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Members of the nuclear-receptor superfamily mediate crucial

physiological functions by regulating the synthesis of their target

genes. Nuclear receptors are usually activated by ligand binding.

Cytochrome P450 (CYP) isoforms often catalyse both formation

and degradation of these ligands. CYPs also metabolize many

exogenous compounds, some of which may act as activators of

nuclear receptors and disruptors of endocrine and cellular

INTRODUCTION

Overview of the cytochrome P450 (CYP) superfamily

CYPs constitute a superfamily of haem-thiolate proteins present

in prokaryotes and throughout the eukaryotes. CYPs act as

mono-oxygenases, with functions ranging from the synthesis and

degradation of endogenous steroid hormones, vitamins and fatty

acid derivatives (‘endobiotics ’) to the metabolism of foreign

compounds such as drugs, environmental pollutants, and

carcinogens (‘xenobiotics ’) [1]. At present, 17 mammalian CYP

gene families collectively encode about 60 distinct CYP forms in

any given species [2], a number expected to rise by the completion

of genome-wide sequencing projects. On the basis of crystal

structures of bacterial P450s, molecular modelling and site-

directed mutagenesis, the overall structure of mammalian

membrane-bound P450 has been deduced and residues required

for substrate binding, electron transfer and haem binding have

been identified [3,4].

CYPs in gene families 1–4 exhibit broad, but overlapping,

substrate and product specificities that may vary between cor-

responding forms from different species [1,5]. Their ability to

metabolize a wide array of xenobiotics [6], the inducibility of

many CYP forms by xenobiotics [7–9] and documented gene

polymorphisms [10,11] have all contributed to an explosion of

literature on CYP-dependent drug metabolism. To name just a

few examples, differences in the amounts and intrinsic capacities

of CYP forms to metabolize a particular drug or chemical

may influence profoundly drug–drug interactions, drug or car-

cinogen activation and detoxification, or species differences

in CYP-catalysed reactions of toxic chemicals. The CYPs in

families 1–4 also metabolize endogenous compounds, including

steroids and bile acids, fatty acids, prostaglandins and other

eicosanoids, and retinoids [6,12–15]. They also display complex

Abbreviations used: AF-1 and AF-2, activation functions 1 and 2; AhR, aryl-hydrocarbon receptor ; Arnt, AhR nuclear translocator ; CAR, constitutively
active receptor ; CPF, CYP7A promoter-binding factor ; CYP, cytochrome P450; DBD, DNA-binding domain; DEX, dexamethasone; DRn, IRn and ERn,
direct, inverted and everted repeat with n bp spacing; ER, oestrogen receptor ; FXR, farnesoid X receptor ; GH, growth hormone; GR, glucocorticoid
receptor ; HNF-4, hepatocyte nuclear factor 4 ; LBD, ligand-binding domain; LXR, liver X receptor ; NFI, nuclear factor I ; NR, nuclear receptor ; PB,
phenobarbital ; PBREM, PB-responsive enhancer module ; PCN, pregnenolone 16α-carbonitrile ; PPAR, peroxisome proliferator-activated receptor ;
PXR, pregnane X receptor ; RA, retinoic acid ; RAR, retinoic acid receptor ; RXR, retinoid X receptor ; SF-1, steroidogenic factor 1 ; SHP, short
heterodimerization partner ; TCDD, 2,3,7,8-tetrachlorodibenzo-p-dioxin ; TR, thyroid-hormone receptor ; VDR, vitamin D receptor.
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homoeostasis. This review summarizes recent findings that in-

dicate that major classes of CYP genes are selectively regulated

by certain ligand-activated nuclear receptors, thus creating tightly

controlled networks.

Key words: endobiotic metabolism, gene expression, gene tran-

scription, ligand-activated, xenobiotic metabolism.

sex-, tissue- and development-specific expression patterns which

are controlled by hormones or growth factors [16], suggesting

that these CYPs may have critical roles, not only in elimination

of endobiotic signalling molecules, but also in their production

[17]. Data from CYP gene disruptions and natural mutations

support this view (see e.g. [18,19]).

Other mammalian CYPs have a prominent role in biosynthetic

pathways. CYPs belonging to gene families 5 and 8A are involved

in thromboxane and prostacyclin synthesis, CYPs from families

11, 17, 19, and 21 are required for steroid-hormone biosynthesis,

CYPs from families 7, 8B, 24, 27, 46, and 51 catalyse reactions

in the pathways leading to the biosynthesis of bile acid, vitamin

D
$
and cholesterol and CYP26 is involved in retinoid metabolism

[1,2]. These CYPs usually have selective substrate specificities

and they are subject to tight tissue-specific and hormone-

dependent regulation [20,21]. In addition, mutations in the

structural genes for these CYPs underlie some common and

severe inherited diseases [22,23].

Thus CYP genes are uniquely positioned (i) to respond to both

endogenous and exogenous signals by changes in CYP gene

expression, and (ii) to modulate the strength and duration of

these signals and even to form new signalling molecules through

CYP-mediated metabolism (Figure 1). These signalling molecules

may then exert their function via the ligand-dependent nuclear

receptors described below.

Overview of the nuclear receptor (NR) superfamily

The NR superfamily codes for transcription factors that trans-

form extracellular and intracellular signals into cellular responses

by triggering the transcription of NR target genes. NRs share

significant similarity with classical steroid-hormone and thyroid-

hormone receptors (TRs) in their DNA-binding domain (DBD)
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Figure 1 Relationship between NRs, their ligands and CYP enzymes

NRs (grey box) are ligand-activated transcription factors regulating ( , ) the activity of CYP
(mid-pink box) and other genes (pale-pink box) to generate specific cellular responses to

activating ligands). These ligands are formed and degraded via specific CYP enzymes ( ). The

ligands may be xenobiotics, endobiotics (X, E) or their oxidation products (XO, EO).

and ligand-binding domain (LBD) [24] (Figure 2A). The super-

family also contains receptors for non-steroid ligands, such as

retinoid acid, prostaglandins and fatty acids [25] and so-called

‘orphan ’ receptors, for which no physiologically relevant acti-

vators or ligands are yet known [26]. Over 70 distinct members

of NR superfamily have been identified to date [27]. Distortions

in structural genes of some NRs cause certain types of leukaemia

and hormone-resistance syndromes [28–30].

Response element, DBD and dimerization domains

The response element of a NR is usually composed of two half-

sites related to the hexamer AGGTCA. The organization of the

binding site mirrors the nature of receptor binding (Figure 2B):

(i) steroid-hormone receptors bind as homodimers to palin-

dromes with a 3 bp spacing; (ii) many other hormone and

orphan receptors form heterodimers with the retinoid X receptor

(RXR) and bind to repeats with variable spacing; and (iii) some

receptors bind as monomers to a single AGGTCA-like site [31].

In some cases, the nucleotide identity in the half-sites, in their

spacer or in the 5« extension can dramatically affect the binding

specificity, affinity and}or the transactivation properties of the

NR [32–34]. On the basis of crystal structures and mutagenesis of

several NRs, the 70-amino-acid conserved DBD consists of two

zinc-finger subdomains followed by a C-terminal extension. The

amino acids around the fourth cysteine residue in the first zinc

finger define the binding specificity to the response-element half-

site [31,35]. The C-terminal extension is important for correct

DNA binding, especially for monomeric orphan receptors and

some RXR heterodimers [36,37]. The NR dimer formation is

accomplished by two distinct domains, one in the DBD and the

other involving helix 10 in the LBD [38–40].
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Figure 2 Structural domains in NRs and their DNA-binding sites

(A) The NRs display a common modular structure consisting of a DBD (red) and an LBD (pink).

