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The structural properties of carbohydrate metabolism are being

studied. The present contribution focuses mainly on those

processes involving the transfer of carbon fragments among

sugars. It is shown how enzymic activities fix the way the system

self-organizes stoichiometrically at the steady state. It is proven

that there exists a specific correspondence between the set of all

possible enzymic activities, the activity set, and the set of

stoichiometrically compatible flux distributions through the

pathway. On the one hand, there are enzymic activities that do

not allow a stoichiometrically feasible coupling at the steady

state of the reactions involved in the conversion. On the other

INTRODUCTION

Hexoses (C
'
) and pentoses (C

&
), free or combined, are the most

abundant carbohydrates in Nature. They play specific metabolic

roles : hexoses are the energy and main structural sugars, whereas

pentoses are informative material (although these may also form

a few structural polysaccharides, such as xylose and arabinose

derivatives). Thus the sugar conversion C
'
YC

&
means the

conversion (interchange) of energy-information material.

Although in present cells sugar transformation is coupled to

different functions, e.g. the synthesis of fatty acids, in the

evolution of metabolism its first function (the reason to be

created) was surely the synthesis of ribose to make nucleic acids,

from the pre-existing glucose. Whereas prebiotic synthesis of

glucose has been experimentally demonstrated by the formose

reaction [1,2], the synthesis of ribose has been barely recognized

under such conditions [3,4]. Therefore, the origin of ribose might

have been not from prebiotic chemistry, but as a consequence of

a primitive metabolism.

In addition to hexoses and pentoses, carbohydrate metabolism

also involves sugars with three (C
$
), four (C

%
), seven (C

(
) and

eight (C
)
) carbons. In particular, C

$
and C

%
have important

metabolic roles, such as in the interconnection among glycolysis,

the Calvin cycle and the pentose phosphate cycle (C
$
), or in the

biosynthesis of aromatic amino acids (C
%
) ; C

(
and C

)
sugars exist

only as intermediates of particular sugar metabolisms, although

actually the latter are rarely to be found in present-day cells [5].

Sugars with more carbons do not exist in Nature. In any case, all

of them are metabolites just for passing through, and do not

accumulate in living material.

In all cases described in the literature, monosaccharide inter-

conversion implies the presence of the same kind of enzymes

(although not all of them are always involved). The enzymes

catalyse the transfer of carbon fragments with, in most cases,

similar mechanisms. These enzymes are known as transketolase

(TK), transaldolase (TA) and aldolase (AL). TK and TA catalyse

Abbreviations used: TK, transketolase ; TA, transaldolase ; AL, aldolase.
§ To whom correspondence should be addressed.

hand, there are enzymic activities that are related to one or more

flux distributions at the steady state (i.e. with one or several rate

vectors respectively). For this latter group, it can be demonstrated

that the structure of the system depends on other non-structural

factors, such as boundary constraints and the kinetic parameters.

As a consequence, it is suggested that this kind of metabolic

process must be viewed as a complex reaction network instead of

a sequential number of steps. Some implications of these

derivations are illustrated for the particular conversionCO
#
!C

$
.

General remarks are also discussed within the framework of

network models of cell metabolism.

those reactions implying the transfer of carbon fragments (of two

carbons with TK and of three carbons with TA) from one sugar

to another. AL catalyses the condensation or decondensation of

two sugars, a triose always being involved. It is important to

recall that these transfers are carried out through intermediary

complexes formed by the enzymes linked to fragments of two or

three carbons. The previously studied metabolic designs differ in

the specificity of the enzymes in acting on particular sugars as

either donors or acceptors of the carbon fragments. In addition,

in all these routes some intermediates act more than once as

either donor or acceptor of several reactions. For instance, in the

classical pentose phosphate cycle (F-type) the fructose 6-P can be

formed as a product of TK- and TA-catalysed reactions, and the

glyceraldehyde 3-P can be produced in the reactions carried out

by TK acting on xylulose 5-P and those in which TA acts on

fructose 6-P.

As a consequence of these facts, sugar interconversion has a

special level of complexity, which is, in its fundamental aspects,

different from that found in linear or branched pathways. This

complexity is reflected in both the structural and the dynamic

properties of the system. The former focuses on sequence,

relationships among the intermediates and stoichiometric flux

distribution at steady state of the pathway, compatible with

specific enzymic activities. The latter focuses on the global

behaviour of the system (whole flux through the route, transition

time, etc.) according to boundary conditions, such as constant

chemical affinity or constant input flux. The study of any

metabolic pathway should consider these two aspects.

Figure 1 shows a general view of the relationships between

these sugars, including interaction with other pathways. Thus

any particular design, such as the Calvin cycle or the F- and L-

types [6] of the pentose phosphate pathway can be derived from

the general scheme shown in Figure 1 by selecting the appropriate

set of enzymes and defining the boundary conditions. A good

example of fitting this general scheme to a particular function is

the enzymic regulation and the inhibition by light of TA activity
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Figure 1 Schematic representation of monosaccharides interconversion as
a complex reaction network

Nodes (CO2, sugars and enzymic complexes) are linked by lines (reversible reactions) and

arrows (irreversible reactions). Only reactions of types (b) (inside the box) and (a) (outside the

box) are shown. The connection with external sources and other metabolic pathways by diffusive

processes is also depicted. As a consequence of this network structure, the system presents

multiple ways of self-organizing according to the external couplings and the final product the

cell requires (see the text).

[7], as occurs in chloroplast [8,9]. Regarding all above-mentioned

cases and other examples (see, for instance, [10]), cellular

metabolism can be considered as a network of enzymic reactions

connected through intermediate metabolites, whose co-ordinate

activity strongly depends on the stoichiometric and external

constraints. As a consequence of this structural complexity there

can emerge a functional versatility. For instance, the same

enzymes allow the conversion of both C
&

sugars into C
'

sugars

(non-oxidative phase of the pentose phosphate cycle) and C
$

sugars into C
&
sugars (non-reductive phase of the Calvin cycle).

