Regulation of cerebellar Ins(1,4,5)P³ receptor by interaction between $Ins(1,4,5)P_3$ and Ca^{2+}

Jean-François COQUIL¹, Laurent PICARD and Jean-Pierre MAUGER INSERM U442, Signalisation Cellulaire et Calcium, Université Paris Sud, Bâtiment 443, F-91405 Orsay cedex, France

We have characterized in detail the Ca^{2+} -dependent inhibition of we have characterized in detail the Ca²¹-dependent inhibition of $[{}^3H]Ins(1,4,5)P_3$ ($[{}^3H]InsP_3$) binding to sheep cerebellar microsomes, over a short duration (3 s), with the use of a perfusion protocol. This procedure prevented artifacts previously identified in studies of this Ca^{2+} effect. In a cytosol-like medium at pH 7.1 and 20 \degree C, a maximal inhibition of approx. 50 $\%$ was measured. Both inhibition and its reversal were complete within $3 \text{ s. } Ca^{2+}$ decreased the affinity of the receptor for $\text{Ins}P_3$ by approx. 50% $(K_d 146 \pm 24 \text{ nM at pCa } 9 \text{ and } 321 \pm 56 \text{ nM at pCa } 5.3)$, without changing the total number of binding sites. Conversely, increasing the [8 H]Ins P_{3} concentration from 30 to 400 nM tripled the IC₅₀ for Ca²⁺ and decreased the maximal inhibition by 63%. This is similar to a partial competitive inhibition between $\text{Ins}P_3$ binding $\frac{1}{2}$ and inhibitory Ca²⁺ binding and is consistent with $\text{Ins}P_3$ and inhibitory Ca²⁺ binding and is consistent with $\text{Ins}P_3$ and

INTRODUCTION

The mobilization of Ca^{2+} from the endoplasmic reticulum by the second messenger Ins $(1,4,5)P_3$ (Ins P_3) is a key process in the cellular response to a number of extracellular stimuli [1]. The Ins P_3 receptor (Ins P_3 R) forms a tetrameric Ca^{2+} channel in the endoplasmic reticulum that opens after $InsP₃$ binding. Three types of $\text{Ins}P_{\text{s}}\text{R}$, encoded by related genes, exist in mammalian cells. These receptors are believed to have the same general molecular organization: an N-terminal $InsP₃$ -binding domain molecular organization: an interminal T_{3} -olliding domain
and a C-terminal Ca²⁺ channel domain linked by an intermediate domain containing sites for regulatory agents [2]. Most cells contain at least two subtypes of $\text{Ins}P_{\text{B}}R$ but the relative amounts of the subtypes differ [3–5]. These different subunits of $InsP₃R$ are known to assemble to form heterotetramers [6,7]. In the cerebellum, however, owing to the very high expression of the type 1 isoform (Ins $P_{\text{B}}R1$) in Purkinje cells, most Ins $P_{\text{B}}Rs$ are homotetramers.

Cytosolic Ca^{2+} signals generated by sustained cell activation frequently display a complex pattern involving repetitive spikes. For Ins*P*₃-dependent Ca²⁺ signals, regulation at the level of $\text{Ins}P_{3}R$ is thought to have a major role. Current evidence \sum_{s} is thought to have a major fole. Current evidence
supports a mechanism in which the spikes in cytosolic Ca^{2+} concentration reflect a positive feedback effect on $\text{Ins}P_{\text{B}}\text{R}$ quickly followed by its inactivation [8]. In cerebellum, as in most cells followed by its macuvation [6]. In cerebrium, as in most centual tissues studied so far, $\text{Ins}P_3$ and Ca^{2+} seem to be the most important determinants of channel activity. Increasing the cytosolic Ca^{2+} concentration results in a bell-shaped dose–response $\frac{1}{2}$ curve for Ins P_{s} -induced Ca²⁺ release (IICR) or channel activity Figure for $insr_{3}$ -induced Cathleness (HCK) of channel activity
[9]. The activating and inhibiting effects of Ca^{2+} are rapid processes, developing within 1 s [10,11]. In several tissues, inprocesses, developing within 1 s [10,11]. In several ussues, in-
cluding the cerebellum, $\text{Ins}P_{3}$, in addition to opening the Ca^{2+} channel, triggers a slower effect leading to the conversion of its

 Ca^{2+} converting Ins P_3 receptor into two different states with different affinities for these ligands. Mn^{2+} and Sr^{2+} also inhibited different animities for these figands. Min⁻¹ and S1^{-1} and $1/200$ as $[{}^{3}\text{H}]$ Ins P_3 binding but were respectively only $1/10$ and $1/200$ as effective as Ca^{2+} . No inhibition was observed with Ba^{2+} . This selectivity is the same as that previously reported for the inhibitory Ca²⁺ site of Ins P_s -induced Ca²⁺ flux, suggesting that the same site is used by Ca^{2+} to convert cerebellar $InsP_3$ receptor to a low-affinity state and to inhibit its channel activity. Our results also suggest a mechanism by which $\text{Ins}P_3$ counteracts this $Ca²⁺$ -dependent inhibition.

Key words: Ca²⁺-release channel, cellular signalling, Ins(1,4,5) P_3 binding, microsomes.

receptor into a less active state with a higher affinity for $InsP₃$ [12–16]. High concentrations of $\text{Ins}P_{3}$ have also been found to $[12-10]$. Figh concentrations of $\text{ins}P_3$ have also been found to counteract the inhibition of cerebellar $\text{Ins}P_3\text{R}$ activity by Ca^{2+} , so that inhibition is shifted to higher Ca^{2+} concentrations [17–19]. All these processes are potentially important but their precise involvement in the general regulation of $\text{Ins}P_{\text{B}}R$ activity remains unclear. The precise characterization of all the effects of $InsP₃$ and $Ca²⁺$ is essential in addressing this question.

The mechanisms underlying the Ca^{2+} -dependence of $InsP_{3}R$ channel function are poorly known. The selectivities of stimulation and inhibition of IICR for bivalent cations differ [20–22], suggesting that different sites are involved. $Ca²⁺$ -binding regions have been identified in type 1 $[23-25]$ and type 2 $\text{Ins}P_{\text{B}}\text{Rs }[23]$ but their function is unknown. The molecular basis of the Ca^{2+} -
their function is unknown. The molecular basis of the Ca^{2+} dependence might differ for each receptor. Ca^{2+} inhibits $InsP_3$ binding to $\text{Ins}P_3 \text{R1}$ [26–29] but it stimulates $\text{Ins}P_3$ binding to Ins $P_{3}R2$ [29,30] and Ins $P_{3}R3$ [27,28]. The inhibitory effect of $\text{Ins}P_{\text{B}}\text{R1}$ has been reported to be mediated by calmedin, a $\frac{m}{s}$ and $\frac{m}{s}$ are the extending protein first detected in cerebellum, which is readily separated from $\text{Ins}P_{\text{s}}R$ [31]. However, we have which is readily separated from $\text{ins}_3 \mathbb{R}$ [51]. However, we have recently obtained evidence for a direct effect of Ca^{2+} on $\text{Ins}P_{3}R1$ or on a tightly associated protein in the sheep cerebellum [32].

