Rapid activation and partial inactivation of inositol trisphosphate receptors by adenophostin A

Charles E. ADKINS*, Frank WISSING*, Barry V. L. POTTER† and Colin W. TAYLOR*1

*Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QJ, U.K., and †Wolfson Laboratory of Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath BA7 7AY, U.K.

Adenophostin A, the most potent known agonist of inositol 1,4,5-trisphosphate (Ins P_3) receptors, stimulated ${}^{45}Ca^{2+}$ release from the intracellular stores of permeabilized hepatocytes. The concentration of adenophostin A causing the half-maximal effect (EC₅₀) was 7.1±0.5 nM, whereas the EC₅₀ for Ins P_3 was 177±26 nM; both responses were positively co-operative. In rapid superfusion analyses of ${}^{45}Ca^{2+}$ release from the intracellular stores of immobilized hepatocytes, maximal concentrations of adenophostin A or Ins P_3 evoked indistinguishable patterns of Ca²⁺ release. The Ca²⁺ release evoked by both agonists peaked at the same maximal rate after about 375 ms and the activity of the receptors then decayed to a stable, partially (60 %) inactivated state with a half-time ($t_{1/2}$) of 318±29 ms for

INTRODUCTION

Inositol 1,4,5-trisphosphate (Ins P_3) receptors are intracellular Ca²⁺ channels that are regulated by both Ins P_3 and Ca²⁺ [1]. Most analyses of Ins P_3 receptors have used either the endogenous ligand, Ins P_3 , or related inositol phosphates [2], but the demonstration that adenophostins, products of the fungus *Penicillium brevicompactum*, are the most potent known agonists of Ins P_3 receptors [3] has provided additional opportunities to examine Ins P_3 -receptor behaviour. Adenophostins A and B are not metabolized by the enzymes that degrade Ins P_3 [4], they do not bind to Ins P_4 receptors [4], and in both functional and radioligand-binding assays of all three Ins P_3 -receptor subtypes they bind with 10–100-fold greater affinity than Ins P_3 [3,5–11].

The structure of adenophostin suggests that its glucose 3'', 4''bisphosphate structure and adjacent 2''-hydroxy may mimic the critical 4,5-bisphosphate and 6-hydroxy of $InsP_3$ (Figure 1A), and that the adenine group may increase the strength of the binding either by improving the positioning of the 2'-phosphate (analogous to the 1-phosphate of $InsP_3$) or through a more direct interaction (presumably hydrophobic) with a residue close to the $InsP_3$ -binding site of the receptor [4,7,12]. Because syntheses of adenophostins and their analogues involve fewer steps than syntheses of chiral inositol phosphates, adenophostins provide an alternative approach to developing high-affinity selective ligands of $InsP_3$ receptors [8,13].

Many observations are consistent with the notion that adenophostins are simply high-affinity analogues of $InsP_3$. Adenophostin A and $InsP_3$ have similar EC_{50}/K_d ratios [6,14], consistent with the two agonists having similar efficacy. Adenophostin A can, like $InsP_3$, trigger Ca^{2+} oscillations ([15,16], but see [17]), and chronic exposure to either $InsP_3$ or adenophostin A downregulates type-1 $InsP_3$ receptors [18]. The quantal patterns of adenophostin A and 321 ± 22 ms for $InsP_3$. Dissociation rates were measured by recording rates of $InsP_3$ -receptor channel closure after rapid removal of agonist. The rate of adenophostin A dissociation $(t_{1/2}, 840\pm195 \text{ ms})$ was only 2-fold slower than that of $InsP_3$ $(t_{1/2}, 436\pm48 \text{ ms})$. We conclude that slow dissociation of adenophostin A from $InsP_3$ receptors does not underlie either its high-affinity binding or the reported differences in the Ca²⁺ signals evoked by $InsP_3$ and adenophostin A in intact cells.

Key words: analogue, Ca^{2+} channel, Ca^{2+} mobilization, hepatocyte, kinetics.

 Ca^{2+} release mediated by reconstituted type-1 Ins P_3 receptors are also similar for Ins P_3 and adenophostin A [5].