Imbedded in these are the C-terminal extension (CTE) often required for correct DNA binding,

and the AF-2 activation core in the extreme C-terminus. NRs show great variability in their N-

terminus, which in some cases harbours an independent AF-1 activation domain. (B) The

binding of NR dimer to its cognate DNA element (black) is shown. Dimerization is indicated

by the overlap in the DBD and LBD domains. The currently known orientations of NR half-sites

are shown by solid arrows.

Ligand-binding and activation domains

About 250 C-terminal residues constitute the LBD that also

includes a region for ligand-dependent activation (activation

function 2; AF-2). Currently, several crystal structures of ligand-

free, agonist- or antagonist-bound LBDs are known [41]. Even

though the LBD is structurally based on a similar three-layered

helix fold in all NRs, the actual ligand-binding pocket shows

remarkable NR- and ligand-specific variation in its size and,

naturally, amino acids involved in ligand binding (e.g. [40–44]).

According to the current model of NR activation (Figure 3),

ligand binding induces great structural changes in the folding of

the LBD, with AF-2 being repositioned so as to form a

hydrophobic patch that is accessible to common co-activators

and co-integrators such as p300}CBP, SRC-1 and TIF2

[41,45,46]. Co-activators bind to ligand-bound NRs through

their LXXLL repeats (e.g. [47]) and they either possess intrinsic

histone acetyltransferase activity or recruit additional histone

acetyltransferases that relieve suppressive effects of the chromatin

to activate transcription [48]. Some, but not all, ligand-free

NRs interact with co-repressors such as N-CoR and SMRT

[46] to suppress gene transcription via recruitment of histone

deacetylases [49]. In addition, some receptors contain a separate

activation domain (AF-1) that is ligand-independent but can

interact with the AF-2 region [50,51].

Regulation of NRs

The effects of an NR on target gene expression are therefore

subject to regulation (and competition by other NRs) at DNA-

binding-site selection, selective dimerization, binding of distinct
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Figure 3 Model for gene activation and gene repression by NRs

Ligand binding or other activating processes induce the binding of the NR to the DNA element

(red). The ligand-bound NR (pink ellipses) then recruits a complex of common and/or NR-

specific co-activators and co-integrators (pale-grey ellipses), and turn on acetylation of histones

to activate transcription. In the absence of ligands or upon antagonist binding, some, but not

all, NRs bind co-repressors (mid-grey) to trigger deacetylation of histones and maintenance of

chromatin structure in an inactive state.

ligands and selective co-activator assembly (Figure 3). In ad-

dition, several other transcription factors may compete for the

same co-activators [45,46]. NR-mediated regulation may be

complex in other ways as well. For example, multiple isoforms of

NRs can be produced by multiple promoters or alternative

splicing in a cell-specific manner [52,53]. Some NRs are pre-

dominantly cytoplasmic, being translocated to the nucleus only

upon ligand binding [54,55]. Many NRs are phosphorylated

either upon ligand binding or through cross-talk from other

signalling systems [56,57].

NR REGULATION OF CYP GENES

Xenobiotic-, oestrogen- and retinoid-metabolizing CYP1 forms :
potentiation and suppression of AhR-dependent expression by
indirect action of steroid hormones and retinoids

CYP1A1, CYP1A2, and CYP1B1 can activate polycyclic hydro-

carbons and arylamines to carcinogens and produce catechol

oestrogens via 2- and 4-hydroxylation [6,58–60], reactions con-

tributing to carcinogenesis. Polyaromatic hydrocarbons such as

2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induce CYP1A

and CYP1B genes through binding to the aryl-hydrocarbon

receptor (AhR), translocation of the ligand-bound AhR into

the nucleus, and association of the AhR with its dimerization

partner, AhR nuclear translocator (Arnt). The AhR[Arnt

complex then binds to xenobiotic response elements and turns on

the CYP gene transcription in a wide variety of tissues [61]. The

induction can be modulated by the protein kinase C pathway

[62,63].

Glucocorticoid receptor

CYP1A1 mRNA induction is potentiated 2–4-fold by dexa-

methasone (DEX) in hepatic and endothelial cells [64–67]. In

hepatocytes, DEX acts through intron I of the CYP1A1 gene

[68], although a direct effect of the glucocorticoid receptor (GR)

has not been shown [69]. In contrast, CYP1B1 gene induction is

suppressed by DEX in fibroblasts in a GR-dependent fashion.

This effect is mediated by a 265 bp DNA fragment carrying the

AhR response elements, but no distinguishable GR elements

[70]. Modulation of CYP1A1 and CYP1B1 gene expression

probably takes place through protein–protein interactions be-

tween the GR and other transcription factors, as described

previously [71] or by competition for common co-regulators.

Oestrogen receptor (ER)

Maximal CYP1A1 induction depends on the presence of ERα in

some cell lines [72–74]. The ERα may act indirectly on cell type-

specific factors, because an acute treatment with anti-oestrogens

did not influence CYP1A1 or CYP1B1 expression in carefully

selected ERα-positive cells. Both genes were induced by TCDD,

regardless of the ERα status [75]. Conflicting results may stem

from sequestration of other factors by the over-expressed ERα

(¯ ‘ squelching’) or from activation of ligand-free ERα by

growth-factor-dependent kinases [76,77]. Cells derived from the

established ERα knockout mice [78] should assist in clarification

of this matter.

No oestrogen-responsive elements in the CYP1A1 gene have

been identified. A mutual competition between ERα and AhR

for their DNA elements [79] has been disputed [80]. Hoivik

et al. [80] also found no inhibition by oestrogen of CYP1A1

induction in Hepa 1c1c7 or in MCF-7 cells. In contrast, a

recent report indicated that ER agonists antagonized CYP1A1

induction only in oestrogen-regulated endometrial ECC-1 and

MCF-7 cells, but not in Hep3B hepatoma or in primary

keratinocytes [81]. No effect of oestradiol on DNA binding by

AhR nor on CYP1B1 induction was seen, and the ERα-mediated

suppression of CYP1A1 induction was reversed by ER anta-

gonists and by co-expression of nuclear factor I (NFI), a

transcription factor interacting with both AhR and ERα [81].

AhR and ERα potentially compete for other co-regulators as

well [82,83]. Such contradictory results could result from use of

different cell sublines with variable (transcription) factor levels or

from squelching effects. A role for ERβ that can be activated by

ERα ligands [84] or for ER-related receptors [85,86] should also

be considered. In conclusion, ERα seems to exert its effects on

CYP1 gene expression indirectly.

Retinoid receptors

In keratinocytes, retinoic acid (RA) has been reported either to

down-regulate [87,88] or up-regulate [89] CYP1A1 gene ex-

pression. The CYP1A1 gene harbours an unusual DR4 element

that conferred a modest RA-dependent increase in reporter-gene

activity [90]. In hepatocytes, retinoids had little effect on CYP1A1

or CYP1A2 mRNAs [91], while RXR- and RA receptor (RAR)-

selective ligands decreased hepatic CYP1A2 in intact animals

[92]. The retinoid receptors involved, their possible interplay

with the AhR, or the role of RA metabolism in these processes

are not known. Mouse strains deficient in RAR and RXR

isoforms [25] are available to address this problem and to

elucidate the role of retinoids and CYP forms in skin physiology

and carcinogenesis.

