Type 3 inositol trisphosphate receptors in RINm5F cells are biphasically regulated by cytosolic Ca²⁺ and mediate quantal Ca²⁺ mobilization

Jane E. SWATTON, Stephen A. MORRIS, Thomas J. A. CARDY and Colin W. TAYLOR¹ Department of Pharmacology, Tennis Court Road, Cambridge CB2 1QJ, U.K.

There are three subtypes of mammalian $Ins(1,4,5)P_3$ (Ins P_3) receptor, each of which forms an intracellular Ca²⁺ channel. Biphasic regulation of $InsP_3$ receptors by cytosolic Ca^{2+} is well documented in cells expressing predominantly type 1 or type 2 $InsP_3$ receptors and might contribute to the regenerative recruitment of Ca²⁺ release events and to limiting their duration in intact cells. The properties of type 3 receptors are less clear. Bilayer recording from $InsP_3$ receptors of RIN-5F cells, cells in which the $InsP_3$ receptors are likely to be largely type 3, recently suggested that the receptors are not inhibited by Ca^{2+} [Hagar, Burgstahler, Nathanson and Ehrlich (1998) Nature (London) **296**, 81–84]. By using antipeptide antisera that either selectively recognized each $InsP_3$ receptor subtype or interacted equally well with all subtypes, together with membranes from Spodoptera frugiperda (Sf9) cells expressing only single receptor subtypes to calibrate the immunoblotting, we quantified the relative levels of expression of type 1 (17 %) and type 3 (77 %) $InsP_3$ receptors in RINm5F cells. In unidirectional ⁴⁵Ca²⁺ efflux experiments from permeabilized RINm5F cells, submaximal concentrations of $InsP_3$ released only a fraction of the $InsP_3$ -sensitive Ca^{2+} stores,

INTRODUCTION

There are three closely related subtypes (1-3) of receptors for $Ins(1,4,5)P_3$ ($InsP_3$), each of which forms an intracellular Ca^{2+} channel [1] and each of which is expressed to some extent in most cells [2]. Splice variants of the type 1 receptor (and perhaps also of the type 2 receptor) [3], together with assembly of the different subunits into both homotetrameric and heterotetrameric receptor complexes [4,5], add further to the diversity of $InsP_3$ receptors expressed in mammalian cells. The subtypes are differentially expressed [4,6,7], they differ in their rates of degradation during chronic cell stimulation [8] and in their affinities for $InsP_3$ [9–11], they are differentially regulated by calmodulin [12] and ATP [13] and they differ in their phosphorylation [3,4].

Biphasic modulation of $InsP_3$ receptors by cytosolic Ca^{2+} , first reported in smooth muscle [14] but later demonstrated in many cell types [15], has attracted particular attention. The stimulation of $InsP_3$ receptors by Ca^{2+} is thought to contribute to the regenerative recruitment of $InsP_3$ receptors in intact cells, whereas the inhibitory effect of Ca^{2+} is proposed to provide the negative feedback that limits the duration of elementary Ca^{2+} release events [16]. The biphasic effect of cytosolic Ca^{2+} on $InsP_3$ -evoked Ca^{2+} mobilization has been most thoroughly examined in cells expressing predominantly type 1 or type 2 $InsP_3$ receptors [15] and was widely supposed to be a feature of all $InsP_3$ receptor subtypes. However, Ca^{2+} clearly has different effects on $InsP_3$ binding to different receptor subtypes [10,11,15]; evidence from indicating that responses to $InsP_3$ are quantal. Increasing the cytosolic free [Ca²⁺] ([Ca²⁺]₁) from approx. 4 to 186 nM increased the sensitivity of the Ca^{2+} stores to $InsP_3$: the EC₅₀ decreased from 281 ± 15 to 82 ± 2 nM. Further increases in $[Ca^{2+}]_i$ massively decreased the sensitivity of the stores to $InsP_3$, by almost 10-fold when $[Ca^{2+}]_i$ was 2.4 μ M, and by more than 3000-fold when it was 100 μ M. The inhibition caused by 100 μ M Ca²⁺ was fully reversed within 60 s of the restoration of $[Ca^{2+}]_i$ to 186 nM. The effect of submaximal $InsP_3$ concentrations on Ca^{2+} mobilization from permeabilized RINm5F cells is therefore biphasically regulated by cytosolic Ca²⁺. We conclude that type 3 $InsP_3$ receptors of RINm5F cells mediate quantal Ca²⁺ release and they are biphasically regulated by cytosolic Ca²⁺, either because a single type 1 subunit within the tetrameric receptor confers the Ca^{2+} inhibition or because the type 3 subtype is itself directly inhibited by Ca²⁺.

