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A normalized plot as a novel and time-saving tool in complex enzyme
kinetic analysis
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A new data treatment is described for designing kinetic exper-

iments and analysing kinetic results for multi-substrate enzymes.

Normalized velocities are plotted against normalized substrate

concentrations. Data are grouped into n1 families across the

range of substrate or product tested, n being the number of

substrates plus products assayed. It has the following advantages

over traditional methods: (1) it reduces to less than a half the

amount of data necessary for a proper description of the system;

(2) it introduces a self-consistency checking parameter that

ensures the ‘scientific reliability ’ of the mathematical output; (3)

INTRODUCTION
Graphic and numerical analysis of the experimental data from

enzyme-catalysed reactions provides informationabout themech-

anism and the kinetic parameters of the system [1]. Graphic

analysis has been the classic tool for enzyme classification and

numerical description. The basic Michaelis–Menten equation is

a rectangular hyperbola, and this remained fairly unapproachable

for direct analysis until non-linear fitting methods had matured

and become widespread. It was avoided by resorting to data

transformations such as logarithmic, Lineweaver–Burk double-

reciprocal, Hanes, Eadie–Hofstee or Eisenthal–Cornish-Bowden

direct linear plots [2]. All of these linearize the behaviour of the

system and allow its description through a simple linear re-

gression. Although there are differences between the statistical

validity of these methods, proper analysis using data weighting

and computer methods avoids this problem [2–4].

However, the relationship between the experimental observ-

ables and enzymic information is non-linear, and the appropriate

methodology for non-linear data management is non-linear least-

squares regression [5]. This methodology is less sensitive to the

spacing and number of the data, and is a versatile and general

curve-fitting procedure [6,7].

It has been proposed that the availability of pre-packaged

non-linear data-analysis software should relegate classic linear

transformations to only data plotting, while analysis should be

performed in a non-linear fashion on the actual untransformed

data [5]. However, visual inspection of the data supplies intuitive

information about trends in the behaviour of the system and

allows one to evaluate the statistical analysis. Indeed, it remains

a useful tool in biochemical research and teaching [1,8,9]. It is

important to bear in mind that statistical analysis is a more solid

tool than experimentation; however, it is the experimental data

that in fact reflect reality, and not vice versa, and hence

mathematics cannot replace common sense [3]. Emphasis should

therefore be placed on the acquisition of good data more than on

improving the analysis of poor data [3,6]. In this sense, we here

describe a graphic and analytical approach to the study of multi-
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it eliminates the need for a prior knowledge of V
max

; (4) the

normalization of data allows the use of robust and fuzzy methods

suitable for managing really ‘noisy’ data; (5) it is appropriate for

analysing complex systems, as the complete general equation is

used, and the actual influence of effectors can be typified; (6) it

is amenable to being implemented as a software that incorporates

testing and electing among rival kinetic models.

Key words: data normalization, enzymology, model–fitting,
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substrate enzyme kinetics that reduces the amount of data

necessary for a proper description of the system to less than half,

while at the same time introducing a self-consistency checking

parameter that ensures the reliability of the output. This method

normalizes the experimental data without the need for prior

knowledge of V
max

, thus allowing the use of tougher methods

such as artificial neural networks [10], or robust parameter

estimation [11], suitable for managing real normalized noisy

data. Moreover, it eliminates the need to replot slopes and}or

intersects for characterizing the system.

THEORY

The behaviour of multi-substrate and}or multi-product enzyme-

catalysed reactions can be described by using multivariate

functions. The usual approach for system characterization re-

quires the determination of velocity values in the presence of all

substrates, varying their concentrations sequentially. A system

with m substrates therefore requires the construction of an m-

dimensional matrix with Π n
i

data, n
i

being the number of

concentration values at which the i-th substrate is assayed.

Taking as an example a Bi Bi system, the assay of six different

concentrations for either substrate generates a two-dimensional

matrix formed by 6#¯ 36 experimental data cells. These deter-

minations must be repeated separately for each introduction of

each effector to be studied. Thus each introduction of product,

inhibitor, analogue, etc. gives rise to an m1 dimensional matrix

with m
j
Π n

i
data, where m

j
is the number of concentration values

at which the j-th effector is assayed. Fromm [12] has outlined a

method for building a five five-by-five substrate concentration

matrix, covering a range wide enough to determine rate data.