Cross-talk from AhR to NRs

The AhR and its ligands down-regulate ER-dependent gene

expression in MCF-7 breast-cancer cells and in rodent oestrogen-

responsive tissues [93]. Multiplemechanisms have been suggested,

and probably they are cell type- and gene-specific. For example,

binding of an ERα-containing complex to the cathepsin D gene

promoter was abolished by AhR recognizing an overlapping site

[94]. There is a potential for competition between AhR and ERα

for common co-regulators [81–83]. Finally, TCDD sometimes

reduced ligand and DNA binding by ERα [95,96]. CYP1A

inducers seem to reduce ligand binding to GR and RARs and

down-regulate peroxisome proliferator-activated receptor γ

(PPARγ) mRNA, leading to decreased receptor-dependent gene

expression [97–100]. AhR ligands also disturb thyroid hormone

homoeostasis [101] and suppress several sex-specific CYP

# 2000 Biochemical Society



324 P. Honkakoski and M. Negishi

mRNAs [102,103]. The nature of this general suppression of

cellular functions by AhR ligands is not clear. It may reflect the

limiting cellular amounts of co-activators and probably contri-

butes to TCDD toxicity.

The disruption of AhR gene leads to a marked liver disease

[104] and elevated hepatic levels of retinoids due to a decrease in

CYP-mediated catabolism of RA [18]. Intriguingly, this defect is

not due to the RA-inducible 4-hydroxylase CYP26 [18]. CYP1A

enzymes are known to metabolize retinoids [105,106], and intact

AhR is required for the basal expression of CYP1A2 [104]. Even

though the mouse CYP1A2 does not metabolize RA [18], it may

metabolize other retinoids [14], and thus the loss of CYP1A2

might contribute to retinoid accumulation in AhR null mice. This

hypothesis could be tested in Cyp1a2 null mice [107].

Steroid-metabolizing liver- and sex-specific CYP2A, CYP2C,
CYP2D, and CYP3A forms : hepatocyte nuclear factor 4 (HNF-4)
and orphan receptors contribute to basal expression and ERα
governs sexual dimorphism

Members of families CYP2 and CYP3A metabolize efficiently

both xenobiotics and endogenous compounds [6,7,12]. They also

display complex developmental, species-dependent and sexually

dimorphic patterns of regulation that may substantially differ

even between closely related CYP isoforms [16]. Several P450s in

this group exhibit liver-specific or liver-predominant expression

driven by distinct liver-enriched transcription factors [108,109].

Intriguingly, several sex-specific and growth- hormone (GH)-

dependent CYP mRNAs is suppressed by chemicals that can

activate AhR or NRs [102,103,110].

HNF-4

Comparison of CYP2A, CYP2C, and CYP2D gene sequences

indicated that many promoters contain a motif (HPF1) around

®100 bp that is important for binding of HepG2-specific proteins

and transcriptional activity of rabbit CYP2C genes [111]. The

consensus HPF-1 motif (5« RRRNCAAAGKNCANYY; see

Table 1) resembled the binding site for hepatocyte nuclear factor

4 (HNF-4), an liver-enriched orphan receptor that binds to DNA

as a homodimer [24,112]. In �itro competition and antibody

supershift assays, and co-transfection of HNF-4, indicated that

HNF-4 was the major regulator for rabbit CYP2C genes in liver

[113,114]. HNF-4 or HPF-1 motifs were also shown important

for activation of human CYP2C9 [115], mouse Cyp2a4 [116], rat

CYP3A [117,118] and mouse Cyp2d9 genes [119].

Orphan receptors

Related rat CYP2C7, CYP2C11, CYP2C12 and CYP2C13 genes

seem less dependent on HNF-4 [120,121]. Although HNF-4

could recognize the HPF-1-like elements in almost every CYP2C

gene, most of the binding in rat liver nuclear extracts was not due

to HNF-4; mutation of HPF-1 motifs did not significantly

reduce CYP2C promoter activity in HepG2 cells ; and co-

expression of HNF-4 in non-hepatic cells had only a marginal

effect on the promoter activity [120,121]. However, the sequences

of virtually all rat CYP2C elements do not completely conform

to the HPF-1 motif or HNF-4 site [111,112], but differ at critical

positions [111,114]. It appears that orphan receptors such as ear-

2 and ear-3 work in concert with other transcription factors to

regulate the basal CYP2C13 gene expression [120]. The same or

related orphan receptors may influence CYP3A gene expression

as well [117,118].

Even though the activities of rabbit CYP2C gene promoters

correlated well with their HNF-4-binding affinity, they did not

correspond to CYP2C mRNA levels in �i�o [114]. This suggests

that, in addition to HNF-4, other regulators are also important.

Nevertheless, the majority of the liver-specific CYP2A, CYP2C,

CYP2D and CYP3A genes are regulated by HNF-4 and related

orphan receptors. Small sequence variations within the binding

sites may lead to distinct binding preferences and, therefore, to

gene-specific regulation by various NRs.

ER

A new role for NRs in CYP gene transcription has recently

been discovered [122]. The sex-specific transcription of CYP2C11

and CYP2C12 genes is regulated by sexually distinct patterns of

GH secretion in the rat that can be abolished by neonatal

gonadectomy or hypophysectomy [123,124]. In the male mouse,

GH governs the expression pattern of Cyp2a4 and Cyp2d9 genes,

while in the female mouse, GH has little effect [125]. The GH-

elicited nuclear localization of transcription factor STAT5b in

the male mouse has emerged as the major regulator of the sex-

specific CYP gene expression [126]. The presence of a functional

ERα is absolutely required for proper sex-specific expression of

Cyp2a4 and Cyp2d9 genes in the liver [122]. Normally, STAT5b

is not detectable in nuclei from female liver. Disruption of ERα

leads to nuclear localization of STAT5b in females and appear-

ance of CYP2D9 mRNA; this masculinization can be abolished

by hypophysectomy. Thus ERα is probably needed for prog-

ramming of the hypophysis that involves sex-dependent expr-

ession of neuronal aromatase (CYP19) [127]. The recent Cyp19-

null mouse [128] could be useful in tackling this problem: even

though ERα can be activated by mechanisms other than ligand

binding [76,77], the lack of the natural ligand for ERα and ERβ

should shed new light on the role of oestrogen in sexual

differentiation.

Steroid- and fatty acid-metabolizing CYP2B, CYP3A and CYP4A
forms : inducible expression is governed by ligand-activated
nuclear receptors CAR (constitutively active receptor), PXR
(pregnane X receptor) and PPARα

CYP2B genes

CYP2B is a large gene subfamily that encodes versatile catalysts

of xenobiotic and steroid hydroxylation [7,129–131]. Even closely

related isoforms display distinct sex- and tissue-specific regulation

[132,133]. A hallmark for CYP2B gene regulation is the strong

inducibility of some isoforms by structurally diverse xenobiotics,

including industrial solvents, barbiturates, antimycotics, and

pesticides [7]. These chemicals are typified by phenobarbital (PB)

and they can up-regulate several hepatic enzymes involved in

xenobiotic metabolism [7] and other genes as well [134]. PB

induction does not require on-going protein synthesis, but it

involves an okadaic acid-sensitive dephosphorylation process

[135–138].