However, there are also differences in the responses evoked by adenophostin A and $InsP_3$. In both functional [5,13] and binding assays [5,7] of $InsP_3$ receptors, the interactions with adenophostin A are often more positively co-operative than those with $InsP_3$. It has been suggested that adenophostin A, though not $InsP_3$, can activate store-regulated Ca^{2+} entry [19] without detectably emptying intracellular Ca²⁺ stores [20], although subsequent studies [11,21,22] suggest that the disparity probably results from slow diffusion of adenophostin A within the cytosol allowing localized emptying of stores. Several authors have suggested that high-affinity binding of adenophostin A to $InsP_{a}$ receptors may impede its diffusion [11,16,22], but the density of Ins P_3 -receptor binding sites ($\leq 2 \text{ nM}$) [23] suggests that they may only minimally influence diffusion of even the lowest concentrations of adenophostin A used (10 nM). Adenophostin A may, of course, bind to other sites and, because it is used at much lower concentrations than $InsP_3$, these sites may significantly deplete the free ligand concentration. The effects of cytosolic Ca²⁺ on InsP₃ receptors may also differ according to whether they have $InsP_3$ or adenophostin A bound [24,25]. Finally, the elementary Ca²⁺-release events, Ca²⁺ puffs, evoked by adenophostin A, decay more rapidly than those evoked by $InsP_3$ [17]. The mechanisms underlying these different effects of $InsP_{a}$ and adenophostin A are unclear, but they are commonly assumed to be a consequence of adenophostin A dissociating from $InsP_3$ receptors more slowly than does $InsP_3$.

In the present study, we used rapid superfusion methods to compare the kinetics of adenophostin A- and $InsP_3$ -evoked Ca^{2+} mobilization from permeabilized hepatocytes and to directly measure the rates of dissociation of each agonist from active $InsP_3$ receptors.

Abbreviations used: CLM, cytosol-like medium; $InsP_3$, inositol 1,4,5-trisphosphate; $t_{1/2}$, half-time.

¹ To whom correspondence should be addressed (e-mail cwt1000@cam.ac.uk).

Figure 1 Adenophostin A-evoked Ca²⁺ release from permeabilized cells

(A) Structure of adenophostin A. (B) Permeabilized hepatocytes loaded to steady state with ${}^{45}\text{Ca}{}^{2+}$ were stimulated with the indicated concentrations of $\ln sP_3$ (\bigcirc) or adenophostin A (\bigcirc) for 1 min. Results (means \pm S.E.M. of three independent experiments) show the Ca $^{2+}$ released as a percentage of that released by ionomycin (10 μ M).

EXPERIMENTAL PROCEDURES

Materials

Adenophostin A was synthesized and quantified as described previously and was used as the hexakis sodium salt [13]. $InsP_3$ was from American Radiolabeled Chemicals (St. Louis, MO, U.S.A.). Thapsigargin was from Alamone Laboratories (Jerusalem, Israel) and ionomycin was from Calbiochem (Nottingham, U.K.).

Measurements of ⁴⁵Ca²⁺ effux from permeabilized cells

Hepatocytes were isolated from the livers of male Wistar rats (200–300 g) as described previously [26], and permeabilized in Ca²⁺-free cytosol-like medium (CLM; 100 mM KCl/20 mM NaCl/5 mM MgCl₂/1 mM EGTA/20 mM Pipes, pH 7) by incubation with saponin (10 μ g · ml⁻¹) at 37 °C for 8 min. The cells were resuspended (2.2 × 10⁶ cells · ml⁻¹) in CLM supplemented with 300 μ M CaCl₂ (free [Ca²⁺], 200 nM), ATP (1.5 mM), creatine phosphate (5 mM), creatine phosphokinase (1 unit · ml⁻¹), the mitochondrial inhibitor carbonyl cyanide *p*-trifluoromethoxy-phenylhydrazone (FCCP; 10 μ M) and ⁴⁵CaCl₂ (5 μ Ci · ml⁻¹; 15 μ Ci · ml⁻¹ for superfusion experiments). After 5 min at 37 °C, during which the intracellular stores were loaded to the steady state with ⁴⁵Ca²⁺, InsP₃ or adenophostin A was added, together with thapisgargin (1 μ M) to inhibit further Ca²⁺ uptake. After a further 1 min, the ⁴⁵Ca²⁺ contents of the stores were determined