The aim of this paper is to analyse the structural complexity of

the metabolic sugar network shown in Figure 1 by exploring the

couplings between the enzymic reactions involved in the system

under several external constraints. By means of techniques of

stoichiometric network analysis [11–14] is found the set of flux

distributions that are stoichiometrically compatible with all the

enzymic activities involved in the conversion. The specific re-

lationship among enzymic activities and flux distributions

through the pathway is also demonstrated. As an example of

application of this analysis, the production of trioses from CO
#

is studied.

ANALYSIS

Kinetic model

Enzymic activities and mechanism

The reactions involved in this metabolic system can be classified

into four different kinds: (a) Reactions that produce a global

variation in the number of carbons of the system through

mechanisms of carboxylation and decarboxylation respectively.

These reactions are catalysed by specific enzymes, such asRubisco

for carboxylation and phosphogluconate dehydrogenase for

decarboxylation. (b) Reactions that change the number of

carbons of the sugars by transferring a given number of carbons

between two sugars, but without a global variation of carbons.

These are catalysed by TK, TA and AL. (c) Redox reactions,

necessary since the net gain or loss of carbon is made through C
"

units as CO
#
, as stated in (a) above; therefore sugar metabolism

must involve this kind of reaction for the conversion (CH
#
O)Y

CO
#
. The most characteristic enzymes involved in this step are 6-

P-glucose dehydrogenase for oxidation and glyceraldehyde-3-

phosphate dehydrogenase for reduction. (d) Auxiliary reactions

that account for some rearrangements in molecular structure.

They can be needed to allow subsequent reactions. For instance,

addition, removal and transfer of phosphate groups by means of

the action of kinases, phosphatases and phosphotransferases

respectively, to be used as leaving groups for substitution

reactions, or to give a degree of polarity to sugars ;

rearrangements of the stereochemical properties of the sugars

(epimerases) ; change of the function aldo–keto (isomerases) ; etc.

It must be noted that, whereas reactions (b) and (d) are

localized inside the box shown in Figure 1, reactions (a) and (c)

occur outside it. This classification has been made regarding the

chemical reactions, not the enzymes, since the enzymes can be

considered as tools to accelerate some chemical process that

previously existed [15]. For example, in the oxidative phase of the

pentose phosphate cycle there is no enzyme that specifically

catalyses the decarboxylation reaction, as it can occur spon-

taneously on the 3-oxo-6-phosphogluconate.

These reactions can be arranged in several ways, producing

metabolic designs according to the couplings of the pathway, the

external sources and the product that the cell needs (ribose,

erythrose, NADPH, etc.). In addition, this general system can

achieve a particular function by means of a different organization

of the reactions. The pentose phosphate cycle is usually con-

sidered to be the most characteristic route where such a feature

occurs (see, for instance, [5,16]), but this behaviour is not exclusive

to this pathway. In fact, it occurs in every pathway to a greater

or lesser degree. It is easy to see that the structural features of this

network will mainly depend on reactions (a) and (b), that is to

say, those that imply carbon transfer. Type (a) reactions can be

assumed to be a single step and irreversible. Obviously, this

simplification does not affect the structural properties of the

network, although it might influence its dynamics. As will be seen

later, irreversibility has important consequences on the flux

distribution through the pathway, and therefore on the network

structure.

As stated above, three different enzymes take part in reactions

of type (b) : TK, TA and AL. Usually, reactions in which TK is

involved are schematically written as the single step:

C
n
­C

m
Y
TK

C
n−#

­C
m+#

where n and m are numbers of carbons.

However, this must be interpreted as the coupling of two

hemireactions:

C
n
­TKYTK[C

n
]YTK[C

#
]­C

n−# (b1)
C

m
­TKYTK[C

m
]YTK[C

#
]­C

m−#

both working in opposite directions. It is worth pointing out that

considering these hemireactions will have important conse-

quences for the final structure of the network, since, as will be

seen later, the stoichiometric coupling of these hemireactions can

occur only under specific conditions.

A similar reasoning applies to TA. The two hemireactions

carried out by this enzyme are:

C
n
­TAYTA[C

n
]YTA[C

$
]­C

n−$ (b2)
C

m
­TAYTA[C

m
]YTA[C

$
]­C

m−$

The enzymic mechanism of AL has a subtle difference with

respect to TK and TA; similarly to them, it reacts according to

the scheme.

C
n
­ALYAL[C

n
]YAL[C

$
]­C

n−$
(b3)
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Figure 2 Schematic design of the eight fundamental flux distributions
chosen as the basis

The eight fundamental flux distributions that form the simple generator set deduced in the text

are schematically drawn here. Each of them represents an autonomous way of transforming

sugars subject to the boundary conditions [reactions (1–5)]. Whereas schemes b1, b2, b3, f1 and

f2 can give rise to a net transformation of one or several sugars (boundary set), b4, b5 and b6

are futile cycles that do not account for a net transformation (internal set). As can be seen,

irreversibility appears in the boundary set through reaction schemes f1 and f2. It is worth

pointing out the role of the enzymic complexes as common pools in the reaction schemes (see

the text). Stars indicate the system environment.

but unlike those enzymes, the enzymic complex AL[C
$
] can itself

react to recover the enzyme plus one triose

AL[C
$
]YAL­C

$
(b4)

The coupling of the two last reactions can produce the

condensation of a triose (C
$
) and a C

n−$
sugar (n¯ 6, 7 or 8), or

the opposite case. Moreover, the coupling of two hemireactions

such as reaction (b3) can give rise to the transfer of a fragment

of three carbons from a sugar to another, in a similar way to that

of TA. Nevertheless, a fundamental difference between both

mechanisms is that, whereas TA acts on a donor mono-

phosphorylated sugar, AL reacts with a biphosphorylated sugar.