CYP2B response elements

Data from the CYP2B2-transgenic mice [139] and mutant rats

deficient in CYP2B2 induction [140] strongly suggested that PB-

responsive elements do not reside near the transcriptional start

site in CYP2B promoters. PB-responsive primary hepatocyte

cultures, in situ DNA injection techniques, and the availability of

active and inactive derivatives of a powerful inducer, 1,4-bis-[2-

(3,5-dichloropyridyloxy)]benzene [141] facilitated the discovery

of PB-responsive DNA elements (PB-responsive enhancer

module ; PBREM). PBREM-like elements are located at around

®2300 bp in rat CYP2B2 and mouse Cyp2b10 genes [142–144]
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Table 1 Examples of interactions between CYP genes and nuclear receptors

Abbreviations : NSAIDS, non-steroidal anti-inflammatory drugs ; MR, mineralocorticoid receptor.

CYP substrates/products that can NR affected by the CYP NRs known to Response Cell specificity

CYP gene serve as NR ligands substrate/product regulate CYP gene* element† NR effect‡ of NR action

CYP1A Oestrogens, retinoids ERs, RARs, RXRs ER, GR Indirect ER, GR # $ Ubiquitous

RAR DR4? RAR # $ Ubiquitous?

CYP1B Oestrogens ERs ER, GR Indirect ER # $ , GR $ Ubiquitous

CYP2A Androgens AR HNF-4 DR1 HNF-4 # Hepatocytes

CYP2B Xenobiotics§ Many CAR (PXR) DR4 CAR # Hepatocytes

Methoxychlor

Androgens§, oestrogens, retinoids AR, ER, RARs, RXRs GR GRE half-sites? GR # Hepatocytes?

CYP2C Xenobiotics§ Many HNF-4, orphan DR1 HNF-4 # , orphan # $ Hepatocytes

NSAIDs RAR Unknown RAR # Hepatocytes

Methoxychlor

Androgens, retinoids, AR, ER, RARs, RXRs

fatty acid derivatives PPARs

CYP2D Xenobiotics§ Many ER Indirect ER governs GH secretion Hypophysis

Androgens, oestrogens, AR, ER VDR Unknown VDR $ Hepatocytes

vitamin D3 HNF-4 DR1 HNF-4 # Hepatocytes

CYP3A Xenobiotics§ Many PXR (CAR) DR3, ER6 PXR # Hepatocytes, intestine

Methoxychlor HNF-4, orphan DR1 HNF-4 # , orphan # $ Hepatocytes

Androgens, corticoids, oestrogens,

pregnanes§
AR, ER, GR GR GRE half sites? GR # Hepatocytes?

CYP4A Fatty acid derivatives PPARs PPAR, (orphan) Extended DR1 PPAR # , orphan $ Hepatocytes

CYP26 Retinoic acid RARs, RXRs RAR Unknown RAR # Ubiquitous

CYP27B1 Vitamin D VDR Unknown VDR $ Kidney

CYP24 Vitamin D VDR VDR (RXR, orphan) DR3 VDR # , orphan $ Ubiquitous

Steroidogenic CYPs Androgens, oestrogens, corticoids,

pregnanes§
AR, ER, GR, MR SF-1, orphan Extended monomer SF-1 # , orphan # and $ Adrenals, gonads

CYP7A Precursors for steroids CPF Extended monomer CPF # Hepatocytes

LXR, FXR DR4 LXR # , FXR $ Hepatocytes

Bile-acid-forming CYPs Oxysterols LXR, FXR LXR?, FXR? Unknown

CYP51 Sterols LXR Unknown Unknown

* Nuclear receptors in parentheses have a tentative role.

† Binding elements related to AGGTCA motifs ( ? means role of the element is tentative or not clear ; indirect or unknown effects described in the text).

‡ Activating ( # ), repressing ( $ ) or conflicting ( # $ ) effects on CYP gene expression.

§ Many compounds in this class are activators of PXR, CAR or PPAR.
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and at ®1700 bp in human CYP2B6 [145]. Upon exposure of

liver to PB, an increase in protein binding to PBREM can be

detected in �i�o and in �itro [146,147]. The PBREM is organized

as an NFI-binding site flanked by two DR4 motifs (5« RKG-

YCANNNNAGTNSA). Sequence differences between the PB-

responsive Cyp2b10 and non-responsive Cyp2b9 genes and

transgenic studies established that both NR sites contributed to

the PB response, but the NFI site was not crucial [145,147–149].

Binding factors

Co-transfections in HepG2 and 293 cells showed that, among

several NRs, only the CAR [150] could activate the PBREM

[147]. Mutations in NR motifs or their spacing that decreased the

PB response in primary hepatocytes correlated well with loss of

in �itro binding to NR1 probe and with decreases in CAR-

dependent gene activation [147]. DNA-affinity purifications indi-

cated that both mouse CAR and RXR were enriched on Cyp2b10

NR1 columns by prior PB treatment of mice [147]. Importantly,

the mouse PXR was not detected in these fractions (T. Sueyoshi,

I. Zelko and M. Negishi, unpublished work); this can be now

understood by the relative weakness of PB as an activator of the

mouse PXR [151]. In mouse liver, the binding of CAR and RXR

to NR1 is PB-dependent and precedes the induction of CYP2B10

mRNA [147]. Furthermore, both CAR expression and Cyp2b10

gene induction are liver-specific [152,153].

Activators of CAR

PBREM mediated the induction by structurally diverse chemicals

ranging from methyl isobutyl ketone and pyridine to chlor-

promazine and polychlorinated biphenyls, with excellent cor-

relation with induction of endogenous CYP2B mRNA [145,148].

These results suggest that most, if not all, PB-type inducers

converge their effects on CAR or at least on proteins binding to

PBREM. Thus CAR can sense a wide spectrum of xenobiotics,

and it may activate CYP and other genes responsible for their

elimination.

Suppression of CAR by inhibitory ligands?

This inducer-dependent increase of CAR binding and activation

of PBREM in hepatocytes is in contrast with inducer-independent

activation of PBREM by CAR in HepG2 and 293 cells. Neither

cell line can transcribe the endogenous CYP2B6 gene in response

to PB. Because co-transfected CAR can activate reporter genes

without addition of ligands [150,152], one would have envisioned

a mechanism to keep CAR silent in the absence of inducers in

�i�o. The identification of 3α-hydroxy, 5α-reduced androstanes

as inhibitory ligands that can dissociate co-activators from CAR

[154] suggested a clear-cut mechanism: inducers could either

displace or prevent formation of steroids that repressed CAR.

Indeed, when HepG2 cells were transfected with a CAR expres-

sion vector, the endogenous CYP2B6 and transfected PBREM-

reporter genes became activated, suppressed by 3α-androstenol,

and re-activated in 3α-androstenol-treated cells by PB [145].

These results show that CAR is the PB-inducible regulator of

CYP2B genes.

However, the IC
&!

for 3α-androstenol suppression was much

higher than its levels in the blood [155]. Unlike the co-expression

of many NRs and their ligands [156], 3α-androstenol is produced

in testis, where CAR and CYP2B10 mRNAs are absent [152,153].