Given the major physiological importance of the control of Fiven the major physiological importance of the control of $\text{Ins}P_{\text{a}}\text{R}$ by Ca^{2+} , we studied in detail the Ca^{2+} -dependent inhibition of $\text{Ins}P_3$ binding to sheep cerebellar membranes. To characterize the cation-binding site involved, we examined its selectivity by also investigating the influence of Mn^{2+} , Sr^{2+} and Ba²⁺ on $\text{Ins}P_3$ binding. Several experimental problems can be Ba^{2+} on $\text{Ins}P_3$ binding. Several experimental problems can be encountered in studies of the inhibitory effect of Ca^{2+} on $InsP_3$ binding to membranes, including Ca^{2+} -stimulated Ins P_3 formation [23], alteration of the affinity of $\text{Ins}P_{3}R$ for $\text{Ins}P_{3}$ during prolonged exposure of membranes to this ligand [14] and the protonged exposure of memoralies to this figal $[14]$ and the ability of Ca^{2+} chelators to compete with $InsP_3$ [32]. We avoided

Abbreviations used: IICR, Ins(1,4,5) P_3 -induced Ca²⁺ release; Ins P_3 , Ins(1,4,5) P_3 ; InsP₃R, Ins(1,4,5) P_3 receptor; NTA, nitrilotriacetic acid.
¹ To whom correspondence should be addressed (e-mail jean-fran

these difficulties by measuring $\text{Ins}P_3$ binding on a time scale of seconds with the use of a perfusion protocol in the presence of low concentrations of Ca^{2+} chelators. Each ligand decreased the affinity of the other for its binding site, in an apparently competitive manner. This mechanism and the selectivity of the $Ca²⁺$ -binding site suggest that this site is identical with that through which Ca^{2+} inhibits the channel activity of the cerebellar $\text{Ins}P_{\text{B}}R$ [22]. Taken together, these results provide an explanation f_{B} **K** [22]. Taken together, these results provide an explanation for the ability of Ins P_3 to counteract this effect of Ca^{2+} [17–19].

EXPERIMENTAL

Preparation of the microsomal fraction

The membrane fraction was prepared from sheep cerebellum (Institut National de la Recherche Agronomique, Jouy en Josas or Nouzilly, France) as described previously [14]. In brief, cerebellum was homogenized in 90 ml of an ice-cold medium containing 5 mM Hepes, pH 7.4, 250 mM sucrose, 10 mM KCl, 1 mM 2-mercaptoethanol, 10 μ g/ml leupeptin and 0.2 mM PMSF. Nuclear and mitochondrial fractions were sedimented by successive centrifugations at 1000 and 9000 *g*. The supernatant obtained was centrifuged at 100 000 *g* for 75 min. The pellet was resuspended in the initial medium at $20-30$ mg/ml protein, homogenized, frozen in liquid nitrogen and stored at -80 °C.

Equilibrium Ins(1,4,5)P3-binding studies

Microsomal membranes were thawed and diluted in an ice-cold cytosol-like medium (buffer A) containing 110 mM KCl, 20 mM NaCl, $1 \text{ mM } \text{NaH}_2\text{PO}_4$, $25 \text{ mM } \text{Hepes/KOH}$, pH 7.1, and NaCl, 1 mM $\text{Nar}_{2}PQ_{4}$, 25 mM repes/NOrt, pri 7.1, and
10 μ g/ml leupeptin. In some experiments the free Ca²⁺ concentration of this medium was decreased to a nanomolar level; in others it was increased to $10 \mu M$, as indicated in the text. If others it was increased to 10 μ M, as indicated in the text.
^{[3}H]Ins*P*₃ binding was measured at 20 °C by using a perfusion protocol similar to that described before [14,33]. A 120 μ l aliquot of membrane preparation was diluted 1:10 in buffer A at 20 $^{\circ}$ C; 1 ml of the resulting suspension, containing $200-500 \mu$ g of protein, was layered on a glass-fibre filter (GF/C) . The adsorbed membranes were then manually perfused for 3 s at 20 °C with 1.2 ml of binding medium, consisting of buffer A supplemented with of the original measure, consisting or other A supplemented with 0.5 nM [³H]Ins P_{a} , various concentrations of unlabelled Ins P_{a} and 10 μ g/ml leupeptin. Taking into account the rate of perfusion (0.4 ml/s) and the wet volume of the filter $(40 \mu l)$, the complete replacement of the solution of membrane suspension by binding medium in the filter should have taken place within 100 ms. The free Ca^{2+} concentration was adjusted as described below. Nonspecific binding was determined in the presence of $5 \mu M$ unlabelled $InsP_3$. Unless indicated otherwise, most of the free bened ins_3 . Oness indicated otherwise, most of the fiee
[³H]Ins P_3 in the filter was removed immediately by a short, fast (less than 1 s) rinse at 4° C with 1 ml of a medium composed of 50 mM Tris}HCl, pH 8.3, 250 mM sucrose and 0.2 mM EDTA. The filter was then transferred to a counting vial and radioactivity was determined in a scintillation counter. The accurate measurewas determined in a scintifiation counter. The accurate measurement of $[3H]\text{Ins}P_3$ binding under our experimental conditions (pH 7.1; 20 $^{\circ}$ C; presence of an inhibitory cation) required a large quantity of membranes to be layered on the GF/C filter (more than 0.2 mg of protein). We therefore checked the dependence of $[3H]InsP_3$ binding on the quantity of membranes. At both pCa 9 ¹ Films *P*₃ binding on the quantity of membranes. At both pCa *9* and pCa ⁵, ¹³ HJIns *P*₃ binding was linear with respect to the amount of membrane, at least up to 0.85 mg of protein per filter. Total binding and non-specific binding were determined at least in triplicate; the results are expressed as means \pm S.E.M. Inplot software (GraphPad) was used to fit curves to data points by non-linear regression analysis.

Bivalent cation solutions

In most experiments, the free Ca^{2+} concentration in the perfusion medium was buffered, with EGTA and EDTA as chelators. At pH 7.1, the dissociation constants for the EGTA-Ca and EDTA-Ca complexes were taken to be 250 and 30 nM respectively. Let complexes were taken to be 250 and 30 limit respectively.
Possible inhibitory effects of chelators on $[^{3}H]$ Ins P_{3} binding [32] were avoided by limiting their final concentration to 0.3 mM. Media with appropriate free Ca^{2+} concentrations were prepared by mixing, in buffer A, suitable volumes of stock solutions of chelators with or without equimolar Ca^{2+} , buffered at pH 7.1. pCa values were checked by titration with quin-2.

In the experiments in which we compared the effect of several In the experiments in which we compared the enect of several
bivalent cations including Mn^{2+} on $[^{3}H]\text{In}sP_{3}$ binding, buffer A was depleted of its contaminating Ca^{2+} . This was necessary because the usual chelators exhibit a much higher affinity for Mn^{2+} than for Ca²⁺ and the concentration of residual Ca²⁺ in buffer A (3 μ M, as measured with quin-2) is sufficient to cause buner A (5 μ M, as measured with quin-2) is sufficient to cause
maximal inhibition of [³H]Ins P_3 binding. Contaminating Ca^{2+} was removed by passing buffer A through two columns, the first being Chelex 100 and the second Calcium Sponge S. The free Mn^{2+} concentration in Ca²⁺-free buffer A was adjusted with 0.3 mM nitrilotriacetic acid (NTA); free Sr^{2+} and Ca^{2+} concentrations were adjusted with 0.3 mM EGTA. The dissociation constants for the NTA-Mn²⁺ and EGTA-Sr²⁺ complexes in buffer A at pH 7.1 were taken to be 19 and 70 μ M respectively, on the basis of the constants in [34]. Ba²⁺ solutions were prepared in $Ca²⁺$ -free buffer A without chelators. All four bivalent cations were added as chloride salts.

Western blotting analysis

The microsomal fraction was analysed by conventional Western blot analysis by using antibodies specific for the three different subtypes of $InsP₃R$, as described previously [35]. SDS/PAGE was performed on $4-10\%$ (w/v) polyacrylamide gradient gels; the separated proteins were electrotransferred to a Hybond C-Super nitrocellulose membrane (Amersham), as described in [36]. The blots were saturated with 5% (w/v) non-fat dried milk and 0.1% (v/v) Tween 20 in PBS for 1 h at 37 °C. The blots were then incubated overnight at 4 C with the appropriate antibodies diluted in PBS containing 2.5% (w/v) non-fat dried milk and 0.1% Tween 20 (v/v). After five washes the nitrocellulose membranes were incubated for 30 min at room temperature with peroxidase-conjugated goat anti-rabbit or goat anti-mouse IgG antibodies (1: 2000) (Diagnostic Pasteur, Marnes-la-Coquette, France). Blots were then washed 5 times and developed with the enhanced chemiluminescence (ECL) detection system, with Hyperfilm (Amersham).