Figure 2 Rapid kinetics of adenophostin A- and InsP₃-evoked Ca²⁺ release

Permeabilized hepatocytes loaded with $^{45}\text{Ca}^{2+}$ were superfused with CLM containing either $\ln sP_3$ (10 μ M, \bigcirc) or adenophostin A (10 μ M, \bigcirc). The broken lines denote the arrival in the superfusate of [^3H]inulin (included with the agonists). The rates of $^{45}\text{Ca}^{2+}$ release (means \pm S.E.M. of three independent experiments) are expressed either as fractions of the entire intracellular Ca^{2+} stores (**A**) or as fractional release rates (**B**, i.e. the $^{45}\text{Ca}^{2+}$ released into each fraction as a percentage of that remaining within the agonist-sensitive stores at the beginning of that collection interval).

by filtration through Whatman GF/C filters followed by washing with ice-cold sucrose (310 mM) and sodium citrate (10 mM). The actively accumulated ⁴⁵Ca²⁺ content of the stores was defined as that which could be released by addition of ionomycin (10 μ M).

Rapid kinetics of ⁴⁵Ca²⁺ release from intracellular stores

For measurements of the rapid kinetics of unidirectional ⁴⁵Ca²⁺ efflux, permeabilized hepatocytes loaded with ⁴⁵Ca²⁺ were immobilized rapidly on a sandwich of nitrocellulose and glass-fibre filters (6 mm diameter) and mounted in the chamber of a computer-controlled rapid superfusion apparatus; the details have been described previously [27]. Briefly, the stainless steel and Teflon superfusion chamber (volume < 50 μ l) was connected by computer-controlled solenoid valves to four pressurized vessels containing CLM (free [Ca²⁺], 200 nM) and appropriate additions. Fluid flowed continuously at 2 ml·s⁻¹ from one of these vessels, through the immobilized cells and out of the superfusion chamber. The effluent, containing the ⁴⁵Ca²⁺ released from the cells, was collected into vials arranged around the circumference of a circular, variable-speed fraction collector [27]. For most

experiments, the fractions corresponded with intervals of 80 ms, but for the experiments shown in Figure 4 (see below) the intervals were 9 ms. Inclusion of an inert marker ([³H]inulin) allowed the arrival of $InsP_3$ or adenophostin A to be related precisely to changes in the rate of ${}^{45}Ca^{2+}$ release. A reed switch reported the position of the turntable to a Viglen III/LS computer, which synchronized rotation of the fraction collector with activation of the solenoid valves. At the end of each experiment, cells were superfused with CLM containing Triton X-100 (0.5%) to release all ${}^{45}Ca^{2+}$ remaining within the intracellular stores. All rapid superfusion experiments were carried out at 20 °C.

Analysis of results

Rates of ⁴⁵Ca²⁺ release (into each 80 ms or 9 ms time bin) were expressed initially as percentages of the total ⁴⁵Ca²⁺ content of intracellular stores and then corrected for the small basal leak rate ($\approx 1.2 \% \cdot s^{-1}$) measured at the beginning of each recording. Because the ⁴⁵Ca²⁺ content of the intracellular stores declines as ⁴⁵Ca²⁺ leaks from them, this form of analysis inevitably includes an exponentially decaying component (Figure 2A). For analysis of inactivation kinetics, therefore, fractional release rates were calculated (i.e. the ⁴⁵Ca²⁺ released into each fraction was expressed as a percentage of that still remaining within the $InsP_{a}$ or adenophostin A-sensitive Ca2+ stores). With this form of analysis [28], fractional rates of ⁴⁵Ca²⁺ release remain constant unless the $InsP_3$ receptor changes its behaviour. Least-squares curve-fitting routines (Kaleidagraph, Synergy Software) were used to fit exponential equations to the time courses of the decaying phases of InsP₃- or adenophostin A-evoked ⁴⁵Ca²⁺ release.