Production of 3α-androstenol in hepatocytes has not been

demonstrated, and it is possible that the true inhibitory ligand

for CAR is a related, more potent steroid. Several compounds

that deplete cellular sterols are also CYP2B mRNA inducers,

and addition of hydroxylated cholesterol can suppress PB

induction [157]. This agrees with the idea that primary hepato-

cytes can synthesize a sterol}steroid metabolite that attenuates

PB induction of CYP2B genes.

Suppression of CAR by cytoplasmic localization?

An alternative mechanism to suppress CAR has recently been

provided. In HepG2 cells, CAR spontaneously resides in

the nucleus as shown by transfection of a green fluorescent

protein–CAR fusion protein [158]. The nuclear CAR was con-

stitutively active, and its repression by 3α-androstenol did not

affect its localization [158]. In primary hepatocytes, native CAR

resided in the cytoplasm and was translocated in the nucleus only

after the administration of inducers. Furthermore, the trans-

location and DNA binding of CAR could be inhibited by

okadaic acid [158], an inhibitor of Ser}Thr protein phosphatases,

at concentrations known to suppress Cyp2b10 gene transcription

[136]. These results indicate that the mechanism to induce CYP2B

gene transcription might occur through activation of de-

phosphorylation-sensitive translocation of CAR. Such ligand-

induced nuclear translocation has been shown for other NRs

[55,159]. Hyperphosphorylation is often associated with de-

creased nuclear translocation of the NR [56]. In this scenario,

CYP2B inducers would trigger the release of CAR from cyto-

plasmic proteins, either indirectly or through ligand binding. The

latter possibility is more likely, since nuclear CAR can be

activated by inducers in 3α-androstenol-treated HepG2 cells. If

the conformation of CAR that is compatible with transactivation

is also required for translocation, then inhibitory ligands can

still keep CAR in an inactive form in the cytoplasm.

CYP3A genes

CYP3A enzymes are very active in steroid and bile acid 6β-

hydroxylation and oxidation of scores of xenobiotics [5,6,160].

Because of their wide substrate specificity and prominent ex-

pression in liver and gut, they are the most important group of

enzymes involved in drug metabolism [161]. Some CYP3A forms

display sex- and development-specific expression [16,162] and

inducibility. For example, rat CYP3A23, rabbit CYP3A6,

and human CYP3A4 genes are activated by a wide variety

of antibiotics, barbiturates and other drugs, glucocorticoids and

anti-glucocorticoids, and pesticides in a species-specific manner

[163,164].

CYP3A response elements

The DNA elements responsive to induction by DEX have been

located in the proximal promoters of CYP3A genes, upstream of

the HNF-4 binding site [117,163,165–167]. The rat CYP3A

genes contain a DR3 (direct repeat with 3 bp spacing) motif

(5« AGTTCANNNAGTTCA) at ®130 bp and an ER6 (everted

repeat with 6 bp spacing) motif (5« TGAACTNNNNNNA-

GGTCA) at ®160 bp. The rabbit CYP3A6 and the human

CYP3A genes contain only the ER6 motif in the proximal

promoter, while both DR3 and ER6 are present in a strong distal

enhancer in the CYP3A4 gene at ®7.7 kbp [168]. Unusually for

an NR, the same factor seems to bind both DR3 and ER6

elements, although data from Huss et al. [166] indicated that

mutations that destroyed the ER6 motif but created a DR4 or

DR3 motif increased the response to DEX. Studies by Blumberg

et al. [169] indicated that DR3 and DR4 were preferred over

DR5.
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Binding factors

The cloning of the mouse PXR [170] led to the discovery that

not only glucocorticoids, but also antiglucocorticoids such as

pregnenolone 16α-carbonitrile (PCN), activated the PXR,

matching the profile of known CYP3A inducers. The mouse

PXR could bind to and transactivate the rat CYP3A DR3 motif

in response to natural and synthetic pregnanes [170]. Later on, the

identification of human PXR}SXR}PAR-1 [151,169,171], its

ability to bind to both ER6 and DR3 motifs, and their co-

expression with CYP3A isoforms strongly indicated that PXR

can regulate CYP3A genes.

PXR ligands

Both human and mouse PXR can activate reporter genes in

response to many steroids, antimycotics and antibiotics. The

species-specific induction of CYP3A forms by, for example,

rifampicin or PCN [163] can now be explained by their ability

to activate only the human or mouse PXR, respectively

[151,169,171]. This selective ligand binding can be understood by

relatively low amino acid conservation in the LBD between the

mouse andhumanPXR.Therefore PXRmaybe awide-specificity

receptor for both steroids in general and xenobiotics, although

the possibility of a potent endogenous ligand has not been ruled

out.

Cross-talk to CAR and PXR

The DNA binding preferences of CAR and PXR are quite

similar, so it is possible that these NRs may activate both

CYP3A and CYP2B genes. CAR can transactivate the CYP3A4

ER6 [145]. The contribution of PXR to CYP2B induction is

unknown, but rat CYP2B1 gene is inducible by PB in intestine

[173], where PXR is more abundant than CAR [150,152,170].

DEX, a ligand for mouse PXR [170], can induce CYP2B forms

in hepatocytes [136,174]. However, DEX does not activate CAR

[147] or PBREM in primary hepatocytes, and PXR was not

detected in NR1-affinity-purified fractions (P. Honkakoski,

T. Sueyoshi, I. Zelko and M. Negishi, unpublished work). Ap-

parently, CAR does not bind DEX, and PXR does not sig-

nificantly bind to PBREM in �i�o. These data agree with findings

that rat CYP2B and CYP3A gene induction by PB and DEX

proceed by distinct mechanisms [151,175]. Some overlap in CAR

and PXR targets may exist, but the establishment of relative

roles of CAR and PXR in induction of CYP2B, CYP3A and

other genes in �i�o awaits detailed studies on their DNA-

and ligand-binding preferences, and ultimately, the generation

of CAR- and PXR-null mice.

DEX may act on CYP2B genes through another site. A

functional GR element has been described in the CYP2B2 gene

at ®1350 bp [176], but its role in regulation of CYP2B genes is

not known. Similarly, human CYP3A5 and rat CYP3A1 contain

elements in their upstream regions that can bind the GR and

transactivate in response to DEX [177,178]. Because DEX can

synergize the induction by PB and PCN [65,179], these elements

could work in concert with PXR. Another explanation for

synergism could be the increase of PXR mRNA by DEX [180].

It should be borne in mind that DEX or glucocorticoids are

required for expression of other CYP genes and for the main-

tenance of hepatocytes [7,65,69,136], so the DEX effects may not

be gene-specific but rather depend on maintenance of the overall

transcription capacity.

Thyroid hormone has been reported to suppress PB induction

of CYP2B and CYP3A genes [7,181]. The actual targets are not

known, but thyroid hormone does not influence PBREM activity

[182]. The effects of retinoids on CYP2B and CYP3A gene

expression are inconclusive [91,92]. The 25-hydroxycholesterol

that suppressed CYP2B induction [157] can also activate liver X

receptors (LXRs) [172], which may then interfere with CAR

signalling. Some orphan receptors seem to bind to the same

elements as PXR [117,118]. SHP (short heterodimerization

partner) is a liver-enriched NR lacking a DBD which has been

reported to suppress CAR-mediated transactivation [183]. Its

role in CYP2B gene induction has not been studied, but a

specific role seems unlikely, because the promiscuousness of SHP

[183,184].