Key words: $InsP_3$ receptor subtype, quantal Ca^{2+} release, Ca^{2+} regulation.

intact cells is also consistent with differential effects of Ca²⁺ on InsP₃ receptor subtypes. Type 1 receptors might be specifically implicated in propagating regenerative Ca²⁺ signals [17], whereas type 1 and type 2 receptors, but not type 3 receptors, might be capable of generating oscillatory Ca²⁺ release [13,18]. Bilayer recordings of InsP₃ receptors from RIN-5F cells, which have been suggested (although not quantitatively proved) to express largely type 3 receptors [18], recently suggested that even very high concentrations of Ca²⁺ (100 μ M) do not inhibit type 3 InsP₃ receptors. This observation is consistent with the lack of inhibition of type 3 receptors in DT40 cells by more modest increases in cytosolic Ca²⁺ (1 μ M) [13] but it is difficult to reconcile with the substantial inhibition of InsP₃-evoked Ca²⁺ mobilization by 10 μ M Ca²⁺ in 16HBE14o⁻ cells, which probably express predominantly type 3 receptors [19].

In the present study, we quantitatively determined the relative levels of expression of $InsP_3$ receptor subtypes in RINm5F cells, established that cytosolic Ca^{2+} exerts typical biphasic effects on $InsP_3$ -evoked Ca^{2+} mobilization in permeabilized RINm5F cells, and demonstrated the quantal nature of the Ca^{2+} release.

MATERIALS AND METHODS

Cell culture

RINm5F cells (from Dr. P. Brown, University of Manchester, Manchester, U.K.) were cultured at 37 °C under air/CO_2 (19:1) in RPMI 1640 medium containing L-glutamine (2 mM), foetal

Abbreviations used: $[Ca^{2+}]_i$, cytosolic free Ca^{2+} concentration; CLM, cytosol-like medium; $InsP_3$, $Ins(1,4,5)P_3$; Sf9/Ins P_3R1 and Sf9/Ins P_3R3 , Spodoptera frugiperda cells expressing type 1 and type 3 $InsP_3$ receptors respectively.

¹ To whom correspondence should be addressed (e-mail cwt1000@cam.ac.uk).

calf serum (5%, v/v), penicillin (50 i.u./ml) and streptomycin (50 μ g/ml). The cells were passaged every 3 or 4 days when confluent and were used for experiments when they were confluent. SH-SY5Y human neuroblastoma cells (American Type Culture Collection, Manassas, VA, U.S.A.) were grown at 37 °C in Dulbecco's modified Eagle's medium supplemented with 10% (v/v) foetal calf serum, 7 mM L-glutamine and 0.9% non-essential amino acids under air/CO₂ (19:1). Cells were passaged every 7 days when they were confluent.

Measurement of unidirectional $^{45}\mbox{Ca}^{2+}$ efflux from permeabilized cells

RINm5F rat insulinoma cells (passage numbers 105-129) were scraped into cold Hepes-buffered saline [HBS: 155 mM NaCl/ 10 mM Hepes/0.68 mM EDTA, pH 7.4 at 0 °C], washed by centrifugation (650 g, 4 min), and resuspended (5 × 10⁶ cells/ml) in Ca2+-free cytosol-like medium [CLM: 140 mM KCl/20 mM NaCl/2 mM MgCl₂/1 mM EGTA/20 mM Pipes, pH 7.0 at 37 °C]. The cells were permeabilized by incubation with saponin $(10 \,\mu\text{g/ml})$ for 5 min at 37 °C [20] and washed by centrifugation (650 g, 4 min). The permeabilized cells were resuspended in CLM with a free [Ca²⁺] of 186 nM (total [Ca²⁺] 300 μ M) and containing carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) (10 μ M) and ⁴⁵Ca²⁺ (10 μ Ci/ml). ATP (1.5 mM), creatine phosphate (5 mM) and creatine phosphokinase (5 units/ml) were then added to allow the active sequestration of ⁴⁵Ca²⁺ into the intracellular stores. Under these conditions, the cells rapidly ($t_1 \approx 30$ s) accumulated ${}^{45}Ca^{2+}$ to reach a steady state $(26 \pm 1 \text{ pmol}/10^6 \text{ cells}, \text{ mean} \pm \text{S.E.M.}, n = 3)$ within 10 min, which was then maintained for at least 40 min (results not shown). In all experiments, active ⁴⁵Ca²⁺ uptake was defined as that which could be released by ionomycin (10 μ M). For experiments examining the reversibility of Ca2+ inhibition, cells were loaded under similar conditions but with the total [EGTA] decreased to 200 μ M and the total [Ca²⁺] to 60 μ M (free [Ca²⁺] 186 nM) to allow subsequent sequential changes in free [Ca²⁺] without increasing the total EGTA concentration excessively.