RESULTS

Rapid responses to adenophostin A

Our first results (Figure 1B and Table 1) confirm previous observations from both hepatocytes [7] and other cells [4–6,10] by demonstrating that adenophostin A stimulates Ca^{2+} release from intracellular stores at concentrations that are about 25-fold lower than those required for $InsP_{a}$ -evoked Ca^{2+} mobilization.

Table 1 Adenophostin A- and $InsP_3$ -evoked Ca^{2+} release

EC₅₀ values, Hill slopes (*h*) and maximal effects (percentage of the intracellular Ca²⁺ stores) of the responses to adenophostin A and Ins*P*₃ were determined from the conventional filtration experiments shown in Figure 1(B). Rapid superfusion experiments similar to those shown in Figures 2 and 3 were used to establish the peak rates of Ins*P*₃ - and adenophostin A-evoked Ca²⁺ release and the times taken to reach the peak rate, the half-times (*t*_{1/2}) and extents of agonist-induced channel inactivation, and the half-times for channel closure after removal of adenophostin A or Ins*P*₃ after 380 ms. Results are means ± S.E.M. of between three and nine independent experiments.

	InsP ₃	Adenophostin A
Conventional filtration experiments		
EC_{50} (nM)	177 <u>+</u> 26	7.1 ± 0.5
h	2.5 ± 0.1	2.7 ± 0.4
Maximum response (%)	42 <u>+</u> 1	44 <u>+</u> 2
Rapid superfusion experiments		
Peak rate (% · ms ⁻¹)	0.10 ± 0.01	0.10 ± 0.01
Time to peak (ms)	390 ± 20	360 ± 30
Inactivation (%)	45 ± 6	40 ± 6
$t_{1/2}$ for inactivation (ms)	321 ± 22	318 ± 29
$t_{1/2}^{1/2}$ for decay after agonist washout (ms)	436 <u>+</u> 48	840 <u>+</u> 195

Responses to both agonists were positively co-operative (Hill coefficient, h, ≥ 2.5), and maximal concentrations of each caused release of a similar fraction of the intracellular Ca²⁺ stores (Table 1).

In superfusion experiments, maximal concentrations of either adenophostin A or $\text{Ins}P_3$ (10 μ M) caused a rapid increase in the rate of ${}^{45}\text{Ca}{}^{2+}$ release, which peaked after about 375 ms, and then abruptly declined with bi-exponential kinetics (Figure 2A). By expressing responses as fractional ${}^{45}\text{Ca}{}^{2+}$ release rates (see the Experimental procedures section), we removed the element of the decay resulting from loss of ${}^{45}\text{Ca}{}^{2+}$ from finite stores and unmasked the changing behaviour of the $\text{Ins}P_3$ receptors. The results (Figure 2B) demonstrate that responses to $\text{Ins}P_3$ and adenophostin A were indistinguishable, with each causing the activity of the $\text{Ins}P_3$ receptors to decline with a half-time ($t_{1/2}$) of about 320 ms to a level corresponding to about 60 % of that observed at the peak of the response (Table 1).

Rapid dissociation of adenophostin A from InsP₃ receptors

Both functional (Table 1) and radioligand-binding [7] analyses are consistent with adenophostin A binding to hepatic InsP₃ receptors with at least 10-fold greater affinity than $InsP_3$. Because differences in rates of dissociation are often major determinants of the affinity of small ligands for their receptors [29], we expected adenophostin A to dissociate from InsP₃ receptors more slowly than $InsP_3$. Others have made a similar assumption when interpreting the effects of adenophostin A in intact cells [11,17]. The rapid mixing time provided by the superfusion apparatus ($t_{1/2}$, 46 ± 5 ms) allowed the rates of channel closure to be measured after rapid removal of $InsP_3$ or adenophostin A. After removal of either $InsP_3$ or adenophostin A at the peak of the response (380 ms after agonists were first added), the rate of ⁴⁵Ca²⁺ release decayed more quickly than in the continued presence of agonist. To ensure that the concentrations of both agonists had fallen below levels capable of evoking a response before we assessed rates of channel closure, we used the amounts of [³H]inulin detected in the perfusate to identify the fractions in which the concentration of ligand first fell below 4 nM. The subsequent rates of ⁴⁵Ca²⁺ release were used to determine the time course of channel closure. The results (Figure 3) indicate that the channels close more slowly after removal of adenophostin A than after removal of $InsP_3$, consistent with the greater affinity of the former for $InsP_3$ receptors, but the 1.9-fold slower rate of adenophostin A dissociation is still much faster than expected from its more than 10-fold greater affinity for $InsP_3$ receptors (Table 1).