CYP4A genes

CYP4A isoforms are active in ω-hydroxylation of fatty acid

derivatives such as arachidonic acid, prostaglandin A, and other

eicosanoids, while they have less activity towards xenobiotics

[15,185]. Their expression in liver and kidney can be increased by

industrially used phthalate esters, lipid-lowering fibrate drugs,

and other chemicalswhich share the property of being peroxisome

proliferators [185,186].

Binding factors

The factor activated by peroxisome proliferators is PPARα [187].

PPARα was characterized before the binding elements respon-

sible for induction of CYP4A genes were discovered. Mice

lacking PPARα are refractory to induction of genes encoding

CYP4A and other fatty-acid-metabolizing enzymes, peroxisome

proliferation and carcinogenesis [188]. Two other PPAR isoforms

(PPARδ and PPARγ), with distinct tissue specificities and

functions, are also known [189].

Response element

The binding and activation of CYP4A promoter by PPARα has

been well studied in rabbit CYP4A6 [190]. This gene harbours

several PPAR sites, among which a cluster of four imperfect

AGGTCA motifs at around ®660 bp constitutes the major

response element. The motifs 2 and 3 are organized as a typical

PPARα[RXR DR1 element (where DR1 is a direct repeat with

1 bp spacing), similar to that in rat CYP4A1 gene [191]. Both

binding affinity and specificity of PPARα[RXR for the CYP4A6

DR1 motif were improved by 5«-flanking sequences that are

conserved in other PPAR-responsive genes (5« AWCTRGGN-

CANAGKTCA). The extra 5« nucleotides seem to decrease the

binding of RXR[RXR dimers and other NRs [192] that have

affinity for the single DR1 motif [193]. With use of natural PPAR

response elements, it was established that the 5« extension

sequence of AWCT is crucial for PPARα and PPARγ binding

and transactivation [34]. A less strict dependence on the 5«
extension was found in a PCR-based binding-site-selection study

[194]. The similarity of PPAR response elements to the binding

sites of monomeric NRs [36] indicates that the C-terminal

extension of the PPARα DBD can discriminate among different

response elements to generate a specific cellular response [37].

PPAR ligands

In addition to peroxisome proliferators, endogenous compounds

such as fatty acids, leukotriene B
%

and 8(S)-hydroxyeicosa-

tetraenoic acid bind to PPARα [195–197]. The ligand specificity

of PPAR isoforms seems to be distinct, but overlapping, e.g.

several prostaglandins activate all PPARs [197], PPARα and
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PPARδ isoforms are activated by fatty acids [198], and non-

steroidal anti-inflammatory drugs prefer PPARα and PPARγ

[199]. Species-specific ligand binding for PPARα has been

described as well [200,201]. This broad ligand specificity of

PPARs can now be understood by the large ligand-binding

pocket and unique ligand access cleft in PPARγ [44]. It is again

possible that the function of PPARα is to sense a wide spectrum

of low-affinity ligands.

Cross-talk to PPARα

The PPARα-dependent expression is also subject to cross-talk by

other NRs expressed in liver such as TAK1, LXR, TR and

PPARδ [202–205] and possibly by other DR1-recognizing

receptors such as ARP-1 and HNF-4 [193]. The mechanisms

seem to involve competition for both binding sites and common

co-activators and ‘ inactive ’ heterodimer formation. In �i�o

induction of CYP4A2 gene was suppressed by physiological

levels of thyroid hormone, while that of CYP4A1 and CYP4A3

required higher doses [206].

The co-expression of CYP4A genes and PPARα [190] and data

from PPARα-null mice [207] indicate that other PPAR isoforms

do not regulate CYP4A genes in the liver. However, there is some

PPARα-independent expression of CYP4A genes in PPARα-null

mice [208]. Both PPARα and PPARγ are able to activate the

CYP4A6 promoter in transient transfections [209]. Thus it is

conceivable that other PPAR isoforms may regulate other

CYP4A genes with similar binding sites as well. CYP4A sub-

strates often are PPAR ligands [189], so it is not unreasonable to

look for PPAR-dependent CYP4A (or other CYP) genes in

tissues involved in lipid metabolism.

Retinoid-metabolizing CYP forms : synthesis by CYP1A and
retinoid-inducible catabolism by CYP26 and CYP2C7

Retinoids are a groupof vitaminAderivatives that have profound

effects on cell growth and differentiation [25,210]. They utilize

two distinct NR signalling pathways, the RARs and the RXRs,

which bind to DR2}DR5 and DR1 response elements respect-

ively. RARs and RXRs are thought to be activated by all-trans-

RA and 9-cis-RA respectively [31], although additional ligands

are being found.

Formation of retinoids

RAs are synthesized from vitamin A by sequential reactions

involving alcohol dehydrogenases or short-chain dehydro-

genases, aldehyde dehydrogenases and several CYP isoforms

[14]. CYP2B and CYP2C isoforms primarily convert retinoids

into presumably inactive 4-hydroxy derivatives while rabbit

CYP1A forms can catalyse both RA formation and 4-hydroxyl-

ation [105,106,211]. CYP2J4 also produces RA [212]. Novel 4-

oxo acid and aldehyde derivatives are also powerful and abundant

RAR ligands [213,214], and they may be produced by CYP1A2

[106].

Catabolism of retinoids

A novel RA 4-hydroxylase gene, CYP26, is highly expressed in

liver and brain and present in several cell lines [215,216]. CYP26

mRNA is induced by RA via action of RARγ[RXRα hetero-

dimers through as-yet-undefined DNA elements [217]. Because

of its RA-dependent regulation and wide expression, CYP26 is

thought to control the level and the activity of RA [215,217].

However, this form is highly specific to all-trans-RA, so elim-

ination of other active retinoids requires the action of other CYP

enzymes. This view is supported by the fact that the presence of

CYP26 cannot prevent accumulation of retinoids in AhR-null

mice [18]. Of interest are the known RA and retinol 4-

hydroxylases, rat CYP2C7 and human CYP2C8 [211,218,219].

Rat CYP2C7 gene is down-regulated by vitamin A deficiency

and up-regulated by retinoids through the RAR pathway

[220,221]. Intriguingly, all-trans-RA-dependent induction could

be abolished by the CYP inhibitor ketoconazole, and 4-oxo-RA

was an inducer of CYP2C7 mRNA [221]. This controlled

regulation by retinoids suggests a special role for CYP2C7 in

hepatic retinoid metabolism. The site of RAR action and its

potential interplay with HNF-4 and orphan receptors [120] on

CYP2C7 promoter are yet not known.

Vitamin D-metabolizing CYP forms : synthesis by CYP27A1 and
CYP2D25, and vitamin D-inducible catabolism by CYP24

Vitamin D is a precursor for biologically active 1α,25-dihydroxy-

vitamin D
$
, which has a central role in regulation of calcium

homoeostasis and cell differentiation [21,222]. The 1α,25-

dihydroxyvitamin D
$

binds to the vitamin D receptor (VDR),

VDR[RXR heterodimer then binds to DR3 elements present in

target genes and it activates their transcription via AF-2- and co-

activator-dependent mechanisms [223,224]. Some VDR targets

such as genes for parathyroid hormone and CYP27B1 are down-

regulated, but the ability of VDR to bind co-repressors or to

interfere with positively acting transcription factors is not yet

resolved [21,225]. Formation of VDR homodimers and interplay

with thyroid-hormone signalling has been suggested [226], but

their physiological role has not yet been established. With respect

to CYP forms not involved in vitamin D metabolism, CYP3A4

mRNA is induced by 1α,25-dihydroxyvitamin D
$
in Caco-2 cells

[227], although the direct binding of VDR to the CYP3A4

promoter or its DR3 element have not been established.