The effects of $InsP_3$ on unidirectional ${}^{45}Ca^{2+}$ release were determined by loading cells with ${}^{45}Ca^{2+}$ for 15 min and then diluting them 1:1 into CLM containing an appropriate free $[Ca^{2+}]$, $InsP_3$ and thapsigargin $(1 \ \mu M)$ to inhibit the Ca^{2+} pumps of the endoplasmic reticulum. After appropriate intervals at 37 °C (2 min for concentration–effect relationships), the reactions were terminated by the rapid addition of ice-cold sucrose solution (310 mM) with sodium citrate (1 mM); the ${}^{45}Ca^{2+}$ contents of the stores were determined after filtration through GF/C filters using a Brandel receptor binding harvester [20].

Antibody methods

Full-length rat type 1 (lacking the S1 splice site) and type 3 Ins P_3 receptors were expressed in *Sf*9 cells (*Sf*9/Ins P_3 R1 and *Sf*9/Ins P_3 R3 respectively), as described previously [10,12]. Infected cells were harvested 40–42 h after infection by centrifugation (1000 g for 5 min) at 2 °C, cell pellets were washed twice in PBS, resuspended in Ca²⁺-free CLM supplemented with a protease-inhibitor cocktail (0.1 mM PMSF/10 μ M leupeptin/1 mM benz-amidine/0.1 mM soya-bean trypsin inhibitor/0.1 mM captopril) and homogenized [12]. The homogenate was centrifuged (3000 g for 10 min) and the membrane pellet was resuspended in Ca²⁺-free CLM (4–6 mg/ml protein) before rapid freezing and storage at -80 °C. The same methods were used to prepare membranes from RINm5F cells. Protein concentrations were determined with the Bradford assay [21], with BSA as standard. Immuno-

blotting was performed as described previously [10] and immunoreactive bands were quantified by densitometric scanning (NIH Image, Bethesda, MD, U.S.A.).

Other methods

For each CLM, the cytosolic free Ca²⁺ concentration ([Ca²⁺]_i) was determined either fluorimetrically as described previously [22], or for CLM with higher [Ca²⁺]_i by means of a Ca²⁺ electrode calibrated with Ca²⁺ standard solutions from Molecular Probes. Briefly, for the fluorimetric measurements, fura-2 potassium salt (1 μ M) was added to the CLM, and the fluorescence ratio determined at wavelengths appropriate for fura-2 and after correction for autofluorescence following addition of MnCl₂. [Ca²⁺]_i was then calculated [23] but with the K_D for Ca²⁺ at 37 °C corrected to take account of the MgCl₂ present in CLM (K_D^{Ca} 210 nM). In three separate determinations of [Ca²⁺]_i of each of the CLM, the S.E.M. for the determinations was less than 3 % of the mean. Within the range of [Ca²⁺]_i in which the sensitivities of the two methods overlapped, the values determined by fura-2 and the Ca²⁺ electrode agreed closely (Table 1).

Analysis

Concentration-response relationships were fitted to a fourparameter logistic equation by using a non-linear curve-fitting program (Kaleidagraph; Synergy Software, Reading, PA, U.S.A.), as described previously [20].

Materials

Ins P_3 was from American Radiolabeled Chemicals (St Louis, MO, U.S.A.). ⁴⁵CaCl₂ was from ICN (Thame, Oxon, U.K.). Ionomycin was from Calbiochem (Nottingham, U.K.) and thapsigargin was from Alamone Labs (Jerusalem, Israel). Cell culture materials, with the exception of serum (Sigma, Poole, Dorset, U.K.), were from Gibco (Paisley, Renfrewshire, U.K.). Fura-2 potassium salt and the Ca²⁺ calibration kits were from Molecular Probes (Leiden, The Netherlands). Other reagents were either from suppliers named in earlier publications [20] or from Sigma.

RESULTS AND DISCUSSION

Expression of InsP₃ receptor subtypes in RINm5F cells

Previous work ([8], but see [5,24]) had suggested that RINm5F cells express 96 % type 3 Ins P_3 receptors. We first sought to verify this by quantitative immunoblotting. Because type 2 receptors were undetectable in RINm5F cells (results not shown), we quantitatively examined the expression of only type 1 and type 3 $InsP_3$ receptors. Four parallel gels were loaded with a range of concentrations of membranes from Sf9/InsP₃R1, Sf9/InsP₃R3 and RINm5F cells and then immunoblotted with antipeptide antisera selective for type 1 (Ab1) or type 3 (Ab3) $InsP_3$ receptors, or with an antiserum (AbC) that interacted equally well with both subtypes [10] (Figure 1). Within the ranges used for these experiments, there was a linear relationship between the quantity of membranes loaded and the densitometric measurements of $InsP_3$ receptor bands (approx. 260 kDa) obtained with each antiserum (results not shown). Because infected Sf9 membranes express only a single $InsP_3$ receptor subtype [10], the degree of immunostaining with the subtype-selective antisera (Ab1, Ab3) relative to that obtained under identical conditions with AbC provides a conversion factor from units of staining with specific antiserum to units of AbC staining. The ratio (Ab1 to AbC) was