It might reasonably be assumed that the enzyme TK can act on

C
&
, C

'
, C

(
and C

)
and TA and AL on C

'
, C

(
and C

)
, so in this

paper all these activities are considered.

Due to the particular enzymic mechanisms of the reactions,

three common pools of enzymic complexes, TK[C
#
], TA[C

$
] and

AL[C
$
] appear. Sharing these enzymic complexes will have

important consequences for the flux distribution through the

network, as will be seen later. On the other hand, although the

existence of the complexes TK[C
n
], TA[C

n
] and AL[C

n
] will play

a decisive role in the dynamic aspects of the pathway, their

influence on the structural features of the network is null (in fact,

formally they can be obtained as linear combinations of the rest

of intermediates). Therefore, these enzymic complexes are not

considered in the kinetic formulation of the problem.

Before entering the formal analysis of the problem, let us

consider the perspective under which monosaccharide inter-

conversion must be viewed: a network formed by a number of

nodes (the intermediates) related by lines (reactions), as shown in

Figure 1.

Description of the model

As can be seen in Figure 1, two kinds of processes must be taken

into account in order to model the monosaccharide trans-

formations. On the one hand are the transport processes that

relate the compounds involved in the route to the surroundings.

These processes can be schematically written as follows:

nYCO
#

(1)

nYC
$

(2)

nYC
%

(3)

nYC
&

(4)

nYC
'

(5)

Here * denotes the system environment. On the other hand are

reactions that are carried out by particular enzymes and that

occur in a specific place within the cell. These reactions are of the

types (a) and (b) already described above, and can be summarized

in the following steps.

(a) Carboxylation and decarboxylation reactions :

C
'
!CO

#
­C

&
(6)

C
&
­CO

#
! 2C

$
(7)

(b) Reactions of carbon transfer :

TK­C
&
YTK[C

#
]­C

$
(8)

TK­C
'
YTK[C

#
]­C

%
(9)

TK­C
(
YTK[C

#
]­C

&
(10)

TK­C
)
YTK[C

#
]­C

'
(11)

TA­C
'
YTA[C

$
]­C

$
(12)

TA­C
(
YTA[C

$
]­C

%
(13)

TA­C
)
YTA[C

$
]­C

&
(14)

AL­C
'
YAL[C

$
]­C

$
(15)

AL­C
(
YAL[C

$
]­C

%
(16)

AL­C
)
YAL[C

$
]­C

&
(17)

Within this group, the following specific AL–C
$
reaction must

be taken into account :

AL­C
$
YAL[C

$
] (18)

This setup addresses monosaccharide interconversion in the

most general way, in the sense that it assumes that all reactions

can occur simultaneously (which implies the presence of enzymes

catalysing all these reactions). Nevertheless, it is well known that

in present-day cells there is a particular distribution of enzyme

activities giving specific reaction schemes. This concrete re-

lationship will be investigated in detail below.

The system is related to the surroundings by means of the

boundary processes (1–5) that take into account the (out}in)put

of carbon compounds. In particular, the model considers that

only sugars with 3, 4, 5 and 6 carbons can flow out of or into the

system. In addition, the model considers that reactions (6) and

(7) are irreversible, whereas the rest of reactions are reversible.
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The ith reaction is governed by net velocities �
i
(i¯ 1, 2,…, 18),

where �
i
¯ �

i+
®�

i−
, �

i+
and �

i−
being the forward and reverse

velocities, always non-negative. Obviously, irreversible reactions

(6) and (7) verify that �
'−

¯ �
(−

¯ 0. In general, they depend on

the species concentration, kinetic constants and the enzyme

concentrations. However, as will be seen later, in particular

situations the relationship between these reaction rates is inde-

pendent of these parameters, i.e. the flux distribution through the

network depends exclusively on its relationship with the sur-

roundings [i.e. reactions (1–5)]. In addition, mass conservation

imposes the following restriction on the velocities under steady-

state conditions :

�
"
­3�

#
­4�

$
­5�

%
­6�

&
¯ 0 (19)

where �
"
, �

#
, �

$
, �

%
and �

&
are the reaction rates of reactions (1–5)

respectively. As a consequence, the global stoichiometry of the

system is not fixed.

Stoichiometric analysis

As with any set of chemical reactions, monosaccharide inter-

conversion has to work under stationary conditions according to

stoichiometric constraints. Each kind of sugar transformation

under a given set of particular kinetic parameters and boundary

constraints has a global stoichiometry that imposes the flux

distribution through the net. These structural features, obviously

time independent, must be reflected in the stationary behaviour

of the system. Then, the organization of the flow through this

network must be found from the study of the steady-state

solutions of the system. In general, these solutions must depend

on both the relationship of the system with the surroundings and

the network architecture. Under stationary conditions, all

stoichiometrically compatible network organizations imply a

particular link among hemireactions [eqns (1–18)]. Asking for

the ways of coupling reactions (1–18) that are stoichiometrically

correct is equivalent to searching the set of reaction rates �
i
that

allow the system to be in the stationary regime. Notice that under

steady-state conditions the flux arriving at each node must be

necessarily equal to that leaving the node. In this scheme, a

particular solution can be represented by a flux distribution

through the network. The degree of coupling between two

hemireactions can be obtained by comparing the flow through

the corresponding routes.