Formation of 1α,25-dihydroxyvitamin D3

1α,25-Dihydroxyvitamin D
$

is formed by 25-hydroxylation in

liver and 1α-hydroxylation in kidney. The first reaction can be

catalysed by CYP27A1, the mitochondrial sterol 27-hydroxylase

[228,229]. Biochemical studies and evidence from CYP27-

deficient patients suggested that another microsomal CYP form

is the physiologically more important 25-hydroxylase [21]. This

was supported by the fact that CYP27A1-null mice have normal

plasma levels of 1α,25-dihydroxyvitamin D
$
[230]. The cloning of

the microsomal 25-hydroxylase rather unexpectedly indicated

that this form is CYP2D25 [231]. This emphasizes again that

CYPs in families 1–4 have important physiological functions.

The 25-hydroxylation can be suppressed by 1α,25-dihydroxy-

vitamin D
$

by an unknown mechanism [232].

1α-Hydroxylation is catalysed by renal CYP27B1 which is

down-regulated by 1α,25-dihydroxyvitamin D
$
and tightly regu-

lated by other factors [21,233]. The down-regulation does not

take place in VDR-null mice [233]. No distinct VDR response

elements in CYP27B1 genes have yet been identified. The mouse

CYP27B1 ®1.7 kbp promoter was unresponsive [234], while

elements within the ®1100 bp of the human CYP27B1 gene

mediated activation by parathyroid hormone that was reduced

by 1α,25-dihydroxyvitamin D
$

[235,236].

Catabolism of 1α,25-dihydroxyvitamin D3

The mitochondrial 1α,25-dihydroxyvitamin D
$

24-hydroxylase,

CYP24 is a well-characterized vitamin D target gene [237].
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CYP24 inactivates vitamin D to calcitroic acid [238]. The critical

role for CYP24 in vitamin Dcatabolism was proved by generation

of Cyp24-null mice which exhibited hypercalcaemia and ab-

normal bone histology [21,239]. The CYP24 gene is expressed in

many vitamin D target tissues, and it is up-regulated by its

substrate through VDR[RXR-dependent binding to two con-

served response elements at about ®300 bp and at ®150 bp

[240,241]. Retinoids can increase CYP24 gene expression by

RAR[RXRbinding toVDRresponse elements [242]. The orphan

receptor TR4 which is co-expressed with VDR can down-regulate

CYP24 expression [243].

Steroidogenic CYP forms : complex tissue-specific and cAMP-
inducible expression is controlled by steroidogenic factor 1 (SF-1)
and gene-specific regulators

Steroid hormones are important endocrine factors that regulate

sexual differentiation and maintenance, ion balance and carbo-

hydrate and lipid metabolism. Steroid hormones act through

their classical ligand-activated receptors, which in turn modify

the expression of their target genes [24].

Tissue-specific expression

Steroid hormones are produced from cholesterol via the action

of six CYP enzymes (CYP11A, CYP11B1, CYP11B2, CYP17,

CYP19, CYP21), aided by 3β- and 17β-hydroxysteroid dehydro-

genases [244]. These CYPs are expressed in a cell-specific manner.

For example, adrenal cortex that produces gluco- and mineralo-

corticoids, but not oestrogen, expresses all but the CYP19 gene,

and oestrogen-forming ovary expresses CYP11A, CYP17 and

CYP19 genes [20,244]. Also brain, adipose tissue, placenta

and some fetal tissues express selected steroidogenic CYPs,

probably reflecting a local requirement for hormones [244–246].

The expression pattern of CYP genes correlates with that of

the SF-1 [247,248]. SF-1 is an orphan receptor that binds to

extended AGGTCA-like half sites (5« YCAAGGYC or RRAG-

GTCA) present in all steroidogenic CYP proximal promoters

[247,249]. Mutation of these SF-1 binding sites can decrease the

CYP promoter activity in cells of adrenal or gonadal origin

[32,250–254]. SF-1 also directs the organogenesis of adrenals and

gonads, because SF-1-null mice lack these organs [247,255].

Oxysterols were found to activate the SF-1 [256], but their role in

physiological regulation of CYPs has been questioned [257,258].

SF-1 activates genes through AF-2 [259] and p300}CBP co-

regulators [260].

SF-1 is not the sole cell-specific regulator of steroidogenic

CYP genes, because adrenals or gonads that express SF-1 lack

CYP19 or CYP21 and CYP11B mRNAs respectively. This idea

is reinforced by findings that CYP11A mRNA is present in

placenta, skin, and hindgut of SF-1-null foetuses [246,261] and

that mRNAs for several CYPs, but not SF-1, are detectable in

several brain regions [245]. Contribution of other NRs that have

affinity for SF-1 binding sites [32,85,262,263] or unrelated factors

[264,265] requires further studies.

Cyclic AMP-induced expression

The steroidogenic CYP genes are positively regulated in response

to trophic peptide hormones through activation of cAMP path-

way [266]. Several studies have indicated SF-1 as one cAMP

target for CYP11B1, CYP11A, CYP17 and CYP19 genes

[250,252,253,259,267,268]. However, SF-1 confers only a partial

cAMP response, indicating a need for other transcription factors

[250,268] such as Sp1 [253,260,269]. For example, corticotropin

(ACTH) induces binding of another orphan receptor that binds

to the SF-1 site at ®65 bp, resulting in increased CYP21 gene

transcription [32]. Other regions of the CYP21 gene seem to

contribute to the cAMP response [270]. Loss of trophic hormones

down-regulates steroidogenic CYP levels without affecting SF-1

[271]. Recently, phosphorylation of SF-1 by mitogen-activated

kinases was suggested to confer maximal transactivation [51].

There is no clear evidence for increased up-regulation or phos-

phorylation of SF-1 in response to trophic hormones, with the

possible exception of CYP19 regulation [267,268]. Therefore

cAMP-dependent regulation probably requires factors unique to

each steroidogenic CYP gene.

Cholesterol-metabolizing CYP forms : bile acid synthesis is
controlled by ligand-activated LXR, farnesoid X receptor (FXR)
and a liver-specific receptor

Cholesterol synthesis and CYP51

The metabolism of cholesterol is regulated at the biosynthetic

pathway by oxysterols that prevent activation of SREBP family

of regulators [272]. The biosynthetic pathway involves only one

CYP enzyme, the lanosterol 14α-demethylase CYP51 [273].

CYP51 produces so-called meiosis-activating sterols [274] that

can activate LXRα [275] and possibly the ubiquitously expressed

LXRβ [172] as well. The human CYP51 mRNA was suppressed

by oxysterols in HepG2 and adrenal cells [276], while the rat

CYP51 was induced by gonadotropin in the ovary [277], remi-

niscent of steroidogenic CYP regulation. Both mechanisms are

currently unknown, but may involve NRs.

Cholesterol disposal, CYP7A and CYP7B

The level of cholesterol is controlled also by catabolism to bile

acids [278]. Bile acids are formed from cholesterol via two routes.