Figure 1 Quantitative analysis of the expression of type 1 and type 3 InsP₃ receptors in SH-SY5Y and RINm5F cells

Lanes were loaded with 300 μ g of membranes prepared from SH-SY5Y cells (lanes 1 and 2), RINm5F cells (lanes 3 and 4) or 5, 10, 20 or 30 μ g (lanes 5–8) of membranes from *Sf*9 cells expressing either type 1 (**a**, **b**) or type 3 (**c**, **d**) lns*P*₃ receptors. The blots were probed with each of the three antisera (Ab1, Ab3, AbC).

1.46 for Sf9/InsP₃R1 and 1.65 for Sf9/InsP₃R3 (Ab3 to AbC), allowing the densitometric measurements of type 1 and type 3 InsP₃ receptors (detected with Ab1 and Ab3) from RINm5F membranes to be converted into units of AbC staining. The results indicate that RINm5F cells express $17 \pm 1\%$ (*n* = 6) type 1 receptors and 77 % type 3 receptors; parallel experiments with SH-SY5Y neuroblastoma cells (previously suggested to express 99 % type 1 receptors [8]) indicate that 89 ± 6 % (n = 3) of their $InsP_{a}$ receptors are type 1. The total calculated amounts of AbC staining (i.e. the sum of that derived from Ab1 and Ab3 staining) agrees closely with that measured directly after immunoblotting with AbC: 95% of the AbC staining was accounted for by the sum of Ab1 and Ab3 staining in RINm5F cells. We conclude that RINm5F cells express predominantly (77%) type 3 Ins P_3 receptors, although the predominance of this subtype is less than previously reported with semi-quantitative methods [8].

Quantal responses to InsP₃ in RINm5F cells

In CLM with [Ca²⁺], buffered at 186 nM, a 2 min incubation with a maximally effective concentration of $InsP_3$ (10 μ M) released $90\pm1\,\%$ of the intracellular Ca^{2+} stores; the EC_{50} was 82 ± 2 nM (n = 4) (Table 1). In many cells, the unidirectional ⁴⁵Ca²⁺ efflux evoked by submaximal concentrations of $InsP_3$ causes only partial emptying of the $InsP_3$ -sensitive stores. Although the mechanisms underlying such quantal responses are not understood and might involve the all-or-nothing emptying of heterogeneous stores [25] or a form of receptor desensitization [26], the behaviour might be important in allowing the graded release of Ca²⁺ stores [27]. The Ca²⁺ signals recorded from intact RIN-5F cells were reported to result from an essentially complete emptying of the intracellular stores [18], implying that individual cells were incapable of graded responses to either $InsP_3$ or agonists that stimulate $InsP_3$ formation. Because the quantal pattern of Ca²⁺ release might be an element of the mechanisms responsible for graded responses to $InsP_3$, we examined the kinetics of InsP₃-evoked Ca²⁺ release from permeabilized

Table 1 Effects of $[\text{Ca}^{2+}]_{i}$ on $\text{Ins}\textit{P}_{3}$ -evoked Ca^{2+} release from permeabilized RINm5F cells

Experiments similar to those shown in Figure 3 were used to establish the EC₅₀ and Hill coefficient for Ins*P*₃-evoked Ca²⁺ release in CLM containing different [Ca²⁺]_i. The final column shows the percentage of the Ca²⁺ stores released by 10 μ M Ins*P*₃ at each [Ca²⁺]_i. Results are means \pm S.E.M. for three to five experiments. The lower [Ca²⁺]_i were determined by using fura-2; the higher [Ca²⁺]_i (*) were measured with a Ca²⁺ electrode; where their sensitivity ranges overlapped, the methods yielded similar estimates of [Ca²⁺]_i. Abbreviation: n.d., not determined.

Total [Ca ²⁺] (µM)	[Ca ²⁺] _i (M)	EC ₅₀ (nM)	Hill coefficient	Maximal Ca ²⁺ release (%)
0	$\sim 4 \times 10^{-9}$	281 + 15	2.33 + 0.15	79 + 5
150	72×10^{-9}	100 ± 3	2.26 ± 0.22	88 ± 1
300	186×10^{-9}	82 ± 2	2.33 ± 0.12	90 ± 1
650	869×10^{-9}	128 <u>+</u> 11	1.75 <u>+</u> 0.22	88 <u>+</u> 1
685	1.03×10^{-6}	158 <u>+</u> 32	1.79 <u>+</u> 0.24	88 <u>+</u> 2
	1.17 × 10 ^{-b*}			
720	1.27 × 10 ⁻⁶	195 <u>+</u> 29	1.49 <u>+</u> 0.33	88 <u>+</u> 3
	1.24 × 10 ^{-b*}			
750	1.56×10^{-6}	291 <u>+</u> 33	1.99 ± 0.16	88 <u>+</u> 2
	$1.73 \times 10^{-6*}$			
800	2.40×10^{-6}	757 <u>+</u> 57	1.92 <u>+</u> 0.59	91 <u>+</u> 1
	$2.03 \times 10^{-6*}$			
850	$3.0 \times 10^{-6*}$	n.d.	n.d.	78 <u>+</u> 4
900	$6.5 \times 10^{-6*}$	n.d.	n.d.	58 <u>+</u> 6
950	$15.4 \times 10^{-6*}$	n.d.	n.d.	44 <u>+</u> 5
1100	$\sim 100 \times 10^{-6}$	n.d.	n.d.	22 <u>+</u> 7
2000	$\sim 10^{-3}$	n.d.	n.d.	16 <u>+</u> 5