It is simple to find those velocity distributions that satisfy the

global stoichiometry of the system at the steady state. In fact, as

shown in theAppendix, the problem canbe solved algorithmically

from the stoichiometric matrix. It is interesting to note that all

the flux distributions stoichiometrically compatible with the

system constraints can be calculated as linear combinations of

eight particular and independent flux distributions. In other

words, all the possible ways of getting the interconversion among

monosaccharides can be achieved by linear combination of eight

different routes. As is discussed in the Appendix, the choice of

these eight independent flux distributions is arbitrary. Among all

physical criteria, here we have used that of simplicity. Simplicity

is used here to mean minimal number of reactions needed to

form a stoichiometrically feasible pathway. In Figure 2, these

fundamental flux distributions are schematically depicted, and

are named as b
"
, b

#
, b

$
, b

%
, b

&
, b

'
, f

"
and f

#
. It follows that an

infinite number of solutions appears, all the linear combinations

of these fundamental routes, forming the solution set, S.

This solution set can be divided into two subsets, S
I
and S

R
,

each of them corresponding to specific metabolic conversions,

irreversible and reversible respectively. S
I
necessarily includes the

fundamental routes f
"

and f
#
, and, in fact, is related to the

oxidative}reductive branch of those pathways, implying

decarboxylation and carboxylation reactions respectively. On

the other hand, the reversible part S
R

corresponds to the non-

oxidative}non-reductive phase of the routes [implying type (b)

reactions]. In addition, it can be remarked that a higher capacity

of response of the system to external changes can be obtained

with a larger number of fundamental routes involved in the basis.

As will be discussed below, this fact allows metabolism to be in

tune with the surroundings, and therefore becomes an actual

evolutive necessity.

Another classification of S, according to the network re-

lationship with the environment, is worthy of mention. Two

fundamental kinds of simplest pathway form the basis of S

chosen above. One is formed by those pathways that are able to

produce a net conversion from one or several substrates into one

or more final products. They are obtained by linear combinations

of b
"
, b

#
, b

$
, f

"
and f

#
. The other set contains internal pathways

with a null net transformation (those that are obtained by linear

combinations of b
%
, b

&
and b

'
). The first set will be referred to as

the boundary set, and the second the internal set. As a direct

consequence of the system definition, irreversibility appears only

in the boundary reactions, i.e. the fixation or release of CO
#
.

However, it must be noted that the global stoichiometry imposes

specific couplings with carboxylation and decarboxylation

reactions, as is reflected in routes f
"

and f
#
. In the same way,

reversible pathways can be found in both the boundary and

internal sets. It must be remarked that when the system is

isolated from the surroundings, i.e. the velocities of the first five

reactions are zero (as in routes b
%
, b

&
and b

'
), the number of

carbons present in the system is conserved (that is the unique

structural conservation relationship that appears in the system

[11]).

As has been shown, all the stoichiometrically compatible

organizations of monosaccharide interconversion can be

obtained from a finite number of elementary routes. Moreover,

it is possible to classify these solutions according to their character

(reversible and irreversible) and the external relationship. But the

fundamental question about the correspondence between the

enzymic activities and these flux organizations still remains

unanswered. The next two sections are devoted to discussing this

problem.

The activity set

The ideas developed in the previous section have an immediate

translation to the real problems stated above in the study of cell

metabolism. After detecting the existence of a particular

(in}out)put flux of intermediates, metabolic analysis tries to

understand the pathway organization and functioning. A useful

strategy is to measure the particular reaction velocities and from

that to deduce the enzyme arrangement to form a pathway.

The presence or not of a particular enzyme (activity) can be

easily codified by means of the activity vector, a, whose ith

coordinate is 1 if the enzyme has activity (or exists) for reaction

i and 0 if this activity is not carried out by it (or it does not exist).

Since reactions (1–5) need no enzymes, the activity vector has 12

components corresponding to reactions (6–17) (see Figure 3).

The first and second components of this vector mean the activity

of enzymes involved in decarboxylation (6) and carboxylation (7)

respectively. The following four reactions refer to reactions

(8–11) (TKs), and the next three to reactions (12–14) (TAs). The

last three represent the catalytic action of ALs [reactions (15–17)].

The set of all the activity vectors is called an activity set and is

denoted by A. It is a finite set formed by 2"# elements.

The particular feature of the system (enzymic hemireactions
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Figure 3 Rate and activity vector correspondence

Since transport processes (v1,…, v5) need no enzymes, these reactions are not reflected in the

activity vectors. The rates of the decarboxylation and carboxylation (v6 and v7) are related to

the first and second components of the activity vector. TK reaction rates (v8,…, v11) correspond

to the next four elements of the activity vector (a3, a4, a5 and a6). The next three positions in

the rate vector (TA reactions) are related to the next three positions in the activity vector

(a7, a8 and a9). Finally, the AL reaction velocities (v15,…, v17) are related to the last three positions

in the activity vector (a10, a11 and a12). Notice that reaction (18) is implicit in the other AL

reactions, and therefore needs no codification in the activity vector. w means vector

transposition.

Figure 4 Relationship between the activity set (A) and the solution space
(S )

Among the 212 activity vectors, there are some that are connected with no element of S, others
that have a one-to-one relationship, and another group that is related to an infinite subset of

S. In addition, it can be easily shown that a rate vector cannot be related to more than one

activity vector (dashed lines).

thatmust be coupled to progress, under themechanisms described

in the ‘Kinetic model ’ section) imposes serious restrictions on

the elements of A that are stoichiometrically feasible at the

steady state. In consequence, only a subset of the activity set is

related to flux distributions compatible with the stoichiometry.

For instance, it can be easily shown that the activity vector a¯
(0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0), which represents the existence of

enzymic activity of TK for C
&
, TA for C

'
and AL for C

'
, has no

relationship to any flux distribution of S, since enzymic activities

cannot be coupled. On the other hand, some activity vectors can

be related to several flux distributions in S. That is the case of

a¯ (0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1) that corresponds to those flux

distributions that are linear combinations of the two basic routes

b
#

and b
&
. In this case, associated with this activity vector are

multiple ways of distributing the flow through the pathway.