Rapid association of InsP₃ and adenophostin A

We attempted to resolve whether adenophostin A associated with $\text{Ins}P_3$ receptors more rapidly than $\text{Ins}P_3$. Cells were rapidly $(t_{1/2}, 46 \text{ ms})$ stimulated with a high concentration $(50 \ \mu\text{M})$ of either agonist in CLM containing a free [Ca²⁺] of 100 μ M, and the $^{45}\text{Ca}^{2+}$ released was collected at intervals of 9 ms. High concentrations of both Ca²⁺ and agonist were necessary because channel opening is slow when the free [Ca²⁺] is low [30], but the receptors are inhibited by high free [Ca²⁺] unless they have agonist bound [31]. The results (Figure 4) demonstrate that, under these conditions, both the latency before channel opening $(18 \pm 3 \text{ ms for Ins}P_3, 21 \pm 5 \text{ ms for adenophostin A})$ and the initial change in rate of $^{45}\text{Ca}^{2+}$ release $(370 \pm 53 \% \cdot \text{s}^{-2} \text{ for Ins}P_3, 320 \pm 70 \% \cdot \text{s}^{-2}$ for adenophostin A) were similar.

Figure 3 Kinetics of channel closure after rapid removal of adenophostin A or ${\rm Ins} P_{\rm 3}$

Cells were superfused with adenophostin A (10 μ M, \bigcirc) or Ins P_3 (10 μ M, \bigcirc) for 380 ms, or with Ins P_3 for 5 s (10 μ M, \blacksquare). ⁴⁵Ca²⁺-release rates (means \pm S.E.M. of three experiments) were calculated as either fractions of the total ⁴⁵Ca²⁺ contents of the stores (**A**), or as fractional release rates (**B**), and then, for greater clarity, the rates were expressed as percentages of the peak rate. The broken lines denote the arrival in the superfusate of [³H]inulin (included with the agonists).

DISCUSSION

It had been widely and reasonably assumed that the high affinity of adenophostin A for InsP₃ receptors resulted from a slow dissociation rate, and that the slow dissociation accounted for the different responses to $InsP_3$ and adenophostin A observed in intact cells. It was, for example, proposed to explain the slow diffusion of adenophostin A in the cytosol allowing it to generate sustained but spatially restricted Ca2+ mobilization [11] (see the Introduction). Surprisingly, Ca²⁺ puffs in Xenopus oocytes are briefer when evoked by adenophostin A than when evoked by $InsP_{3}$ [17], leading the authors to conclude that agonist dissociation (assumed to be slower for adenophostin A) was not responsible for limiting the duration of elementary Ca²⁺ release events. We, however, have suggested that agonist dissociation rates are indeed likely to control the duration of these events [31], because InsP₃ receptors only partially desensitize [28] (Figure 2B) and feedback inhibition of $InsP_3$ receptors by cytosolic Ca^{2+} occurs only after $InsP_3$ has dissociated [31].

Figure 4 Rapid opening of $InsP_3$ receptors by high concentrations of $InsP_3$ or adenophostin A with Ca^{2+}

Cells were stimulated with adenophostin A (50 μ M, \bigcirc) or Ins P_3 (50 μ M, \odot) in CLM containing 100 μ M free Ca²⁺. The rate of ⁴⁵Ca²⁺ release was measured at intervals of 9 ms. The increase in free [Ca²⁺] alone had no significant effect on the rate of ⁴⁵Ca²⁺ release (\diamondsuit). Results are shown as means \pm S.E.M. of four independent experiments (n = 3 for high Ca²⁺ alone). The broken line denotes the arrival in the superfusate of [³H]inulin (included with the stimuli).