Figure 2 InsP₃ stimulates quantal Ca²⁺ release in RINm5F cells

Permeabilized cells loaded with ${}^{45}Ca^{2+}$ were diluted 1:1 into CLM ([Ca²⁺]₁ 186 nM) at 37 °C containing thapsigargin (1 μ M) and various concentrations of Ins P_3 : 60 nM (\bigcirc), 100 nM (\bigcirc) or 200 nM (\blacktriangle). The incubations were terminated after the indicated intervals and the ${}^{45}Ca^{2+}$ released was expressed relative to that released by 10 μ M Ins P_3 , which evoked its maximal effect within 30 s. Results are means \pm S.E.M. for four independent experiments.

RIN5mF cells. After the addition of thapsigargin to cells loaded to steady state with ⁴⁵Ca²⁺, the ⁴⁵Ca²⁺ content of the stores declined approximately mono-exponentially with a $t_{\frac{1}{2}}$ of 266 ± 22 s (n = 3). The addition of a maximal concentration of Ins P_3 released $85 \pm 3 \%$ (n = 4) of the Ca²⁺ stores within 30 s. The responses to submaximal concentrations of Ins P_3 (60–200 nM) were slower; however, within 150 s each had exerted its full effect but released only a fraction of the Ins P_3 -sensitive stores (Figure 2). After 5 min, the fraction of the Ins P_3 -sensitive stores released by 60, 100 and 200 nM Ins P_3 was $62 \pm 6\%$, $82 \pm 5\%$ and $94 \pm 2\%$ (n = 4) respectively. We conclude that in RINm5F cells, just as in many other cell types [28], Ins P_3 stimulates quantal Ca²⁺ mobilization.

Biphasic effect of $\left[\text{Ca}^{2+}\right]_i$ on $\text{Ins}P_3\text{-evoked Ca}^{2+}$ release in RINm5F cells

The effects of varying [Ca2+], on the concentration-effect relationships for $InsP_3$ are shown in Figures 3A and 3B. As the $[Ca^{2+}]_1$ was increased from approx. 4 nM (nominally Ca2+-free CLM) to 2.4 μ M, the Ca²⁺ release evoked by a submaximal concentration of $InsP_{3}$ (200 nM) first increased and then decreased (Figure 3C) to give a characteristic biphasic effect of cytosolic Ca²⁺. Stimulation by cytosolic Ca²⁺ resulted from a 3.4-fold decrease in the EC_{50} for $InsP_3$ -evoked Ca^{2+} mobilization, as $[Ca^{2+}]_i$ increased from approx. 4 to 186 nM. Further increases in [Ca²⁺], caused an increase in EC₅₀ such that at $[Ca^{2+}]_i > 3 \mu M$ even a normally supramaximal concentration of $InsP_3$ (10 μ M) failed to release all the Ins P_3 -sensitive Ca²⁺ stores (Table 1). Only $22 \pm 7 \%$ of the Ca^{2+} stores were released by $10 \ \mu M \ InsP_3$ when $[Ca^{2+}]_i$ was 100 μ M but the response increased to $34\pm4\%$ and $39\pm2\%$ release (n = 3) when the $InsP_3$ concentration was increased to 100 and 300 μ M respectively. From the $[Ca^{2+}]_i$ ($\leq 2.4 \mu$ M) at which it was practicable to determine full concentration-effect relationships for $InsP_3$, there was no significant effect of Ca^{2+} on the Hill coefficient of the response (Table 1).