Materials

 $[$ ³H]Ins P_{3} (21 Ci/mmol) was obtained from Du Pont–New England Nuclear, $InsP_3$ from Calbiochem and other reagents were from Sigma. Chelex 100 was from Bio-Rad; Calcium Sponge S was from Molecular Probes.

The antibodies against the 14 C-terminal residues of $\text{Ins}P_{\text{s}}\text{R1}$ have been described elsewhere [35,37]. A synthetic peptide (FLGSNTPHENHHMPPH) corresponding to the 16 C-terminal residues (2686–2701) of $InsP₃R2$ was prepared by Covalab (Oullins, France). The N-terminal amino acid was cross-linked to keyhole-limpet haemocyanin by glutaraldehyde; polyclonal antibodies against the peptide were produced in rabbit and have been described elsewhere [29]. Monoclonal antibodies against $\text{Ins}P_{\text{s}}R3$ were purchased from Transduction Laboratories.

RESULTS

Preliminary measurements of Ca2+*-dependent inhibition of InsP³ binding*

In the present study we characterized Ca^{2+} -dependent inhibition of $InsP_3$ binding to cerebellar membranes in a cytosol-like

Figure 1 Presence of a micromolar concentration of free Ca2+ *in the diluted cerebellar membrane suspension does not affect the subsequent measurement of Ca2*+*-dependent inhibition of [3 H]InsP³ binding*

Sheep cerebellar membranes were thawed in ice-cold buffer A without Ca^{2+} chelator (\bigcirc) (final free Ca²⁺ concentration 8 μ M) or containing EDTA and EGTA at 0.3 mM (\bigcirc) (nanomolar free Ca^{2+} concentration). A 120 μ l aliquot of membrane suspension was diluted 1:10 in the same medium at 20 $^{\circ}$ C with or without Ca²⁺; 1 ml of the dilution was immediately layered on a GF/C filter. Equilibrium $[^3$ H]Ins P_3 binding was measured by perfusing adsorbed membranes for 3 s with 1.2 ml of binding mixture. Binding mixture consisted of buffer A at 20 °C, supplemented with 60 nM [³H]Ins P_3 and adjusted for free Ca²⁺ concentration as indicated. Other experimental details are given in the Experimental section. Non-linear regression analyses gave IC_{50} values of 270 and 247 nM and maximal inhibitions of 48 % and 49 %, for microsomal suspensions diluted in buffer A at high and low free Ca^{2+} concentrations respectively.

Table 1 Summary of InsP3-binding parameters at pCa 9 and 5.3

Free Ca^{2+} concentration (pCa)	Site	K_{d} (nM)	Binding sites (B_{max}) (pmol/mg of protein)
9 5.3	Low-affinity High-affinity	$146 + 24$ $321 + 56$ $25 + 6$	$29 + 1$ $26.3 + 2.7$ $1.1 + 0.1$

medium (buffer A) under experimental conditions designed to avoid previously identified difficulties (see the Introduction section). The membranes were adsorbed on a filter and perfused section). The membranes were adsorbed on a litter and perfused
for a few seconds only with a [³H]Ins*P*₃-containing binding medium. With buffer A as the binding medium at pH 7.1 and 20 °C, this is sufficient to reach equilibrium. However, the 20° C, this is sufficient to reach equilibrium. However, the maximal level of inhibition with 0.5 nM [H]Ins P_3 (approx. 35%) was lower than reported in previous studies (65%) [33]. This led us to investigate the influence of our experimental conditions on Ca^{2+} inhibition. We therefore found that the relatively low level of inhibition was due, at least in part, to the relatively low level of infinition was due, at least in part, to the neutral pH at which $[^{3}H]$ Ins P_{3} binding was measured, instead of alkaline pH as in previous studies. In the course of these investigations we also observed that inhibition was increased up to approx. 50% if binding was measured with 30–100 nM, rather to approx. 50 % if omding was measured with 50–100 nm, rather
than 0.5 nM, $[^{3}H]$ Ins P_3 . This effect of the Ins P_3 concentration than 0.5 nm, [π]Ins P_3 . This elect of the Ins P_3 concentration
will be considered further below; 30–60 nM [π ³H]Ins P_3 was therefore used routinely to study Ca^{2+} inhibition.

Because membranes were prepared and diluted in a buffer with a free Ca^{2+} concentration in the micromolar range, we also considered the possibility that this might affect subsequent considered the possibility that this might affect subsequent $[{}^3H]InsP_3$ binding and/or sensitivity to Ca^{2+} . We had shown previously that prolonged incubation of sheep cerebellar microsomes with $\text{Ins}P_3$ resulted in an increase in the $\text{Ins}P_3$ **R** affinity somes with ins_3 resulted in an increase in the ins_3 **R** animity [14]. The same levels of $[^{3}H]InsP_3$ binding were measured regardless of whether membranes were pre-exposed to nanomolar

Figure 2 Effect of Ca2⁺ *on InsP³ binding characteristics*

[³H]Ins*P*₃ displacement by increasing concentrations of unlabelled Ins*P*₃ was measured at _IDCa 9 (○) or pCa 5.3 (●). Microsomes adsorbed on a GF/C filter were perfused with binding mixtures consisting of buffer A, with the free Ca²⁺ concentration adjusted and containing 0.5 nM [³H]Ins P_3 and various concentrations of unlabelled Ins P_3 . Other experimental conditions were as indicated in the legend to Figure 1 and in the Experimental section. (**A**) Specific [³H]Ins P_3 binding as a function of total Ins P_3 concentration. Non-linear regression analysis suggested only one type of binding site for the data at pCa 9 ($K_{\rm d}$ 106 nM) but two different sites for the data at pCa 5.3 [$K_{\rm d}=11$ and 207 nM; variance ratio (F) = 10.8, P < 0.008]. The same total numbers of Ins $P_{\rm s}$ binding sites were measured at low and high Ca²⁺ concentration ($B_{max} = 27$ and 25 pmol/mg of protein respectively). The low-affinity site accounted for 95% of the total binding sites. (**B**) Scatchard plot of the same data as shown in (A). (C) Inhibition measured at pCa 5.3 in the same experiment, expressed as a function of total Ins P_3 concentration. The results are the means of triplicates from one of three experiments.

Figure 3 Immunodetection of InsP3R subtypes in sheep cerebellar microsomes

Sheep cerebellar membranes (10 μ g of protein on lane 1; 50 μ g of protein on lanes 2 and 3) were loaded on a 4–10 % (w/v) polyacrylamide gradient gel, subjected to electrophoresis and blotted to nitrocellulose. The blots were developed with antibodies against Ins P_3R1 (lane 1), Ins P_3R2 (lane 2) or Ins P_3R3 (lane 3) and with peroxidase-conjugated anti-rabbit or anti-mouse antibodies (1 : 2000). The position of a 200 kDa size marker is indicated at the left.

Figure 4 Comparison of the dose–response curves for Ca2+ *inhibition at low and high InsP³ concentrations*

Cerebellar membranes adsorbed on a GF/C filter were perfused with binding mixtures containing either 30 nM (\bigcirc) or 400 nM (\blacksquare) [³H]Ins P_3 , and various free Ca²⁺ concentrations. Results are expressed as percentages of maximal $[^3H]$ Ins P_3 binding. The data were fitted with a Hill slope of 1 and an IC₅₀ of 165 nM for 30 nM [³H]Ins P_3 , and with a Hill slope of 4 and an IC₅₀ of 533 nM for 400 nM [3 H]Ins P_3 . Other experimental conditions were as described in the legend to Figure 1 and in the Experimental section. Results are means for two experiments.

or to micromolar concentrations of free Ca^{2+} (Figure 1). Data in Figure 1 provided important additional information: both the Figure 1 provided important additional information: both the onset and the reversal of inhibition of $[^{8}H]$ Ins P_3 binding by Ca^{2+} took place within 3 s i.e. the duration of perfusion with the binding medium. Unless indicated otherwise, membranes were therefore routinely diluted in standard buffer A, containing contaminating Ca^{2+} .