Moreover, it is easy to prove that any flux distributions of S are

related to only one activity vector. This correspondence is

schematically drawn in Figure 4.

Figure 5 Reaction network scheme represented by the flux distribution
u¯ ([3,®1, 0, 0, 0] [0, 3] [®2, 1, 1, 0, 0, 0, 0,®1,®1, 0] [2])w (where w is
vector transposition)

The direction of the flow through the route is indicated by arrows. The rate flux through each

reaction is codified by the width of lines, and the particular values are given by the numbers

over the lines. Notice that this flux distribution fits the global stoichiometry, i.e. 3CO2 ! C3. This

network organization represents the well-known Calvin cycle. Stars indicate the system

environment.

Following this reasoning, the goal now is to find the cor-

respondence between velocity distributions and activity vectors,

i.e. between S and A. Finding this relationship provides a way to

know the multiple ways of constructing the pathway compatible

with the stoichiometry (different enzyme mechanism and location

within the path). Thus this study allows discussion of the

possibilities of establishing an enzymic network. In order to

clarify well all these conclusions, the next section is devoted to

analysing a well-known pathway: the production of C
$
sugars by

CO
#

fixation involving monosaccharide interconversion, i.e.

discarding both the Arnon cycle and the direct synthesis of

acetate, as occurs in some bacteria.

Producing C3 sugars by CO2 fixation

Previous sections have been focused on studying in a general

sense the flux organization of monosaccharide interconversion.

No additional assumptions about either the kinetic features or

the relationships of the system with the environment have been

made there. Therefore the conclusions derived above are totally

valid for any particular situation obtained after imposing any

hypothesis on the general model.

Among all the rate distributions with physical meaning (S )

there are particular solutions that correspond to situations of

monosaccharide metabolism in present-day cells. That is the case

for the fixation of CO
#

to acquire monosaccharides for plants.

This conversion cycle is one of the main ways of providing

energy and matter for living beings. Within photosynthesis this

interconversion is linked to the pentose phosphate cycle, which

supplies ribulose 5-phosphate needed to feed the pathway. As

was deduced in the previous section, this transformation can, in

principle, be performed by different network organizations (one

of them being the Calvin cycle). In this section, we analyse the

possible structures that are in agreement with the global stoi-

chiometry of this pathway, i.e. 3CO
#
!C

$
.

In a similar way as stated in the previous section, it is not

difficult to find the basic routes from which all the possible flux

distributions can be obtained. It can be proven (see the Appendix)

that the general solutions to this problem are linear combinations

of the basic pathway u, necessary to get a net conversion (see

Figure 5), and three additional routes b
%
, b

&
and b

'
(Figure 2).

As can be seen, this route u is a particular combination of

fundamental routes of the general problem, i.e. u¯
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Figure 6 Network organization described by the flux distribution
v¯ ([3,®1, 0, 0, 0] [0, 3] [®2, 1, 1, 0, 1/2,®1/2, 0,®3/2,®1/2, 0] [2])w
(where w is vector transposition)

The direction of the flow as well as the rate values for each reaction are depicted here. The flow

through the internal cycle b6, which is superimposed to the main stream u (Figure 5), is

represented by dashed lines. Stars indicate the system environment.

3f
#
®b

"
®b

#
®2b

$
®b

'
. As stated above, a specific relationship

between these flux distributions and the activity vectors must exist

for this particular problem. Since any flux distribution can be

formed by linear combinations of basic routes, i.e. v¯ u

­α
%
b
%
­α

&
b
&
­α

'
b
'
, depending on the contribution of the

internal routes (α
%
, α

&
and α

'
respectively), the solution set can be

divided into eight different categories. Below, some biochemically

interesting categories are studied in detail.

(1) Flux distributions proportional to u, without any con-

tribution of the internal routes b
%
, b

&
and b

'
. This set is obtained

when α
i
¯ 0 for i¯ 4, 5 or 6, i.e. there is no contribution from the

internal vectors. It is easy to see that all distributions belonging

to this subset are related to the activity vector a
"
¯ (0, 1, 1, 1, 1,

0, 0, 0, 0, 1, 1, 0) being the only set of enzymic activities compatible

with this flux distribution. This activity vector represents the

well-known Calvin cycle, since it has the enzymic activities

described for this pathway, i.e. in addition to the carboxylation,

TK acts on C
&
, C

'
and C

(
sugars and AL acts on C

'
and C

(
sugars. It turns out that this is the simplest network organization,

in the sense we stated previously, which allows a net inter-

conversion between CO
#

and C
$
.

(2) Let us consider now the flux distributions, v, obtained by

combining the Calvin cycle u and internal cycle b
'
, i.e. v¯ u

­α
'
b
'
. In contrast to the previous case, this rate vector set is

related to three different activity vectors. One is the more general

case, a
#"

, that corresponds to all linear combinations with a con-

tribution of b
'
different from 1 and ®1, a

#"
¯ (0, 1, 1, 1, 1, 0, 1, 1,

0, 1, 1, 0), and two are activity vectors that result when α
'
¯

1 (a
##

) and α
'
¯®1 (a

#$
), a

##
¯ (0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0) and

a
#$

¯ (0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0) that can be considered as mar-

ginal cases of the general rate vector v. These situations may be

interpreted as either the absence of the specific activity or the

result of the cancellation of the corresponding reaction rates (�
"'

for a
##

and �
"&

for a
#$

). Interestingly, the biochemical translation

of a
##

is the activity set observed in the present-day pentose

phosphate cycle, although here it is working in the opposite

direction as a way of fixing CO
#
.