The first is the liver-specific 7α-hydroxylation catalysed by

CYP7A [279] which is down-regulated by the ultimate product

chenodeoxycholic acid and activated by dietary cholesterol

[278,280]. The second route involves CYP7B, the oxysterol 7α-

hydroxylase that is expressed predominantly in brain and liver

[281,282]. The substrates for CYP7B can be produced at least

by sterol 27-hydroxylase CYP27A1 [228,229], a brain-specific

24(S)-hydroxylase CYP46 [283] and a non-CYP cholesterol

25-hydroxylase [284].

The up-regulation of CYP7A activity by excess cholesterol

involves the liver-predominant LXRα receptor. LXRα could be

activated by several oxysterols, including the 24(S)-OH derivative

[275]. LXRα could bind to, and activate, the CYP7A promoter

via the DR4 motif at ®74 bp, while the related LXRβ was not

able to bind to DR4 well [285]. The DR4 motif is contained

within the proximal of the two elements crucial for the bile acid

response [286]. These findings were confirmed by the report that

LXRα-null mice could not up-regulate their Cyp7a gene when

challenged with high dietary cholesterol levels [287].

The tight liver-specificity of CYP7A gene expression cannot be

determined by LXRα alone. A liver-specific nuclear receptor,

CYP7A-promoter-binding factor (CPF) [288], was shown to

bind and activate the CYP7A promoter. The monomeric

AGGTCA-like binding site at ®136 bp for CPF is contained

within the second of the bile acid response elements identified by

the Chiang group [286,288]. This suggests that both CPF and

LXRα are needed for CYP7A gene regulation. Interestingly,

CPF is very similar to SF-1 [247,288]. Because some oxysterols

can activate SF-1 [256], it is conceivable that CPF and LXRα

regulate CYP7A gene expression in parallel in response to

oxysterols.
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The third part of CYP7A regulation, the suppression by bile

acids, is also being unravelled. First, the disruption of the

Cyp27a gene and subsequent decrease in bile acid synthesis leads

to a compensatory up-regulation of CYP7A mRNA [230].

Secondly, bile acids such as chenodeoxycholic acid have now

been established as ligands for FXR [289,290], an NR expressed

mainly in liver and kidney [33,291]. The ligand-bound FXR will

suppress the CYP7A gene, as expected from in �i�o studies. On

the other hand, it can activate the gene for bile-acid-binding

protein [292] or reporter genes driven by heterologous promoters

[290]. LXRα-mediated transcription from the original LXR DR4

motif [33] can be repressed by ligand-bound FXR [290], sug-

gesting a direct communication between the two receptors. It is

not yet known by which mechanism the FXR-mediated sup-

pression occurs. FXR could interfere also with CPF [288] or with

other NRs potentially binding to CYP7A promoter [293], al-

though the role of the latter proteins in CYP7A gene expression

is disputable.

Oxysterol-forming CYP27A1 and CYP46 forms

CYP27A1 catalyses several hydroxylation reactions on the

cholesterol side chain [228,229,294]. The regulation of this form

has not been studied in detail, but rabbit CYP27A1 was up-

regulated by cholesterol [295], while the effects of bile acids point

towards down-regulation [296,297]. The function of CYP46 is

the removal of extra cholesterol from the brain [298] via

production of the 24(S)-OH derivative [283]. The presence of

LXRβ in the brain and its activation by the 24(S)-OH cholesterol

suggest a potential activation mechanism for CYP46 gene that

remains to be tested.

Bile acid-forming CYP8B and other CYP forms

CYP8B constitutes a further step in bile acid synthesis by

catalysing liver-specific 12α-hydroxylation [278]. CYP8B mRNA

is suppressed at the pretranslational level by thyroid hormone

[299] and up-regulated by bile acid sequestration, concomitant

with CYP7A mRNA increase [300]. Further metabolism of bile

acids by side-chain and 6β-hydroxylation are catalysed by

CYP3A and CYP2B enzymes [131,160] that are regulated

by PXR and CAR. The above reports suggest that similar NR-

dependent mechanisms that control CYP7A gene expression

may also regulate other enzymes involved in cholesterol and bile

acid metabolism. Results testing this hypothesis should be

forthcoming.

CONCLUSIONS

Feedback regulation

As detailed in previous sections, the CYP genes and nuclear

receptors form a complex network that may involve feedback

regulation (see Figure 1 and Table 1). First, several CYPs

degrade ligands that activate the NR responsible for regulation

of this specific CYP form, thus creating a direct feedback loop.

Clear examples of this can be recognized in CYPs metabolizing

vitamin D (CYP24 and VDR) and retinoids (CYP26, CYP2C7

and RAR). PPARα-, PXR- and CAR-activated CYP4A,

CYP3A and CYP2B genes fall into this category: fatty acids and

steroid hormones serve as ligands for PPARα and PXR which in

turn increase ligand elimination by CYP4A-mediated ω-hydroxy-

lation [185] and CYP3A-catalysed 6β-hydroxylation respectively

[170]. Methoxychlor activates CAR and stimulates its own

metabolism by CYP2B [145,301]. Candidates for this class might

include CYP2A isoforms which are stereospecific androgen 7α-

hydroxylases [302], present in testis and liver that are

sites for androgen production and elimination respectively.

Secondly, steroidogenic, vitamin D (CYP2D25) and cholesterol-

metabolizing CYPs produce ligands for major classes of NRs,

but the immediate CYP product is not a ligand for the suppressor.

Instead, a more complex loop, either through the pituitary via

action of trophic hormones (e.g. sex steroids and CYP17, CYP19,

sex-specific hepatic CYPs) or through suppression by ultimate

products (e.g. bile acids and CYP7A), is employed. Thirdly, some

CYPs may ensure a steady elimination of a wide range of

endobiotics or xenobiotics. This is made possible by prominent

basal and liver-specific CYP gene expression that is controlled by

HNF-4 or related orphan receptors. Certain CYPs in gene

families CYP2A, CYP2C, CYP2D and CYP3A belong to this

class. For these, no activating ligand or feedback loop are

evident. However, they may be indirectly suppressed by CYP

inducers or NR ligands (e.g. [102,103,110]).

Formation of NR ligands

In addition to the above feedback regulation, CYPs can often

produce metabolites that act as ligands for unrelated NRs.

Especially in the case of xenobiotics, this can result in production

of potential disruption of cellular homoeostasis. For examples,

CYP1A2 and CYP2C19 enzymes form oestrogenic metabolites

from methoxychlor [303], and a metabolite of PPARα ligand can

activate the PPARγ [201]. In addition, inefficient removal of

xenobiotics by CYPs may disrupt NR signalling (e.g. [93,98–100].

In the case of endobiotics, production of such ‘unrelated ’ ligands

may be less frequent, but formation of LXRα-activating sterols

by CYP51 and CYP46 and retinoid formation by CYP1A may

be such instances, and the androgen action in the brain is

mediated by the CYP-dependent metabolism to oestrogen and

ERα [122,127]. More details of this interwoven regulation

and metabolism of CYP genes by endobiotics and xenobiotics

are clearly needed.

The past decade has brought new evidence that enhances the

role of CYP enzymes as active participants in the control of

cellular homoeostasis, instead of passive, low-specificity enzymes

for general chemical elimination. CYP enzymes are involved in

regulation of cellular levels of many endocrine and intracrine

compounds that act via nuclear receptors. The regulatory triangle

involving ligands, CYPs and nuclear receptors is completed by

recent findings that ligand-activated nuclear receptors are re-

sponsible for the expression of major classes of CYP enzymes.
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