Determination of InsP3-binding parameters affected by Ca2+

We performed competitive binding experiments at pCa 9 or 5.3 we performed competitive binding experiments at pca 9 or 5.5 with 0.5 nM $[^3H]$ Ins P_3 and various concentrations of unlabelled ligand. As in previous studies [14,33], non-linear regression analysis of the data obtained at pCa 9 suggested that there was one type of binding site (Hill slope 1.05 ± 0.06 ; *n* = 3). Assuming a Hill slope of 1, a one-site model provided a K_d of 146 ± 24 nM. In contrast, a non-linear regression analysis of measurements performed at pCa 5.3 suggested heterogeneity in $\text{Ins}P_{3}$ -binding sites: the fit calculated with a two-site model was significantly better than that with a single-site model. In three experiments, mean K_a values of $25+6$ and $321+56$ nM were determined for these sites. However, almost all $(96 \pm 1\%)$ of the maximal binding capacity was due to the low-affinity site. The same total number capacity was due to the low-allimity site. The same total number
of $InsP_{3}$ -binding sites was measured in low and high Ca^{2+} medium $(B_{\text{max}} 29 \pm 1 \text{ and } 27 \pm 3 \text{ pmol/mg}$ of protein respectively). Figure 2(A) presents the results of one of these experiments. The corresponding Scatchard plots (Figure 2B) illustrate the conclusions derived from the analyses of untransformed results in Figure 2(A). Consistent with these conclusions derived from equilibrium binding experiments was an examination of kinetics studies performed by Hannaert-Merah et al. (Figure 6C in [33]) on sheep cerebellar microsomes, which also suggested the presence of a high-affinity site at high $Ca²⁺$ concentration but not at low Ca^{2+} concentration. Table 1 summarizes the characteristics of Ins P_3 binding determined at pCa 9 and 5.3.

Figure 2(C), constructed from the same data as Figure 2(A), shows changes in $Ca²⁺$ -induced inhibition as a function of total Ins P_3 concentration. Increasing the $[^{3}H] \text{Ins } P_3$ concentration to above 0.5 nM increased the inhibition to a maximum at 30– above 0.5 nm increased the infinition to a maximum at $30-100$ nM $[^3H]$ Ins P_3 . Further increasing the $[^3H]$ Ins P_3 concen-Too him ['H]Ins P_3 . Further increasing the ['H]Ins P_3 concentration resulted in a gradual decrease in Ca²⁺ inhibition. This unusual relationship between the extent of inhibition and ligand

The characteristics of inhibition by Ca²⁺ were determined at several [³H]Ins P_3 concentrations from 0.5 to 400 nM. Experimental conditions were as described in the legends to Figures 1 and 4. Results are means for at least three experiments. Changes in IC₅₀ (A) and maximal inhibition (B) with Ins P_3 concentration are shown.

concentration was certainly due to the presence of the minor high-affinity site detected in the presence of Ca^{2+} in addition to the low-affinity site. Although the minor site accounted for only 4% of total binding sites, non-linear regression analysis indicated 4% of total binding sites, non-linear regression analysis indicated
that at the lowest $[^{3}H]\text{Ins}P_{3}$ concentration (0.5 nM) it accounted for as much as 40% of specific binding (Figures 2A and 2B). Increasing the $[{}^{8}H]$ Ins P_3 concentration above this low level enhanced the relative contribution of the low-affinity site to $\text{Ins}P_{3}$ binding, resulting in an apparently stronger inhibition.

The detection of a minor binding site for $\text{Ins}P_{3}$ at pCa 5.3 but not at pCa 9 suggests that two sites exist that do not have the same sensitivity to Ca^{2+} . Indeed, in the cerebellum of several species, $\text{Ins}P_{3}R2$ and $\text{Ins}P_{3}R3$ have both been detected at low concentrations compared with $\text{InsP}_3\text{R1}$ [4,5]. Unlike type 1 receptors, type 2 [29,30] and type 3 receptors [27] have been reported to exhibit a higher affinity for $\text{Ins}P_3$ in the presence of $Ca²⁺$. A Western blot analysis demonstrated the presence of the type 2 and 3 isoforms in microsomal fraction from sheep cerebellum (Figure 3), although at a much lower concentration than type 1 receptors.

Effect of InsP³ on characteristics of Ca2+*-dependent inhibition*

We then investigated the influence of $InsP_3$ concentration on the we then investigated the inhibition of \int_0^8 binding. The parameters of Ca^2 ⁺-induced inhibition of \int_0^8 H]Ins P_3 binding. The dependence on Ca^{2+} concentration was assessed at several $InsP_3$ concentrations. Figure 4 presents inhibition curves obtained with 30 or 400 nM total Ins P_{s} . To illustrate differences between these curves better, results were expressed as a percentage of maximal curves better, results were expressed as a percentage or maximal $[{}^{\text{8}}H] \text{Ins}P_3$ binding. A comparison of the two curves shows that the decrease in Ca^{2+} inhibition described above at 400 nM $[{}^3H]InsP_3$ (Figure 2) was again observed in this experiment (from 45% inhibition to 17%). In addition, increasing $[^{3}H]\text{Ins}P_{3}$ from 45% inhibition to 17%). In addition, increasing $[^{3}H]\text{Ins}P_{3}$ from 43 $\frac{9}{20}$ minorition to 1/ $\frac{9}{20}$. In addition, increasing [$\frac{1}{1}$ **H**] $\frac{1}{3}$ and increased the IC₅₀ for Ca²⁺ (from 165 to 533 nM). Figure 4 also illustrates a phenomenon observed repeatedly: Figure 4 also inustrates a phenomenon observed repeatedly.
inhibition by Ca^{2+} became steeper if the [³H]Ins P_3 concentration minotion by Ca²³ became steeper if the Γ **n** Γ ₃⁵ concentration was increased. Results obtained with 400 nM $\left[$ ³H]Ins P_3 were fitted by using a value of 4 for the Hill slope, whereas a Hill slope ntied by using a value of 4 for the Fili slope, whereas a Fili slope
of 1 was suitable for results obtained with 30 nM [${}^3\text{H}$]Ins P_s . Qualitatively identical results were obtained when the experiment in Figure 4 was performed at 4 °C instead of 20 °C.

To determine the relationship between the concentration of Ins P_3 and the characteristics of Ca^{2+} inhibition, this experiment $m_{\rm s}$ and the characteristics of Ca⁻¹ immotion, this experiment was repeated with several [3H]Ins P_3 concentrations from 0.5 to was repeated with several $[\text{H]}\text{ins}_3$ concentrations from 0.5 to 400 nM. As shown in Figure 5(A), the IC₅₀ for Ca²⁺ increased 400 fm. As shown in Figure 5(A), the IC_{50} for Ca⁻¹ increased above
progressively as total [${}^{3}H$]Ins P_{3} concentrations increased above 30 nM. Fitting the data with a rectangular hyperbola, a maximum IC_{50} of 572 nM was obtained. However, IC_{50} values could not be $r_{\rm b}$ ₅₀ of 3/2 lim was obtained. However, $r_{\rm b}$ ₅₀ values could not be reliably determined at $[^3H]\text{Ins}P_3$ concentrations above 400 nM, so it is not clear whether IC_{50} really tends towards an asymptote so it is not clear whether $1C_{50}$ rearly tends towards an asymptote as $\text{Ins}P_3$ increases. The dependence of maximal Ca^{2+} inhibition on $\text{Ins}P_3$ concentration determined in the same and other experiments is shown in Figure 5(B). The curve reached a plateau experiments is shown in Figure 5(**B**). The curve reached a plateau
at 30–100 nM $[^3H]$ Ins P_3 , before declining progressively with increasing $\text{Ins}P_3$ concentration. The Hill slope determined in the same experiments as in Figure 5(A) increased with increasing $[{}^{\text{a}}H]$ Ins P_{3} concentration. However, values of the Hill slope H Ins P_3 concentration. However, values of the Hill slope
determined at high H ³H]Ins P_3 concentration were very variable. Mean values of 1.45 ± 0.17 and 4.26 ± 0.97 were obtained at 30 wean values of 1.43 ± 0.17 and 4.2
and 400 nM $[3H]$ Ins P_3 respectively.