When α
'
1 1,®1, the activity vector a

#"
is related to rate

vectors with different flux distributions (for a given net conversion

of the pathway). In fact, the percentage of material that is

flowing through b
'

in relation to the flux through u is α
'
. This

specific flux distribution depends on the boundary conditions

and the internal parameters of the pathway. For instance, Figure

Figure 7 Fraction of the total flux (α5) that is flowing through the reaction
network b5

Fraction of the total flux that is flowing through the reaction network b5 (α6) as a function of

the input flux of CO2, v1, for the activity vector a31. As can be seen for low values of v1, only

a small percentage of material is processed by the internal cycle b5 (apparently reaching a null

value as v1 ! 0). At the other extreme, for values of v1 close to the maximum rate of the

pathway, more than half of the flow passes through the cycle b 5. Notice that knowledge of this

behaviour is essential for an artificial regulation of the net flow through the pathway.

6 describes a route with a flux through b
'

that is a half of that

flowing through u.

(3) Finally, it is interesting to study a new category in which

the internal cycle b
&

appears superimposed on the irreversible

pathway u. As in the previous point, three activity vectors are

related with these velocity vectors : a general one, a
$"

, valid for all

contributions of b
&

different from 2 and 1, i.e. α
&
1 1,2, a

$"
¯

(0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1), and others for α
&
¯ 2 (a

$#
) and

α
&
¯®1 (a

$$
), a

$#
¯ (0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1) and a

$$
¯ (0, 1,

1, 1, 1, 1, 0, 0, 0, 0, 1, 1).

Biochemically, the activity set a
$"

can be related to a special

description of the pentose phosphate cycle suggested by Williams,

the L-type [17]. The existence of this pathway is still under

discussion, since both TK and AL activities on C
)

sugars are

required. In addition, note that this activity set is related to an

infinite number of rate distributions, each of them with a different

flux distribution through the main pathway (u) and the internal

route (b
&
). The percentage of the total flux that is flowing through

b
&

compared with that of u, α
&
, for different values of the input

flux of CO
#
, �

"
, is shown in Figure 7. As can be seen, this flux

distribution depends on the rate of input of CO
#
(the dependence

with other kinetic parameters is not shown). Whereas for low

values of �
"
most of the conversion is being carried out through

the Calvin cycle (u), for higher values of the input flux of CO
#

(before reaching the maximum rate of the pathway) more than

half of the matter is flowing through the internal cycle b
&
. This

aspect will be revisited in the next section.

DISCUSSION

In this article the interconversion among monosaccharides has

been analysed using a stoichiometric approach. This trans-

formation can be viewed as a paradigm of complexity in a

metabolic network. In principle, the way the network is organized

can depend on both the relationship of the system with the

surroundings, i.e. inputs and outputs, and the kind of constraint

under which the network is functioning, e.g. constant affinity or

constant input flux.

The complexity of a metabolic network comes from two well-

differentiated factors. On the one hand, there can be a high
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number of intermediates (nodes) and enzymes (connections)

involved in the network. On the other, although the number of

nodes and connections is not very high, here complexity appears

because both intermediates and enzymes are shared and used

more than once in the network. The enzymic unspecificity is not

exclusive of this interconversion, although it can be considered as

paradigmatic. This feature was already recognized in the first

studies of the pentose phosphate cycle : whereas in the classic

design of the non-oxidative phase of the pentose phosphate cycle,

AL can act only on 6-carbon sugars, in the non-reductive phase

of the Calvin cycle this activity is extended to 7-carbon sugars,

and in the L-type described by Williams [6,17], AL catalyses also

those reactions involving 8-carbon sugars. In addition, according

to the principle of activity [7], whenever an enzyme has activity

on a certain substrate it must act on it, increasing even more the

complexity of the problem. Thus in a certain sense, the L-cycle

must include those reactions involved in the non-reductive phase

of the Calvin cycle (though working in the opposite direction),

since the enzymes have the corresponding activities of that

pathway.

The mechanism of enzymic reactions brings another important

characteristic to the system. Since all these processes occur by

transfer of carbon fragments among sugars by coupling of two

hemireactions, a hemireaction can be coupled with more than

one hemireaction. For instance, in the L-type the hemireactions

(8–11) are coupled with each other and working simultaneously.

Then, in a strict sense this pathway cannot be represented as a

sequence of steps. A more appropriate representation is given by

a metabolic network, as shown in Figure 1.

With every flux distribution of a pathway can be associated,

both theoretically and experimentally, a unique activity vector.

However, a more interesting question is to find those rate vectors

stoichiometrically compatible at the steady state with a given

activity vector. As has been derived in this work, the activity set

can be divided into three subsets. The first one is formed by those

activity vectors that do not allow stoichiometrically correct rate

distributions. As argued above, enzymic reactions progress due

to the coupling among hemireactions. So, it can be the case that

the absence of a particular enzyme prevents the system from self-

organizing stoichiometrically. A second subset is formed by

those activity sets that are related to a unique flux distribution.

For these activity vectors the flux distribution through the

pathway at the steady state is independent of the system

parameters. Finally, a third set contains those activity vectors

related to more than one rate distribution. The members of this

subset are associated with flux distributions through the network

that depend on both the external constraints and the system

parameters.

The L-type mentioned in the ‘Producing C
$

sugars by CO
#

fixation’ section belongs to the third subset. This pathway

implies that TK can act on C
&
, C

'
, C

(
and C

)
sugars and AL on

C
'
, C

(
and C

)
sugars. In that section, it was shown that the

corresponding activity vector a¯ (0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1)

is related to all the rate vectors obtained as linear combinations

of the Calvin route and the internal cycle b
&
. The value of the flux

through b
&

depends on the external conditions under which the

pathway is working. Figure 7 shows the results obtained by

numerical integration of the kinetic equations of a system with a

constant input flux of CO
#
and an output of C

$
. As can be seen,

depending on the value of this stationary flow, different flux

distributions appear at the steady state, i.e. different flux distri-

butions are stoichiometrically compatible. From an experimental

point of view this fact has important consequences: a researcher

could detect different routes depending on the regime in which

the cell is working. In other words, any kind of external regulation

of the net interconversion of monosaccharides in the cell

shouldn’t forget this dynamic behaviour. A deeper study of this

effect, together with the dynamic dependences with the rest of the

system parameters, will be reported in a forthcoming paper.