Because previous work had suggested that type 3 Ins P_3 receptors were not inhibited by Ca²⁺ [18], we examined the inhibitory effect of cytosolic Ca²⁺ on RINm5F cells more closely. In CLM containing a [Ca²⁺]₁ of 100 μ M, a normally maximal concentration of Ins P_3 (10 μ M) stimulated the release of only $10 \pm 2 \%$ (n = 6) of the intracellular stores; however, when the [Ca²⁺]₁ was then restored to 186 nM for 60 s, the response to 10 μ M Ins P_3 (release of $77 \pm 3 \%$ of the stores) was similar to that of cells treated similarly but bathed in CLM containing a [Ca²⁺]₁ of 186 nM throughout ($86 \pm 2 \%$) (n = 6). We conclude that the inhibition caused by high [Ca²⁺]₁ is reversible and that it must therefore result from an inhibition of the receptor rather than a loss of Ca²⁺ from the intracellular stores, which (in the presence of thapsigargin) would have been unable to refill during the recovery period.

The media used for bilayer analysis of $InsP_3$ receptors from RIN-5F cells included ruthenium red [18] to inhibit ryanodine receptors, but ruthenium red binds to many Ca^{2+} -binding sites, including those on fusion proteins derived from $InsP_3$ receptors [29]. However, although ruthenium red (10 μ M) caused a modest inhibition of responses to $InsP_3$, it did so across a range of $[Ca^{2+}]_i$ and did not prevent the inhibitory effect of high $[Ca^{2+}]_i$ (Table 2). The inclusion of ruthenium red (2 μ M) in bilayer analyses is therefore unlikely to have caused the inhibitory effect of Ca^{2+} to be lost.

We conclude that the $InsP_3$ receptors of RINm5F cells are biphasically regulated by cytosolic Ca²⁺: modest increases in $[Ca^{2+}]_i$ increase the sensitivity of the stores to $InsP_3$ (optimal at $[Ca^{2+}]_i \approx 200$ nM), whereas further increases, although still within a physiologically appropriate range, cause a massive and reversible decrease in sensitivity to $InsP_3$. Indeed, the biphasic effects of cytosolic Ca²⁺ on the responses of RINm5F and SH-SY5Y cells (which express predominantly type 1 InsP₃ receptors) to $InsP_3$ are barely distinguishable (Figure 3C, inset).

Figure 3 Biphasic regulation by $\mbox{[Ca}^{2+}\mbox{]}_i$ of $\mbox{Ins}P_3\mbox{-evoked Ca}^{2+}$ release from permeabilized RINm5F cells

(**A**, **B**) To establish $\ln s P_3$ -concentration—effect relationships, permeabilized cells were incubated for 2 min with the indicated concentrations of $\ln s P_3$ in CLM with $[Ca^{2+}]_i$ of approx. 4 nM (▲), 72 nM (△), 186 nM (●), 869 nM (○), 1.27 μ /M (■), 2.4 μ /M (□) or 100 μ /M (◆). The results (means ± S.E.M., n = 3-5) show the Ca^{2+} remaining within the intracellular stores expressed as a percentage of the total actively accumulated ${}^{45}Ca^{2+}$ content of the stores of cells that had not been exposed to $\ln s P_5$. For clarity, responses to the lower $[Ca^{2+}]_i$ (A) are plotted separately from those to higher $[Ca^{2+}]_i$ (B) and the response in CLM containing 186 nM Ca^{2+} (●) is shown in both panels. (C) The effects of varying $[Ca^{2+}]_i$ ($[Ca^{2+}]_c$) on the amount of Ca^{2+} released (percentage of total intracellular Ca^{2+} stores) by a submaximal concentration of $\ln s P_3$ (200 nM) are shown as means ± S.E.M. for three to five independent experiments. The inset (from which error bars have been omitted for clarity) shows responses of SH-SY5Y cells (○) and RINm5F cells (●) to submaximal concentrations of $\ln s P_3$ (70 and 200 nM respectively for the two cell types) at each of the indicated $[Ca^{2+}]_i$. Responses (means for three to five experiments) show the Ca^{2+} released by the submaximal $\ln s P_3$ concentration expressed as percentages of the response to the same concentration of $\ln s P_4$ when $[Ca^{2+}]_i$ was 186 nM.

