and Taylor, G. W. (1987) Br. J. Pharmacol. *91*, 439–446
- 14 Mitchell, J. A., de Nucci, G., Warner, T. D. and Vane, J. R. (1991) Br. J. Pharmacol. *103*, 1295–1302
- 15 Kontos, H. A., Raper, A. J. and Patterson, J. L. (1977) Stroke *8*, 358–360
- 16 Ardrissino, D., Barberis, P., Deservi, S., Falcone, C., Montemartini, C., Previtali, M., Scuri, PM and Specchia, G. (1987) Am. J. Cardiol. *59*, 707–709
- 17 Rooke, T. W. and Sparks, Jr., H. V. (1981) Experientia *37*, 982–983
- 18 Klöckner, U. and Isenberg, G. (1994) J. Gen. Physiol. **103**, 665-678
- 19 Thuringer, D., Diarra, A. and Sauve!, R. (1991) Am. J. Physiol. *261*, H656–H666
- 20 Schilling, W. P., Cabello, O. A. and Rajan, L. (1992) Biochem. J. *284*, 521–530
- 21 Wakabayashi, I. and Groschner, K. (1996) Biochem. Biophys. Res. Commun. *221*, 762–767
- 22 Takahashi, K., Sawasaki, Y., Hata, J., Mukai, K. and Goto, T. (1990) In Vitro Cell. Dev. Biol. *25*, 265–274
- 23 Grynkiewicz, G., Poenie, M. and Tsien, R. Y. (1985) J. Biol. Chem. *260*, 3440–3450
- 24 Batlle, D. C., Peces, R., LaPointe, M. S., Ye, M. and Daugirdas, J. T. (1993) Am. J. Physiol. *264*, C932–C943
-
- 25 Lückhoff, A. and Busse, R. (1990) Pflügers. Arch. **416**, 305–311
26 Groschner, K., Graier, W. F. and Kukovetz, W. R. (1992) Biochim. 26 Groschner, K., Graier, W. F. and Kukovetz, W. R. (1992) Biochim. Biophys. Acta *1137*, 162–170
- 27 Groschner, K., Graier, W. F. and Kukovetz, W. R. (1994) Circ. Res. *75*, 304–314
- 28 Laskey, R. E., Adams, D. J., Johns, A., Rubanyi, G. M. and van Breemen, C. (1990) J. Biol. Chem. *265*, 2613–2619
- 29 Ellis, D. and Thomas, R. C. (1976) J. Physiol. (London) *262*, 755–771
- 30 Aickin, C. C. (1984) J. Physiol. (London) *349*, 571–585

Received 6 September 1996/12 December 1996 ; accepted 3 January 1997

- 31 Tolkovsky, A. M. and Richards, C. D. (1987) Neuroscience *22*, 1093–1102
- 32 Austin, C. and Wray, S. (1993) J. Physiol. (London) *466*, 1–8
- 33 Berk, B. C., Canessa, M., Vallega, G. and Alexander, R. W. (1988) J. Cardiovasc. Pharmacol. *12*, (Suppl. 5) S104–S114
- 34 Busse, R. and Fleming, I. (1996) Diabetes *45*, (Suppl. 1) S8–S13
- 35 Kitazono, T., Takeshige, K., Cragoe, Jr., E. J. and Minakami, S. (1988) Biochem. Biophys. Res. Commun. *152*, 1304–1309
- 36 Ghigo, D., Bussolino, F., Garbarino, G., Heller, R., Turrini, F., Pescarmona, G., Cragoe, Jr., E. J., Pegoraro, L. and Bosia, A. (1988) J. Biol. Chem. *263*, 19437–19446
- 37 Fleming, I., Hecker, M. and Busse, R. (1994) Circ. Res. *74*, 1220–1226
- 38 Thomas, R. C. (1974) J. Physiol. (London) *238*, 159–180
- 39 Danthuluri, N. R., Kim, D. and Brock, T. A. (1990) J. Biol. Chem. *265*, 19071–19076
- 40 Tanaka, H., Wakabayashi, I., Sakamoto, K. and Kakishita, E. (1996) Gen. Pharmacol. *27*, 535–538
- 41 Wakabayashi, I., Kukovetz, W. R. and Groschner, K. (1996) Eur. J. Pharmacol. *299*, 139–147
- 42 Parekh, A. B., Terlau, H. and Stühmer, W. (1993) Nature (London) **364**, 814–818
- 43 Randriamampita, C. and Tsien, R. Y. (1993) Nature (London) *364*, 809–814