From an evolutionary viewpoint, this structural degeneration

has an important implication. In a previous work, the flux of a

metabolic pathway was taken as the main target to be optimized

during evolution [18]. It was demonstrated that in linear pathways

this magnitude depends on the number of steps of the metabolic

route : the shorter the route the higher the flux through it

becomes. In addition, Mele!ndez-Hevia [7] described both the F

pentose phosphate pathway and the Calvin cycle as the routes

with the lowest number of steps to get the corresponding

interconversion, and therefore they were considered as the

simplest ways to perform such a purpose. However, the

stoichiometrically compatible flux distributions of the mono-

saccharide interconversion cannot be related to sequential

pathways. Therefore, structural simplicity is better associated,

for a fixed number of metabolites, with the number of connections

of the reaction network, i.e. simplest pathways have the lowest

number of connections. Formally, this simplicity is reflected in

the number of null entries in the flux distributions of the network.

In these cases, the kinetic features of the route such as the flux

distributions, the transition time, etc. must be related to other

system characteristics. A detailed study of these kinetic properties

is currently under study and will be reported shortly.

Finally, notice that those cases in which the flux distribution is

degenerated with respect to the enzymic activity can offer a

broader versatility to the metabolic network. To respond ad-

equately to changes in the environment must be an important

challenge for biological systems. From this view, those activity

vectors that allow the system to self-organize stoichiometrically

according to external fluctuations will have an evolutionary

advantage. Then, this versatility should be considered as a fitness

function to be optimized in the design of metabolic pathways.
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APPENDIX

Mathematical formulation
All the results presented in the present paper can be rigorously

proven using concepts of linear algebra. In this section, the main

steps of these derivations are described.

Stoichiometric matrix

Let us denote by x
"
¯ [CO

#
] and x

i
¯ [C

"+i
] (i¯ 2, 3,…, 7) the

concentrations of CO
#
and (i­1)-carbon sugars respectively, and

by x
)
¯ [TK[C

#
]], x

*
¯ [TA[C

$
]] and x

"!
¯ [AL[C

$
]] the concen-

trations of complex intermediates involved in the reactions. The

time evolution of these variables for the full design (assuming

that enzymes possess all the possible activities) is governed by the

following dynamic system:

d

dt

E

F

[

[

[

x
#

x
"

x
(

x
)

x
*

x
"!

G

H

¯N¬

E

F

[

[

�
#

�
"

[

�
"'

�
"(

�
")

G

H

(A1)

where the reaction rates �
i
correspond to the general reaction

scheme stated in the ‘Stoichiometric analysis ’ section. N is a

10¬18 matrix, the so-called stoichiometric matrix. Its rows are

directly related to the metabolites, whereas the columns represent

the reactions in which each of them is taking part. The expression

of this matrix can be easily derived from the reaction scheme

(1–18) (as usual a velocity is positive if the product is placed in

the right-hand side of the reaction) :

N¯

E

F

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

®1

1

0

0

1

0

0

0

0

0

0

®1

0

2

®1

0

0

0

0

0

0

®1

0

1

0

0

0

1

0

0

®1

0

1

0

0

0

0

1

0

0

0

1

0

0

0

®1

0

1

0

0

1

0

0

0

0

0

®1

1

0

0

®1

0

0
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0

0

0

0

1

0

0

0

1

0

0

®1

0

0

1

0

0

1

0

0

0

0

®1

0

1

0

®1

0

0

1

0

0

0

0

0

1

0

0

1

0

0

®1

0

0

0

1

0

1

0

0

0

0

®1

0

0

1

0

0

0

®1

0

0

0

0

0

1

G

H

(A2)

A more compact formulation using matrix notation can be given

straightforwardly; let x and v denote the concentration and

velocity vectors respectively. Thus equation (A1) reads:

dx

dt
¯Nv(x) (A3)

It is well known that under a stationary regime the velocities of

the reactions must reach a constant value. The steady-state

velocity vector v can be determined by solving the homogeneous

linear system:

Nv(x)¯ 0 (A4)

Solution space

The derivation of all the stationary solutions in terms of the

metabolic concentrations, i.e. to solve the system (A4), is a very

hard task. However, given a particular setup, all possible

rearrangements of reactions (1–18) must be found among the set

of rate vectors that are solutions of eqn. (A4). This solution set

is a linear space and is usually referred as the kernel of N, ker (N).

Notice that, since the rank of N is less than the number of

reactions, ker (N) is always non-trivial. Then, from a math-

ematical viewpoint all the rate vectors that are solutions of eqn.

(A4) could be obtained as linear combinations of a finite number

of vectors, the basis of ker (N). Therefore, formally the problem

is solved when a basis of ker (N) is found. In this sense, it can be

easily proven that the minimum number of vectors needed to

generate this space is eight, i.e. the dimension of ker (N) is eight.

Owing to irreversibility of reactions (6) and (7), only a subset,

S, of the whole solution space, ker (N), has physical meaning (all

those negative linear combinations that involve non-null values

of the 6th and 7th coordinates of v must be discarded according

to the physical meaning of the model). The immediate conse-

quence of this fact is that set S loses the vectorial structure of

ker (N), although it conserves those properties derived from its

convex character. Even in this case, it is possible to express any

vector of S as a linear combination of vector generators, i.e. :

S¯(v r v¯ 3
m

k="

η
k
f
k
­3

r

j="

λ
j
b
j
, η

k
& 0, k¯ 1,…,m ;

λ
j
`2, j¯ 1,…, r* (A5)

with m­r¯ 8. Here, f
k

denote independent rate vectors that

contain non-null irreversible reactions, i.e. that have �
'
& 0 or

�
(
& 0 (not both simultaneously equal to zero). On the other

hand, b
j
are independent vectors (and independent of f

"
and f

#
)

that do not contain any irreversible coordinates, i.e. �
'
¯ �

(
¯ 0.