Conclusions

In keeping with results obtained from bilayer analyses of $InsP_3$ receptors from RIN-5F cells [18] and from type 3 InsP₃ receptors in DT40 cells [13], modest increases in $[Ca^{2+}]_i$ enhanced the ability of submaximal InsP₃ concentrations to cause Ca²⁺ mobilization from permeabilized RINm5F cells (Figure 3). The results are also consistent with those from recombinant type 3 $InsP_3$ receptors expressed in Sf9 cells, in which modest increases in $[Ca^{2+}]_i$ stimulate $[{}^{3}H]InsP_3$ binding [10,11], although the link between the effects of Ca^{2+} on [³H]InsP₃ binding and channel function has yet to be established. However, whereas increasing $[Ca^{2+}]_i$ to 100 μ M failed to inhibit RIN-5F InsP₃ receptors in bilayers, the receptors in permeabilized cells were most sensitive to $InsP_3$ when $[Ca^{2+}]_i$ was 186 nM and were then progressively less sensitive as the [Ca²⁺] was increased (Table 1). Increasing $[Ca^{2+}]_i$ to only 2.4 μ M decreased the sensitivity of the receptors by almost 10-fold, and with 100 μ M Ca²⁺ the decrease was at least 3000-fold. A preliminary report has also suggested that recombinant type 3 receptors expressed in the nuclear envelope of Xenopus oocytes are regulated biphasically by cytosolic Ca²⁺ and that inhibition occurs over a similar range of $[Ca^{2+}]_i$ for type 1 and type 3 $InsP_3$ receptors [30]. The disparity between our results and those obtained from receptors in bilayers [18] is not a consequence of the ruthenium red used in the latter experiments blocking a Ca²⁺-inhibitory site (Table 2). A similar disparity exists for type 2 $InsP_3$ receptors: in several cell types expressing predominantly type 2 receptors, Ca^{2+} biphasically regulates Ins P_3 evoked Ca²⁺ release [15], yet in bilayers cardiac (type 2) Ins P_3 receptors are stimulated, but not inhibited, by cytosolic Ca²⁺ [31]. One possibility is therefore that an accessory protein mediates the inhibitory effects of cytosolic Ca²⁺ on type 2 and type 3 $InsP_3$ receptors and that it is lost when preparing receptors for bilayer recording. This interpretation would be consistent with recent work that suggests that the effects of Ca^{2+} on $InsP_{2}$ binding to type 2 $InsP_3$ receptors are mediated by an accessory protein [32].

Unfortunately, the relative levels of expression of type 1 and type 3 $InsP_3$ receptors in the RIN-5F cells used for bilayer recording were not quantified [18]. Our results suggest that 77 % of the $InsP_{a}$ receptors expressed in RINm5 cells were type 3, the remainder being type 1 (Figure 1); it is therefore possible that most tetrameric receptors in RINm5F cells include a type 1 subunit. Indeed, a previous analysis of RINm5F cells failed to detect homomeric type 1 receptors but detected both homomeric and heteromeric type 3 receptors [5]. Therefore another possibility, which would be consistent with the rather similar effects of Ca²⁺ on RINm5F and SH-SY5Y cells (Figure 3C, inset), is that, within a heteromeric channel, the inhibitory effect of Ca^{2+} on a single type 1 receptor subunit dominates, even if the remaining three type 3 subunits are not directly inhibited by Ca^{2+} . The same explanation was proposed to account for the modest inhibition of $InsP_3$ -induced Ca^{2+} release by Ca^{2+} in DT40 cells expressing type 1 and type 3 $InsP_3$ receptors [13]. However, in those experiments, the inhibition was substantially greater for type 1 receptors alone than for the co-expressed type 1 and type 3 receptors; it therefore seems equally likely that the effects of Ca²⁺ were simply the sum of their independent effects on the two receptor subtypes.

We conclude that in RINm5F cells, which express predominantly type 3 $\text{Ins}P_3$ receptors, $\text{Ins}P_3$ evokes quantal Ca^{2+} mobilization and that the effects of $\text{Ins}P_3$ are regulated biphasically by cytosolic Ca^{2+} . We cannot yet resolve whether the inhibition by Ca^{2+} is a property of the type 3 subtype itself, or whether the inhibition of a single type 1 subunit within the

Table 2 Ruthenium red does not prevent the inhibitory effect of $[Ca^{2+}]_i$

The release of the intracellular Ca²⁺ stores (%) evoked by submaximal (200 nM) or maximal (10 μ M) concentrations of Ins P_3 was determined at the indicated [Ca²⁺]_i in either the absence or the presence of 10 μ M Ruthenium red. Results are means \pm S.E.M. for three independent experiments.

		Release of intracellular ${\rm Ca}^{2+}$ (%)		
$[Ca^{2+}]_i (\mu M)$	$InsP_3$ concentration (μM)	Control	Ruthenium red	
0.186	0.2	71 <u>+</u> 2 44 + 5	57 ± 2 27 + 2	
1.27	0.2	25 ± 10	21 ± 8	
2.4 100	0.2	-1 ± 2 5 \pm 3	-1 ± 8 4 ± 4	
100	10	15±2	12 <u>+</u> 4	

tetrameric $\text{Ins}P_3$ receptor is sufficient to ensure the inhibition of the entire receptor. It seems likely that, in most cells, $\text{Ins}P_3$ receptors exist largely as heteromeric channels; either of the mechanisms proposed to mediate Ca^{2+} inhibition of type 3 receptors is therefore likely to ensure that in intact cells they, like other $\text{Ins}P_3$ receptor subtypes, are biphasically regulated by cytosolic Ca^{2+} .

We thank Dr. Peter Brown (Manchester, U.K.) for generously providing RINm5F cells. This work was supported by The Wellcome Trust (39662) and by a Studentship from the Biotechnology and Biological Sciences Research Council (T.J.A.C.).