Our present results resolve these inconsistencies by providing the first rapid measurements of InsP₃ receptor activation, inactivation and closure in response to adenophostin A. Conventional measurements of the extents of Ca2+ mobilization confirmed that responses to adenophostin A occurred at 25-fold lower concentrations than responses to InsP₃ (Figure 1 and Table 1), but high-resolution measurements of the responses evoked by maximal concentrations of each agonist in normal CLM were indistinguishable. Both agonists caused the same peak rate of Ca²⁺ release, suggesting that each has similar efficacy; the times taken to reach the peaks were the same for Ins P_3 and adenophostin A, and each then caused a rapid ($t_{1/2} \approx$ 320 ms) partial inactivation of the receptor (Table 1). The only discernible difference between $InsP_3$ and adenophostin A is the 1.9-fold slower rate of dissociation of the latter from the $InsP_{a}$ receptor. Such a modest difference in dissociation rate cannot explain the 25-fold greater sensitivity of cells to adenophostin A; nor is the disparity likely to result from different patterns of Ca2+ release by $InsP_3$ and adenophostin A: both evoke quantal Ca^{2+} release [5] and $InsP_3$ receptors behave similarly whether occupied by $InsP_3$ or adenophostin A (Figure 3). We instead speculate that adenophostin A may have a \approx 10-fold faster rate of association with $InsP_3$ receptors than does $InsP_3$.

With a faster association rate, we might have expected that the time taken to reach the peak rate of Ca^{2+} release would be shorter for adenophostin A than for $InsP_3$ ($k_{obs} = k_1[agonist] - k_{-1}$). Yet, the results suggest similar rates of channel opening after addition of $InsP_3$ or adenophostin A (Figure 2). However, our previous studies established that $InsP_3$ binding causes a Ca^{2+} -binding site to be unmasked and that Ca^{2+} must bind to that site before the channel can open [30]. At normal cytosolic Ca^{2+} concentrations (free $[Ca^{2+}] = 200$ nM, as used in the present experiments), the Ca^{2+} -binding step becomes rate-limiting for channel opening after maximal stimulation by $InsP_3$. The experiments shown in Figure 2 would not, therefore, have been expected to resolve whether $InsP_3$ and adenophostin A differ in their rates of association with the $InsP_3$ receptor. However, even when cells were stimulated rapidly with $InsP_3$ or adenophostin A in the

presence of a much higher $[Ca^{2+}]$ (100 μ M), there was no discernible difference in the initial rates of channel opening (Figure 4). At present, we can only speculate on the likely reasons for our inability to detect a difference in the rates of association of $InsP_3$ and adenophostin in these functional assays. It may be that $InsP_3$ and adenophostin do associate at similar rates; a conclusion that would be difficult to reconcile with the higher affinity of adenophostin A, but only modestly slower dissociation is slower than that of $InsP_3$ and adenophostin, even when the free $[Ca^{2+}]$ is high, then any difference in the association rates of $InsP_3$ and adenophostin A may be masked.

We conclude that maximal concentrations of adenophostin A and $\text{Ins}P_3$ cause very similar patterns of Ca^{2+} release, and whereas the agonists differ substantially in their affinities for hepatic $\text{Ins}P_3$ receptors, the difference cannot be explained adequately by the modest differences in the rates of dissociation of adenophostin A and $\text{Ins}P_3$ from active $\text{Ins}P_3$ receptors.

This work was supported by Programme grants from The Wellcome Trust to C.W.T. (039662) and B.V.L.P. We thank Dr R. Marwood for provision of synthetic adenophostin A.