Selectivity of the Ca2+*-binding site for inhibition of InsP³ binding*

 Ca^{2+} -induced activation and inhibition of Ins $P_{3}R$ activity are thought to occur through two distinct sites with close affinities

Figure 6 Lack of inhibition of [3 H]InsP³ binding by buffer A purified by removal of bivalent cations

Cerebellar membranes adsorbed on a GF/C filter were perfused with a binding mixture containing 30 nM $[^3$ H]Ins P_3 and 10 μ g/ml leupeptin. Binding mixtures were prepared either with non-purified buffer A (non-purified medium) or with buffer A passed successively through columns of Chelex 100 and Calcium Sponge S (purified medium). Binding mixtures contained EGTA, NTA and free Ca^{2+} as indicated. Other experimental conditions were as described in the legend to Figure 1 and in the Experimental section. (A) Effect of 0.3 mM EGTA or 10 μ M free $Ca²⁺$ in binding mixtures prepared with non-purified medium. Results are expressed as percentages of $[^3\mathrm{H}]\text{lns}P_3$ binding measured with non-purified medium alone, and are means for six experiments. (*B*) The addition of 0.3 mM EGTA to binding mixtures prepared with purified medium did not modify $[^3H]$ Ins P_3 binding. A free Ca²⁺ concentration of 10 μ M was obtained by adding a small volume of a stock solution of K₂CaEGTA (final concentration of EGTA, 0.3 mM). Results are expressed as percentages of $[^3\text{H}]$ Ins P_3 binding measured with purified medium alone, and are means for at least six experiments.

for Ca^{2+} . However, these sites exhibit different affinities for Mn^{2+} and $Sr^{2+}[20-22]$. In the present study we determined the selectivity of the Ca²⁺-binding site responsible for the inhibition of $[^3H]$ Ins*P*₃ binding to cerebellar membranes by comparing the effects of these cations on this binding. For reasons described above (see the Experimental section), the binding medium used in these experiments was prepared with buffer A containing a very low residual Ca²⁺ concentration. The efficiency of Ca²⁺ removal was assessed by checking for the possible inhibition of 30 nM assessed by checking for the possible infinition of 50 nm
^{[3}H]Ins P_3 binding by treated buffer A, as revealed by the addition of 0.3 mM EGTA. This EGTA concentration was sufficient to abolish entirely the inhibition caused by contaminating Ca^{2+} in non-treated buffer A, as shown by the doubling of binding that from-treated burier A, as shown by the doubling of binding that it caused with 30 nM [3 H]Ins P_3 (Figure 6A). Adjustment of the free Ca²⁺ concentration to $10 \mu M$ brought $[{}^3H]InsP_3$ binding back to the level measured in the absence of EGTA.

As illustrated in Figure 6(B), the addition of 0.3 mM EGTA to

Figure 7 Comparison of dose-dependent effects of Ca2+*, Mn2*+ *and Sr2*+ *on [3 H]InsP³ binding*

All binding mixtures were prepared with purified buffer A and contained 30 nM $[^3H]$ Ins P_3 and 10 μ g/ml leupeptin. Concentrations of free bivalent cations were adjusted with 0.3 mM EGTA for Ca^{2+} (\bigcirc) and Sr^{2+} (\bigtriangleup) and with 0.3 mM NTA for Mn²⁺ (\bigcirc). Cerebellar membranes adsorbed on a GF/C filter were perfused for approx. 3 s with 1.2 ml of binding mixtures at 20 °C. In this experiment the filter was counted without washing of the free ligand. Non-specific binding was determined with 5 μ M unlabelled Ins P_3 . Results are means of specific binding for three experiments.

the binding mixture prepared with purified buffer A did not affect the binding of 30 nM $[^3$ H]Ins P_3 . The dose–response curves for Ca²⁺ inhibition at the same $[^{3}H]\text{Ins}P_{3}$ level indicated that the $Ca²⁺$ concentration in purified buffer A was less than 30 nM, which was the minimum Ca^{2+} concentration causing inhibition in all experiments. Increasing the free Ca²⁺ concentration to 10 μ M restored inhibition to approx. 50%. NTA (0.3 mM) alone had restored immotion to approx.
no effect on $[{}^3H]InsP_3$ binding.

We compared the effect on $[{}^8H]InsP_3$ binding of various concentrations of different bivalent cations, with the use of solutions prepared in Ca^{2+} -depleted buffer A. Free Ca^{2+} and Sr^{2+} concentrations were fixed with 0.3 mM EGTA and free Mn^{2+} concentrations with 0.3 mM NTA. This chelator was chosen for Mn^{2+} because EGTA has too high an affinity for this cation (K_a 12 nM). Mn²⁺ and Sr²⁺ also inhibited Ins P_a binding, cation $(A_a 12$ film). Min²³ and St²³ also infinited films P_3 omding, as determined in the presence of 30 nM $[^3H]$ Ins P_3 , but at concentrations that were respectively 10-fold and 100-fold that of Ca²⁺ (Figure 7). A maximal inhibition of approx. 50% was measured with the three cations. A one-site model provided IC_{50} values of 205 ± 30 nM for Ca²⁺, $2.55 \pm 0.60 \,\mu$ M for Mn²⁺ and $44.0 \pm 0.8 \,\mu$ M for Sr²⁺. We also investigated the possible effect of Ba^{2+} on [³H]Ins*P*₃ binding; no inhibition was observed, at least Ba^{2+} on [³H]Ins*P*₃ binding; no inhibition was observed, at least up to $1 \text{ mM } Ba^{2+}$.

DISCUSSION

Worley et al. [26] showed that Ca^{2+} inhibits the binding of $InsP_s$ to its receptor in the cerebellum. More recent studies have demonstrated that this effect of Ca^{2+} is exerted on $InsP_{\alpha}R1$, the major receptor isoform in this tissue [27–29]. In the present study we addressed the questions of the mechanism and function of this inhibition by examining in detail the inhibition by Ca^{2+} of $\text{Ins}P_{3}$ binding to sheep cerebellar membranes. The perfusion $\sum_{i=1}^{\infty}$ binding to sheep cerebenar membranes. The perfusion protocol used to measure $[^3H]\text{Ins}P_3$ binding prevented difficulties protocol used to measure $\lfloor \text{H} \rfloor$ films P_3 formation [23] from occurring in such as Ca^2 ⁺-stimulated Ins P_3 formation [23] from occurring in this type of study. Constant perfusion with medium containing

Scheme 1 Allosteric mechanism for Ca2+*-dependent inhibition of InsP³ binding to cerebellar InsP₂R1</sub>*

The tetrameric Ins P_3R exists in two conformations, R and T, which are in equilibrium. Ca^{2+} binds exclusively to the receptor in the T state, whereas InsP_3 binds to both receptor states but its affinity for R is twice that for T. Binding of Ca^{2+} to T causes the equilibrium between the two receptor conformations to shift in favour of T. Conversely, $\ln SP_3$ favours the conformational transition to the higher-affinity state, R. These opposite effects of $\overline{\text{ins}}P_3$ and Ca²⁺ on the affinity of Ins P_3R are similar to those commonly described in competitive inhibition. Because T also binds $\text{Ins}P_3$, even high concentrations of Ca^{2+} do not abolish Ins P_3 binding; therefore only partial inhibition can be obtained. In the presence of saturating Ca^{2+} concentrations, $InsP₃R$ is frozen in the T state, so the affinity for $InsP₃$ determined in this condition is that of this conformation (pCa 5.3; Figure 4). In the absence of Ca^{2+} , the affinity measured for $\text{Ins}P_3$ is close to that of the R state (pCa 9; Figure 4).