REFERENCES

- Sugawara, H., Kurosaki, M., Takata, M. and Kurosaki, T. (1997) EMBO J. 16, 3078–3088
- 2 De Smedt, H., Missiaen, L., Parys, J. B., Henning, R. H., Sienaert, I., Vanlingen, S., Gijsens, A., Himpens, B. and Casteels, R. (1997) Biochem. J. **322**, 575–583
- 3 Patel, S., Joseph, S. K. and Thomas, A. P. (1999) Cell Calcium 25, 247-264
- 4 Mikoshiba, K. (1997) Curr. Opin. Neurobiol. 7, 339–345
- 5 Nucifora, F. C., Sharp, A. H., Milgram, S. L. and Ross, C. A. (1996) Mol. Biol. Cell 7, 949–960
- 6 Nakagawa, T., Okano, H., Furuichi, T., Aruga, J. and Mikoshiba, K. (1991) Proc. Natl. Acad. Sci. U.S.A. 88, 6244–6248
- 7 Joseph, S. K. (1996) Cell Signalling 8, 1-7
- 8 Wojcikiewicz, R. J. H. (1995) J. Biol. Chem. 270, 11678–11683
- 9 Wojcikiewicz, R. J. H. and Luo, S. G. (1998) Mol. Pharmacol. 53, 656–662
- 10 Cardy, T. J. A., Traynor, D. and Taylor, C. W. (1997) Biochem. J. 328, 785-793
- 11 Yoneshima, H., Miyawaki, A., Michikawa, T., Furuichi, T. and Mikoshiba, K. (1997) Biochem. J. **322**, 591–596
- 12 Cardy, T. J. A. and Taylor, C. W. (1998) Biochem. J. 334, 447-455
- 13 Miyakawa, T., Maeda, A., Yamazawa, T., Hirose, K., Kurosaki, T. and Iino, M. (1999) EMBO J. 18, 1303–1308
- 14 lino, M. (1990) J. Gen. Physiol. 95, 1103–1122
- 15 Taylor, C. W. (1998) Biochim. Biophys. Acta 1436, 19–33
- 16 Berridge, M. J. (1997) J. Physiol. (London) 499.2, 291-306
- 17 DeLisle, S., Blondel, O., Longo, F. J., Schnabel, W. E., Bell, G. I. and Welsh, M. J. (1996) Am. J. Physiol. **270**, C1255–C1261
- 18 Hagar, R. E., Burgstahler, A. D., Nathanson, M. H. and Ehrlich, B. E. (1998) Nature (London) 296, 81–84
- 19 Missiaen, L., Parys, J. B., Sienaert, I., Maes, K., Kunzelmann, K., Takahashi, M., Tanzawa, K. and De Smet, H. (1998) J. Biol. Chem. **273**, 8983–8986
- 20 Marchant, J. S., Beecroft, M. D., Riley, A. M., Jenkins, D. J., Marwood, R. D., Taylor, C. W. and Potter, B. V. L. (1997) Biochemistry **36**, 12780–12790
- 21 Bradford, M. M. (1976) Anal. Biochem. 72, 248-254
- 22 Marshall, I. C. B. and Taylor, C. W. (1993) J. Biol. Chem. 268, 13214–13220
- 23 Grynkiewicz, G., Poenie, M. and Tsien, R. Y. (1985) J. Biol. Chem. 260, 3440-3450
- 24 De Smedt, H., Missiaen, L., Parys, J. B., Bootman, M. D., Mertens, L., Van den Bosch, L. and Casteels, R. (1994) J. Biol. Chem. **269**, 21691–21698

- 25 Beecroft, M. D. and Taylor, C. W. (1997) Biochem. J. **326**, 215–220
- 26 Missiaen, L., Sipma, H., Parys, J. B., De Smet, P., Callewaert, G., Hill, E., McCarthy, T. V. and De Smedt, H. (1999) Pflügers Arch. 437, 691–694
- 27 Taylor, C. W. (1995) Biochem. Soc. Trans. 23, 637–642
- 28 Bootman, M. D. (1994) Curr. Biol. 4, 169-172

Received 4 June 1999/2 August 1999; accepted 10 September 1999

- 29 Sienaert, I., Missiaen, L., De Smedt, H., Parys, J. B., Sipma, H. and Casteels, R. (1997) J. Biol. Chem. **272**, 25899–25906
- 30 Mak, D.-O., McBride, S., Yue, Y. and Foskett, J. K. (1999) Biophys. J. 76, A375
- 31 Ramos-Franco, J., Fill, M. and Mignery, G. A. (1998) Biophys. J. 75, 834-839
- 32 Picard, L., Coquil, J.-F. and Mauger, J.-P. (1998) Cell Calcium 23, 339-348