REFERENCES

- Taylor, C. W. (1998) Inositol trisphosphate receptors: Ca²⁺-modulated intracellular Ca²⁺ channels. Biochim. Biophys. Acta **1436**, 19–33
- 2 Potter, B. V. L. and Lampe, D. (1995) Chemistry of inositol lipid mediated cellular signaling. Angew. Chem. Int. Edn. Engl. 34, 1933–1972
- 3 Takahashi, S., Takeshi, K. and Takahashi, M. (1994) Adenophostins A and B: potent agonists of inositol-1,4,5-trisphosphate receptors produced by *Penicillium brevicompactum*. Structure elucidation, J. Antibiot. **47**, 95–100
- 4 Takahashi, M., Tanzawa, K. and Takahashi, S. (1994) Adenophostins, newly discovered metabolites of *Penicillium brevicompactum*, act as potent agonists of the inositol 1,4,5-trisphosphate receptor. J. Biol. Chem. **269**, 369–372
- 5 Hirota, J., Michikawa, T., Miyawaki, A., Takahashi, M., Tanzawa, K., Okura, I., Furuichi, T. and Mikoshiba, K. (1995) Adenophostin-medicated (*sic*) quantal Ca²⁺ release in the purified and reconstituted inositol 1,4,5-trisphosphate receptor type 1. FEBS Lett. **368**, 248–252
- 6 Murphy, C. T., Riley, A. M., Lindley, C. J., Westwick, J. and Potter, B. V. L. (1997) Structural analogues of *D-myo-*inositol-1,4,5-trisphosphate and adenophostin A: recognition by cerebellar and platelet inositol-1,4,5-trisphosphate receptors. Mol. Pharmacol. **52**, 741–748
- 7 Marchant, J. S., Beecroft, M. D., Riley, A. M., Jenkins, D. J., Marwood, R. D., Taylor, C. W. and Potter, B. V. L. (1997) Disaccharide polyphosphates based upon adenophostin A activate hepatic p-*myo*-inositol 1,4,5-trisphosphate receptors. Biochemistry **36**, 12780–12790
- 8 Shuto, S., Tatani, K., Ueno, Y. and Matsuda, A. (1998) Synthesis of adenophostin analogues lacking the adenine moiety as novel potent IP₃ receptor ligands: some structural requirements for the significant activity of adenophostin A. J. Org. Chem. 63, 8815–8824
- 9 Marwood, R. D., Riley, A. M., Correa, V., Taylor, C. W. and Potter, B. V. L. (1999) Simplification of adenophostin A defines a minimal structure for potent glucopyranoside-based mimics of p-*myo*-inositol 1,4,5-trisphosphate. Bioorg. Med. Chem. Lett. **9**, 453–458
- 10 Missiaen, L., Parys, J. B., Sienaert, I., Maes, K., Kunzelmann, K., Takahashi, M., Tanzawa, K. and De Smet, H. (1998) Functional properties of the type-3 InsP₃ receptor in 16HBE14o- bronchial mucosal cells. J. Biol. Chem. **273**, 8983–8986