 $[{}^3H]$ Ins P_3 also prevented biases caused by $InsP_3$ metabolism and therefore made it possible to perform binding experiments at 20 °C in a cytosol-like medium at pH 7.1, conditions commonly 20 C in a cytosol-like meanum at β H]Ins P_3 binding could be used to study IICR. In addition, $[^3$ H]Ins P_3 binding could be measured after some seconds of contact with Ca^{2+} , so that only the short-term changes in $\text{Ins}P_3$ binding such as those associated the short-term changes in $msr₃$ omding such as those associated
with $Ca²⁺$ effects on $InsP₃R$ activity [10] were detected; changes developing more slowly were excluded.

With the use of the perfusion protocol, we observed partial with the use of the perfusion protocol, we observed partial
inhibition by Ca^{2+} of $InsP_3$ binding to cerebellar microsomes, which could be explained by a decrease in the affinity of the $\text{Ins}P_{3}R$ for $\text{Ins}P_{3}$. This agrees with most previous studies in the cerebellum ([17,21,29,33], but see [28]) and in other cells or tissues containing a high proportion of the $InsP_{3}R1$ isoform [27,38,39]. However, a high-affinity site was also detected in the presence of Ca²⁺, which accounted for a small fraction (4%) of the total number of binding sites. Although we cannot exclude the possibility that this site resulted from the conversion of a small fraction of $\text{Ins}P_{\text{s}}R1$ to a high-affinity state, it more probably involves type 2 and/or type 3 $\text{Ins}P_{\text{s}}\text{R}$, which were detected at low levels in sheep cerebellum (Figure 3) and in the cerebellum of other species [4,5]. The higher affinity of these two $InsP₃R$ isoforms for Ins P_3 in the presence of Ca²⁺ [27,29] might have made their detection easier in these experiments. However, the high-affinity site in cerebellar microsomes had only a minor effect on the maximal inhibition. This maximum (approx. 50%) was consistent with the 50% decrease in affinity for $InsP_{3}$, measured at pCa 5.3.

Conversely, we also showed that $\text{Ins}P_3$ binding overcame Ca²⁺ inhibition by increasing the IC&! for Ca#⁺ and decreasing maximal inhibition. As with \bar{Ca}^{2+} inhibition, its reversal was a rapid process, reaching equilibrium within seconds. This ability of each ligand to quickly decrease the affinity of the other for its binding site is similar to a competitive mechanism between $\text{Ins } P_s$ binding and the binding of inhibitory Ca^{2+} . It could be suggested that Ca²⁺ acts as a simple competitive inhibitor for approx. 50% of $InsP₃$ -binding sites. However, with such a mechanism the or $insr_3$ -binding sites. However, with such a mechanism the same maximal inhibition by Ca^{2+} should be measured whatever the concentration of $[^{3}H]$ Ins P_{3} . In contrast, increasing the conthe concentration of $[^{1}H]$ Ins P_{3} from 30 to 400 nM gradually decreased tentration of Γ **H** Γ Ins P_3 from 50 to 400 find gradually decreased the level of maximal inhibition. Moreover, the $[^{3}$ H $]\text{Ins }P_3$ dis-

Our results are consistent with an apparent partial competitive Four results are consistent with an apparent partial competitive
mechanism in which $\text{Ins}P_{3}$ and cytosolic Ca^{2+} interact with distinct sites, thereby transforming the tetrameric $\text{Ins}P_{\text{s}}\text{R}$ into one or the other of two different affinity states in equilibrium. Such a mechanism, based on the Monod–Wyman–Changeux model for allosteric proteins [40], is illustrated in Scheme 1, in which R and T are the $InsP_3R$ states favoured by $InsP_3$ and Ca^{2+} respectively. In this model, partial inhibition occurs because $InsP₃$ can also bind to the T state, although with a lower affinity than that for the R state [40]. It is consistent with the hyperbolic behaviour of the major site at pCa 5.3 (Figure 2B) if Ca^{2+} concentration is high enough to lock the $\text{Ins}P_3$ receptor in the T state for all $\text{Ins}P_3$ concentrations [40]. This mechanism is also compatible with the large Hill slope of the inhibitory curves at high Ins P_3 concentrations (Figure 4). However, distinct and non interacting inhibitory sites might also make a significant contribution to the high degree of sigmoidicity of these curves [40]. In the use of signboarding of these curves $[40]$.
Several Ca²⁺-binding sites have been identified in the Ins $P_{\rm a}R1$ subunit [25].

Several accessory proteins have been proposed to mediate the several accessory proteins have been proposed to inequate the
regulation of $\text{Ins}P_{3}R$ by Ca^{2+} in cerebellum. Ca^{2+} -dependent inhibition of $\text{Ins}P_3$ binding has been reported to be mediated by a membrane protein, calmedin [31]. Regulation of IICR by Ca^{2+} sensitive phosphorylation/dephosphorylation has been shown in cerebellar microsomes [41]. Such regulation was probably not involved in our binding experiments because they were performed without ATP or Mg^{2+} and both the onset and reversal of Ca^{2+} effects were complete in a few seconds. Calmodulin, previously reported to bind to cerebellar $\text{Ins}P_{\text{s}}\text{R1}$ [42,43], does not seem to be involved, because calmodulin antagonists had no effect on $Ca²⁺$ inhibition (results not shown). We have found that the $Ca²⁺$ -dependent inhibition of $InsP₃$ binding to cerebellar micro- Ca^{-1} -dependent infinition of I_3 only the direct interaction of Ca^{2+} with I_3P_3R1 somes imgin result from a direct interaction of Ca⁻¹ with $insr₃$ K₁ (29). Two of the Ca²⁺-binding regions identified in the cytoplasmic part of Ins $P_{\text{B}}R1$ are located in the Ins P_{B} -binding domain [25], making these sites reasonable candidates for the mediation of the competitive inhibitory effects of Ca^{2+} described here. Recently, competitive immotionly effects of Ca⁻¹ described lieft. Recently,
biphasic dependence on Ca^{2+} of Ins P_3R channel activity was found to occur with cerebellar receptor isolated and reconstituted in lipid bilayers, suggesting direct effects of Ca^{2+} on this protein [44]. However, accessory factors might also be involved in the regulation of these Ca^{2+} effects.

We further characterized the process by which Ca^{2+} inhibits $\text{Ins}P_3$ binding to the cerebellar $\text{Ins}P_3\text{R}$, by investigating the selectivity of the inhibitory site. Mn^{2+} and Sr^{2+} partly inhibited Selectivity of the infibitory site. Min²⁴ and Si²⁴ partly infibited $[{}^3H]InsP_3$ binding to about the same extent as Ca^{2+} , suggesting that the inhibitory effects of Mn^{2+} and Sr^{2+} are mediated by the same site and the same mechanism as those of Ca^{2+} . However, this site had very different affinities for these cations. The order of potency for this site $(Ca^{2+} > Mn^{2+} > Sr^{2+} > Ba^{2+})$ was identical and the relative affinities very similar to those determined for the site inhibiting $\text{Ins}P_{\text{s}}R$ activity. These characteristics were different from those of the activatory site [20–22]. The dissociation constants for Ca^{2+} and Mn^{2+} determined here are very close to those determined for $InsP₃R$ channel inhibition in electrophysiological experiments [22]. Given that the experimental conditions were different in these two studies, this might be fortuitous; however, the similarity in relative affinities is probably completely relevant. This result suggests that the site

through which Ca^{2+} converts cerebellar $InsP_{3}R$ to a low-affinity state is identical to that through which it inhibits channel activity.