It must be remarked that any generator set of S contains a subset

of the irreversible vectors, and therefore the whole set S is

essentially irreversible.

However, S contains a subset S
R
, expanded by vectors

b
j
( j¯ 1, 2,…, r) that forms a linear subspace of ker (N). It can

be proven straightforwardly that the dimension of S
R

is six. It is

worth recalling that each b
j
is the contribution of the forward b

j+

and the reverse b
j−

rate vectors, i.e. b
j
¯ b

j+
®b

j−
. Obviously, the

vectorial character of S
R

is lost when considering these partial

velocities, since only non-negative linear combinations of those

vectors are allowed.
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Therefore, to expand the rest of S, two more independent

vectors, f
"

and f
#
, are needed [that is, m¯ 2 in formula (A5)].

These two vectors generate a convex set S
I
¯ (v `S r �¯Σ#

j
η
j
f
j
,

η
j
& 0, j¯ 1, 2). Moreover, S

I
fS

R
¯W. Then, S can be con-

sidered as the sum (direct) of the two sets S
R

and S
I
, i.e.

S¯S
I
GS

R
.

A simplest generator set

The search for a maximal generator set (a basis as named when

dealing with vector spaces) is the main goal that will guide the

next derivations. Among all criteria for choosing a complete set

of eight independent vectors, that of simplicity seems to be the

most adequate to express the structural features of the system.

Mathematically, simplicity is translated into the maximum

number of null components that a rate vector can have. Therefore,

looking for simplicity requires a full knowledge of the vector

structure of S, i.e. knowing the distribution of vectors that

contain a particular number of null entries.

Let Z be the number of zeros of a reaction rate vector. To get

a simple generator set of S, for each Z we will take the maximum

number of independent vectors, G
Z
, from the upper limit of zeros

down. After a cumbersome combinatorial search, it can be

shown that if S is the physical meaningful set, then if :

Z¯ 17, 16, 15, 13 then G
Z
¯W

Z¯ 14 then G
"%

¯ 6

Z¯ 12 then G
"#

¯ 1

Similar results can be derived for combinations with a smaller

number of zeros. Since the dimension of S is eight, to complete

the generator set of S an additional vector is needed. This can be

chosen from among those rate vectors with Z¯ 11, i.e. 11 null

components, that are linearly independent of the other seven

vectors already selected. This procedure can be summarized by

giving explicitly the following basis for S
R
, B¯ (b

"
, b

#
, b

$
, b

%
, b

&
,

b
'
), with (as usual, w means vector transposition) :

b
"
¯ ([0,®1, 1, 1,®1] [0, 0] [1,®1, 0, 0, 0, 0, 0, 0, 0, 0] [0])w

b
#
¯ ([0, 0,®1, 2,®1] [0, 0] [1, 0,®1, 0,®1, 1, 0, 0, 0, 0] [0])w

b
$
¯ ([0,®2, 0, 0, 1] [0, 0] [0, 0, 0, 0, 0, 0, 0, 1, 0, 0] [®1])w
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b
%
¯ ([0, 0, 0, 0, 0] [0, 0] [1, 0, 0,®1,®1, 0, 1, 0, 0, 0] [0])w

b
&
¯ ([0, 0, 0, 0, 0] [0, 0] [1, 0, 0,®1, 0, 0, 0,®1, 0, 1] [0])w

b
'
¯ ([0, 0, 0, 0, 0] [0, 0] [0, 0, 0, 0, 1,®1, 0,®1, 1, 0] [0])w

Similarly, the irreversible set of S
I

can be generated by the

following linearly independent vector set, F¯²f
"
, f

#
´, necessarily

differing at positions 6 and 7, with:

f
"
¯ ([®1, 0, 0,®1, 1] [1, 0] [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] [0])w

f
#
¯ ([1,®2, 0, 1, 0] [0, 1] [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] [0])w

In order to facilitate the reading of the vectors, they appear

partitioned in three groups of components, each of them related

to one of the set of reactions involved in the system: diffusion

processes (1–5), carboxylation and decarboxylation reactions (6)

and (7), reactions of carbon transfer (8–17) and the specific AL

reaction (18) (see Figure 3).

Therefore, the set :

G¯ (f
"
, f

#
, b

"
, b

#
, b

$
, b

%
, b

&
, b

'
)

is one of the simplest multiple sets that generates S. Figure 2

shows each of the fundamental vectors of G.

A simple example : CO2 ! C3

As a particular application of these results, let us analyse the

production of trioses from CO
#
. By definition, the only input and

output are CO
#

and C
$
, i.e. �

"
" 0, �

#
! 0 and �

$
¯ �

%
¯ �

&
¯ 0.

Then, it can be easily proven that the rate vectors compatible

with the stoichiometry must belong to a subset of S, U (containing

no terms in positions 3, 4 and 5), expanded by the simplest

generator set :

G
U
¯ (u, b

%
, b

&
, b

'
) (A6)

where u¯ 3f
#
®b

"
®b

#
®2b

$
®b

'
, that is,

u¯ ([3,®1, 0, 0, 0] [0, 3] [®2, 1, 1, 0, 0, 0, 0,®1,®1, 0] [2])w

Figure 5 shows schematically the flux distribution related to u

(the meanings of b
%
, b

&
and b

'
are given in Figure 2). Notice that

the vectors of U are linear combinations of a boundary vector (u)

and three internal vectors (b
%
, b

&
, b

'
) that are superimposed on

the main stream of the pathway.