Received 23 May 2000/4 October 2000; accepted 17 October 2000

- 11 Bird, G. S. J., Takahashi, M., Tanzawa, K. and Putney, J. W. J. (1999) Adenophostin A induces spatially restricted calcium signaling in *Xenopus laevis* oocytes. J. Biol. Chem. **274**, 20643–20649
- 12 Hotoda, H., Murayama, K., Miyamoto, S., Iwata, Y., Takahashi, M., Kawase, Y., Tanzawa, K. and Kaneko, M. (1999) Molecular recognition of adenophostin, a very potent Ca²⁺ inducer, at the p-*myo*-inositol 1,4,5-trisphosphate receptor. Biochemistry 38, 9234–9241
- 13 Marwood, R. D., Riley, A. M., Jenkins, D. J.. and Potter, B. V. L. (2000) Synthesis of adenophostin A and congeners modified at glucose. J. Chem. Soc. Perkin Trans. I 1935–1947
- 14 Beecroft, M. D., Marchant, J. S., Riley, A. M., Van Straten, N. C. R., Van der Marel, G. A., Van Boom, J. H., Potter, B. V. L. and Taylor, C. W. (1999) Acyclophostin: a ribose-modified analog of adenophostin A with high affinity for inositol 1,4,5trisphosphate receptors and pH-dependent efficacy. Mol. Pharmacol. 55, 109–117
- 15 Yoshida, M., Sensui, N., Inoue, T., Morisawa, M. and Mikoshiba, K. (1998) Role of two series of Ca²⁺ oscillations in activation of ascidian eggs. Dev. Biol. **203**, 122–133
- 16 Huang, Y., Takahashi, M., Tanzawa, K. and Putney, Jr, J. W. (1998) Effect of adenophostin A on Ca²⁺ entry and calcium release-activated calcium current (I_{crac}) in rat basophilic leukemia cells. J. Biol. Chem. **273**, 31815–31821
- 17 Marchant, J. S. and Parker, I. (1998) Kinetics of elementary Ca^{2+} puffs evoked in *Xenopus* oocytes by different $Ins(1,4,5)P_3$ receptor agonists. Biochem. J. **334**, 505–509
- 18 He, C. L., Damiani, P., Ducibella, T., Takahashi, M., Tanzawa, K., Parys, J. B. and Fissore, R. A. (1999) Isoforms of the inositol 1,4,5-trisphosphate receptor are expressed in bovine oocytes and ovaries: the type-1 isoform is down-regulated by fertilization and by injection of adenophostin A. Biol. Reprod. **61**, 935–943
- 19 Putney, Jr, J. W. (1997) Capacitative calcium entry, R. G. Landes Company, Austin
- 20 DeLisle, S., Marksberry, E. W., Bonnett, C., Jenkins, D. J., Potter, B. V. L., Takahashi, M. and Tanzawa, K. (1997) Adenophostin A can stimulate Ca²⁺ influx without depleting the inositol 1,4,5-trisphosphate-sensitive Ca²⁺ stores in the *Xenopus* oocyte. J. Biol. Chem. **272**, 9956–9961
- 21 Hartzell, H. C., Machaca, K. and Hirayama, Y. (1997) Effects of adenophostin-A and inositol 1,4,5-trisphosphate on Cl⁻ currents in *Xenopus laevis* oocytes. Mol. Pharmacol. **51**, 683–692
- 22 Machaca, K. and Hartzell, H. C. (1999) Adenophostin A and inositol 1,4,5trisphosphate differentially activate Cl⁻ currents in *Xenopus* oocytes because of disparate Ca²⁺ release kinetics. J. Biol. Chem. **274**, 4824–4831
- 23 Parys, J. B. and Bezprozvanny, I. (1995) The inositol trisphosphate receptor of *Xenopus* oocyte. Cell Calcium 18, 353–363
- 24 Broad, L. M., Armstrong, D. L. and Putney, Jr, J. W. (1999) Role of the inositol 1,4,5-trisphosphate receptor in Ca²⁺ feedback inhibition of calcium release-activated calcium current (I_{crac}). J. Biol. Chem. **274**, 32881–32888
- 25 Mak, D. D.-O., McBride, S. and Foskett, J. K. (2000) Calcium dependence of inositol trisphosphate receptor gating stimulated by adenophostins A is drastically different from that stimulated by inositol 1,4,5-trisphosphate. Biophys. J. **78**, 1849 (abstract)
- 26 Nunn, D. L. and Taylor, C. W. (1992) Luminal Ca²⁺ increases the sensitivity of Ca²⁺ stores to inositol 1,4,5-trisphosphate. Mol Pharmacol **41**, 115–119
- 27 Taylor, C. W. and Marchant, J. S. (1999) Measuring inositol 1,4,5-trisphosphateevoked ⁴⁵Ca²⁺ release from intracellular Ca²⁺ stores. In Signal Transduction. A Practical Approach (Milligan, G., ed.), pp. 361–384, IRL Press, Oxford
- 28 Marchant, J. S. and Taylor, C. W. (1998) Rapid activation and partial inactivation of inositol trisphosphate receptors by inositol trisphosphate. Biochemistry 37, 11524–11533
- 29 Limbird, L. E. (1986) Cell Surface Receptors: a Short Course on Theory and Methods, Martinus Nijhoff Publishing, Boston
- 30 Marchant, J. S. and Taylor, C. W. (1997) Cooperative activation of IP₃ receptors by sequential binding of IP₃ and Ca²⁺ safeguards against spontaneous activity. Curr. Biol. 7, 510–518
- 31 Adkins, C. E. and Taylor, C. W. (1999) Lateral inhibition of inositol 1,4,5-trisphosphate receptors by cytosolic Ca²⁺. Curr. Biol. 9, 1115–1118