Negative interactions between $\text{Ins}P_{3}$ and cytosolic Ca²⁺ have been described for the Ca^{2+} -dependent inhibition of $InsP_{\text{B}}R$ channel activity in the cerebellum [17–19] and in A7r5 smoothmuscle cells [45], which also mainly express the $\text{Ins}P_{\text{s}}\text{R1}$ isoform [3]. In these studies, increasing the $\text{Ins}P_{\text{a}}$ concentration overcame $Ca²⁺$ flux inhibition, which was restored by increasing the $Ca²⁺$ concentration. Investigating IICR in vascular smooth-muscle cells, Hirose et al. [46] recently suggested that $\text{Ins}P_3$ and Ca^{2+} each lower the affinity of the $\text{Ins}P_{\text{s}}R$ for the other. In this study, each lower the annity of the $insP_3$ **R** for the other. In this study, similar negative interactions between $InsP_3$ and Ca^{2+} were demonstrated, but for the Ca²⁺-dependent inhibition of Ins $P_{\rm s}$ binding. This similarity in the mechanism and identity of the $Ca²⁺$ sites involved in the two inhibitory effects of $Ca²⁺$ indicate that the conversion of the $\text{Ins}P_{\text{s}}R$ to the lower-affinity state by Ca²⁺ is a process intimately connected with the Ca²⁺ inhibition of channel activity. Consistent with this conclusion is the observation that the onset and reversal of $\text{Ins}P_{\text{s}}$ -binding inhibition occur rapidly, as for Ca^{2+} flux inhibition.

cur rapidly, as for Ca²⁺ mix immoduon.
Whereas cytosolic Ca²⁺ might inhibit cerebellar Ins*P*₃R activity completely [10,18,19], the inhibition of $\text{Ins}P_{3}$ binding was only partial, even at low $\text{Ins}P_3$ concentrations. This suggests that the partial, even at low ins_3 concentrations. This suggests that the effect of Ca^{2+} on Ins_3 binding might be only partly responsible for flux inhibition. However, a partial inhibition of $\text{Ins} P_{\text{a}}$ binding not hux inhibition. However, a partial inhibition of Ca^{2+} flux if this flux might result in a more complete inhibition of Ca^{2+} flux if this flux depends in a co-operative way on $InsP_3$ concentration, as has been shown in the cerebellum and other tissues [13,18,47–50]. Oancea and Meyer [51] reported that the suppression of IICR in intact RBL cells could be explained by a 2–3-fold shift in $\text{Ins}P_{\text{s}}$ sensitivity combined with a high power dependence between Ins P_3 and Ca^{2+} release. Thus the 50% decrease in affinity of the cerebellar $\text{Ins}P_{\text{s}}R$ might cause a large decrease in its channel activity. This implies that the steep inhibition of $\text{Ins} P_{\text{a}}$ binding by Ca ²⁺ at high Ins P_3 concentrations (Figure 4) should result in a steep decrease in $\text{Ins}P_{\text{s}}\text{R}$ activity. In accordance with this, steep steep decrease in $insr₃$ **K** activity. In accordance with this, steep curves for dose-dependent flux inhibition by cytosolic $Ca²⁺$ have been obtained at high $\text{Ins}P_3$ concentrations in the cerebellum [17–19]. However, the co-operativity of IICR in the cerebellum remains controversial [52] and we cannot exclude the possibility that Ca²⁺ inhibits Ins P_{β} R activity via a mechanism other than the decrease of $\text{Ins}P_3$ binding, by directly affecting channel activity. Nevertheless, to be effective, such a mechanism might require the conversion of $\text{Ins}P_{\text{s}}R$ to the lower-affinity state described here. This would account for the common properties in the mechanisms of Ca²⁺ inhibition of Ca²⁺ flux and Ins P_3 binding. It is also consistent with the observation by Thrower et binding. It is also consistent with the observation by Thrower et
al. [44] of Ca^{2+} flux inhibiton at high $InsP_3$ concentration, because the free Ca^{2+} concentrations used in this study were high enough to convert the $\text{Ins}P_{\text{B}}\text{R}$ into this state.

The negative interaction between Ins_1^B and Ca^{2+} described The hegative interaction between ins_s and Ca^+ described
here might be specific to Ins_s R1. The effect of Ca^{2+} on Ins_s binding to $\text{Ins}P_{3}R$ of type 2 [29,30] or type 3 [27,28] is different from that on $\text{Ins}P_3$ binding to the type 1 receptor. However, this does not exclude the possibility that the counteractive effect of Ins P_3 on the Ca²⁺-dependent inhibition of Ins P_3 R1 activity also occurs with other Ins $P_{3}R$ isoforms. Oancea and Meyer [51] found that, in RBL cells containing mostly the $InsP₃R2$ isoform Frame that, in KBL cens containing mostly the $insr_{3}K2$ isolofing [3], the Ca²⁺-induced desensitization of IICR in intact cells is overcome by increasing the $\text{Ins}P_3$ concentration.

Evidence has been obtained in various tissues, including the cerebellum, that $\text{Ins}P_{3}R$ undergoes spontaneous inactivation in the presence of $\text{Ins}P_3$ [12–16,49,53]. It has been suggested that this process is the predominant mechanism by which the ac-

tivation of $InsP₃R$ is terminated in hepatocytes [53,54]. In some studies, this inactivation has been shown to develop slowly, with a time constant of approx. 0.5 min [12,16]. The counteractive a time constant of approx. 0.5 min [12,10]. The counteractive effect of $\text{Ins}P_3$ on the Ca²⁺-induced inhibition of $\text{Ins}P_3$ R1, the onset of which is much more rapid [18], would therefore be operative, supporting Ca^{2+} release, before the inactivation step triggered by $InsP₃$. Alternatively, if $InsP₃$ -dependent inactivation also occurred in a matter of seconds [49,53] but were only partial, as has been reported [15,49,53], this $\text{Ins}P_3$ effect, by preventing as has been reported [15,49,55], this life₃ enect, by preventing excessive inhibition by Ca^{2+} , would help to maintain $InsP_{3}R$ in a partly active state. The level of $\text{Ins}P_{\text{s}}R$ activity would therefore depend on the relative concentrations of $InsP_3$ and cytosolic depend on the relative concentrations of ins_3 and cytosolic Ca^{2+} . The mechanism put forward for Ca^{2+} inhibition of $\text{Ins}_3\text{R1}$, i.e. the conversion of the receptor to a state with a lower affinity, maintains the possibility of $\text{Ins}P_3$ binding to the transformed Ins $P_{\rm B}$ R1 and is therefore compatible with the Ins $P_{\rm B}$ -dependent inactivation of channel activity.

In conclusion, we have shown here that the two major In conclusion, we have shown here that the two major
determinants, $\text{Ins}P_3$ and Ca^{2+} , in sheep cerebellar $\text{Ins}P_3\text{R}$ each decrease the binding of the other. These interactions are probably important elements in the fine regulation of the $\text{Ins}P_{\text{s}}\text{R}$, which is miportant elements in the line regulation of the $insr₃$ _N, when to have a key role in $Ca²⁺$ signal organization [8].

We thank J. Simon for her excellent technical assistance, Dr. P. Champeil and Dr. M. Claret for critical reading of the manuscript, and J. Knight for her help in editing the manuscript.

REFERENCES

- 1 Berridge, M. J. (1993) Nature (London) *361*, 315–325
- 2 Joseph, S. K. (1996) Cell. Signal. *8*, 1–7
- 3 De Smedt, H., Missiaen, L., Parys, J. B., Bootman, M. D., Mertens, L., Van Den Bosch, L. and Casteels, R. (1994) J. Biol. Chem. *269*, 21691–21698
- 4 Wojcikiewicz, R. J. H. (1995) J. Biol. Chem. *270*, 11678–11683
- De Smedt, H., Missiaen, L., Parys, J. B., Henning, R. H., Sienaert, I., Vanlingen, S., Gijsens, A., Himpens, B. and Casteels, R. (1997) Biochem. J. *322*, 575–583
- 6 Monkawa, T., Miyawaki, A., Sugiyama, T., Yoneshima, H., Yamamoto-Hino, M., Furuichi, T., Saruta, T., Hasegawa, M. and Mikoshiba, K. (1995) J. Biol. Chem. *270*, 14700–14704
- 7 Joseph, S. K., Lin, C., Pierson, S., Thomas, A. P. and Maranto, A. R. (1995) J. Biol. Chem. *270*, 23310–23316
- 8 Thomas, A. P., Bird, G. S. J., Hajnóczky, G., Robb-Gaspers, L. D. and Putney, Jr., J. W. (1996) FASEB J. *10*, 1505–1517
- 9 Taylor, C. W. and Traynor, D. (1995) J. Membrane Biol. *145*, 109–118
- 10 Finch, E. A., Turner, T. J. and Goldin, S. M. (1991) Science *252*, 443–446
- 11 Iino, M. and Endo, M. (1992) Nature (London) *360*, 76–78
- 12 Hajnóczky, G. and Thomas, A. P. (1994) Nature (London) **370**, 474–477
- 13 Hirota, J., Michikawa, T., Miyawaki, A., Furuichi, T., Okura, I. and Mikoshiba, K. (1995) J. Biol. Chem. *270*, 19046–19051
- 14 Coquil, J. F., Mauger, J. P. and Claret, M. (1996) J. Biol. Chem. *271*, 3568–3574
- 15 Wilcox, R. A., Strupish, J. and Nahorski, S. R. (1996) Cell Calcium *20*, 243–255

Received 30 November 1998/10 March 1999 ; accepted 20 May 1999

- 16 Mak, D. O. D. and Foskett, J. K. (1997) J. Gen. Physiol. *109*, 571–587
- 17 Joseph, S. K., Rice, H. L. and Williamson, J. R. (1989) Biochem. J. *258*, 261–265 18 Combettes, L., Hannaert-Merah, Z., Coquil, J. F., Rousseau, C., Claret, M., Swillens,
- S. and Champeil, P. (1994) J. Biol. Chem. *269*, 17561–17571
- 19 Kaftan, E. J., Ehrlich, B. E. and Watras, J. (1997) J. Gen. Physiol. *110*, 529–538
- 20 Marshall, I. C. B. and Taylor, C. W. (1994) Biochem. J. *301*, 591–598
- 21 Hannaert-Merah, Z., Combettes, L., Coquil, J. F., Swillens, S., Mauger, J. P., Claret, M. and Champeil, P. (1995) Cell Calcium *18*, 390–399
- 22 Striggow, F. and Ehrlich, B. E. (1996) J. Gen. Physiol. *108*, 115–124
- 23 Mignery, G. A., Johnston, P. A. and Südhof, T. C. (1992) J. Biol. Chem. **267**, 7450–7455
- 24 Sienaert, I., De Smedt, H., Parys, J. B., Missiaen, L., Vanlingen, S., Sipma, H. and Casteels, R. (1996) J. Biol. Chem. *271*, 27005–27012
- 25 Sienaert, I., Missiaen, L., De Smedt, H., Parys, J. B., Sipma, H. and Casteels, R. (1997) J. Biol. Chem. *272*, 25899–25906
- 26 Worley, P. F., Baraban, J. M., Supattapone, S., Wilson, V. S. and Snyder, S. H. (1987) J. Biol. Chem. *262*, 12132–12136
- 27 Yoneshima, H., Miyawaki, A., Michikawa, T., Furuichi, T. and Mikoshiba, K. (1997) Biochem. J. *322*, 591–596
- 28 Cardy, T. J. A., Traynor, D. and Taylor, C. W. (1997) Biochem. J. *328*, 785–793
- 29 Picard, L., Coquil, J. F. and Mauger, J. P. (1998) Cell Calcium *23*, 339–348
- 30 Pietri, F., Hilly, M. and Mauger, J. P. (1990) J. Biol. Chem. *265*, 17478–17485
- 31 Danoff, S. K., Supattapone, S. and Snyder, S. H. (1988) Biochem. J. *254*, 701–705
- 32 Richardson, A. and Taylor, C. W. (1993) J. Biol. Chem. *268*, 11528–11533
- 33 Hannaert-Merah, Z., Coquil, J. F., Combettes, L., Claret, M., Mauger, J. P. and Champeil, P. (1994) J. Biol. Chem. *269*, 29642–29649
- 34 Martell, A. E. and Smith, R. M. (1974) Critical Stability Constants, vol. 1, Plenum, New York
- 35 Lie'vremont, J. P., Hill, A. M., Hilly, M. and Mauger, J. P. (1994) Biochem. J. *300*, 419–427
- 36 Towbin, H., Staehelin, T. and Gordon, J. (1979) Proc. Natl. Acad. Sci. U.S.A. *76*, 4350–4354
- 37 Lièvremont, J. P., Hill, A. M., Tran, D., Coquil, J. F., Stelly, N. and Mauger, J. P. (1996) Biochem. J. *314*, 189–197
- 38 Benevolensky, D., Moraru, I. I. and Watras, J. (1994) Biochem. J. *299*, 631–636
	- 39 Van Delden, C., Foti, M., Lew, D. P. and Krause, K. H. (1993) J. Biol. Chem. *268*, 12443–12448
	- 40 Segel, I. H. (1975) Enzyme Kinetics, Wiley, New York
	- 41 Cameron, A. M., Steiner, J. P., Roskams, A. J., Ali, S. M., Ronnett, G. V. and Snyder, S. H. (1995) Cell *83*, 463–472
	- 42 Yamada, M., Miyawaki, A., Saito, K., Nakajima, T., Yamamoto-Hino, M., Ryo, Y., Furuichi, T. and Mikoshiba, K. (1995) Biochem. J. *308*, 83–88
	- 43 Cardy, T. J. A. and Taylor, C. W. (1998) Biochem. J. *334*, 447–455
	- 44 Thrower, E. C., Lea, E. J. A. and Dawson, A. P. (1998) Biochem. J. *330*, 559–564
	- 45 Bootman, M. D., Missiaen, L., Parys, J. B., De Smedt, H. and Casteels, R. (1995) Biochem. J. *306*, 445–451
	- 46 Hirose, K., Kadowaki, S. and Iino, M. (1998) J. Physiol. (London) *506*, 407–414
	- 47 Meyer, T., Wensel, T. and Stryer, L. (1990) Biochemistry *29*, 32–37
	- 48 Carter, T. D. and Ogden, D. (1997) J. Physiol. (London) *504*, 17–33
	-
	- 49 Dufour, J. F., Arias, I. M. and Turner, T. J. (1997) J. Biol. Chem. *272*, 2675–2681 Callamaras, N., Marchant, J. S., Sun, X. P. and Parker, I. (1998) J. Physiol. (London) *509*, 81–91
	- 51 Oancea, E. and Meyer, T. (1996) J. Biol. Chem. *271*, 17253–17260
	- 52 Mezna, M. and Michelangeli, F. (1997) Biochem. J. *325*, 177–182
	- 53 Marchant, J. S. and Taylor, C. W. (1998) Biochemistry *37*, 11524–11533
	- Hajnóczky, G. and Thomas, A. P. (1997) EMBO J. **16**, 3533-3543