In the Bi Bi system example, the assay of six concentrations for

each of both products yields two matrices (one for each product)

formed by 6¬6#¯ 216 experimental data cells. Finally, the

study of enzyme behaviour in the reverse catalytic sense requires

the same treatment.
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Normalization of velocity and substrate concentration : a Bi Bi
ordered system as an example

In the absence of products, the velocity equation in the steady-

state is given by:

�¯
V

max
AB

K
iA

K
mB

K
mB

AK
mA

BAB
(1)

where, following the Enzyme Commission nomenclature, A is

the concentration of substrate A, B is concentration of substrate

B, K
mA

is the Michaelis constant for A, K
mB

is the Michaelis

constant for B, K
iA

is the inhibition constant for A and V
max

is the

limiting maximum velocity.

We define any A« and B« concentration as a function of two

arbitrary values, A and B :

A«¯ aA

B«¯ bB

This will be the normalized substrate concentration. The velocity

in the presence of a times A (arbitrarily fixed) and b times B

(arbitrarily fixed), which will be denoted as V
a,b

, is expressed as:

V
a,b

¯
V

max
aAbB

K
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K
mB

K
mB

aAK
mA

bBaAbB
(2)

The velocity when both a¯ 1 and b¯ 1 will be:

V
","

¯
V

max
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K
iA

K
mB

K
mB

AK
mA

BAB
(3)

The normalized velocity in the presence of a times A and b times

B will be denoted by VG
a,b

, defined as:

V{
a,b

¯
V

","

V
a,b

¯
K

iA
K

mB
K

mB
aAK

mA
bBaAbB

ab[den1
(4)

where the parameter den1 is a combination of the unknown

parameters K
iA

, K
mA

and K
mB

and the fixed values A and B, as

follows:

den1¯K
iA

K
mB

K
mB

AK
mA

BAB

Eqn (4) will be used in the plotting, fitting and interpretation of

the results. By means of a proper experimental design it defines

a quadratic dependence of the normalized velocity on 1}a, if a¯
b and the first term is non-negligible. This fact will differentiate

between Bi Bi mechanisms, as the behaviour in a Bi Bi Ping Pong

enzyme is given by a linear dependence of the normalized

velocity on 1}a (see eqn 11 below).

Other authors have already used data normalization before

either representation and}or treatment. Hunter and Downs

defined fractional activities, when dealing with enzyme inhibitors,

as the fraction of activity obtained in the presence of an inhibitor,

�, related to the activity found in its absence, �
!
[13]. The values

for �
!

are easy to determine. However, this procedure increases

data scattering, since two experimental values are combined into

one and the individual error associated with �
!

fluctuates.

Moreover, the equation defined is a double-reciprocal one like

the Lineweaver–Burk equation, and the increase in scatter also

generates bias in the fitting [2]. Another data normalization

procedure, namely combination plots, was given by Chan [8].

Here, V
max

replaces the term �
!

in fractional activities, thus

avoiding the need to determine �
!
at each substrate concentration.

Combination plots are therefore subject to less scattering, because

V
max

is an estimate that is deduced from a number of �
!
values [8].

Nevertheless, combination plots have also been developed for

studying enzyme inhibition, and the normalization we propose is

likely to be used both in the presence and absence of inhibitors

and is useful in the characterization of complex systems. Ad-

ditionally, all the data are normalized by dividing by the same

experimental value, which furthermore is chosen in the design of

the experiment so that the associated error is minimal. This

procedure circumvents the need of prior knowledge of V
max

and

introduces minimal additional scattering.

Presence of effectors : an inhibitor that binds E as an example

In the absence of products, the presence of an inhibitor that

specifically binds to the free form of the enzyme in a Bi Bi

ordered system modifies the steady-state equation as follows:

�¯
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E
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1
I

K
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H

K
mB

AK
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E
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I
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i

G
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AB

(5)

The normalized velocity in the presence of a times A and b times

B is :

V{
a,b
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¯
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1
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aAK
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ab[den1

(6)

Where I!E represents the presence of the inhibitor that binds

the free form of the enzyme.

We isolate the effect of the presence of I by defining the

increment in normalized velocity as:

∆V{
a,b

I!E

¯V{
a,b

I!E

®V{
a,b

(7)

Hence, according to eqns (4) and (6), the increment caused in the

normalized velocity by the presence of I will be:

∆V{
a,b

I!E

¯

I

K
i

K
iA

K
mB


I

K
i

K
mA

bB

ab[den1
(8)

RESULTS AND DISCUSSION

Design of the experiment in the absence of products

Three series of experiments are prepared: (1) varying substrate

concentrations, keeping a¯ b ; (2) varying substrate B con-

centration, keeping a¯ 1; (3) varying substrate A concentration,

keeping b¯ 1.

Thus, when one wishes to assay six concentrations of each

substrate, only (3¬6)®2¯ 16 data need to be collected instead

of the 36 required by other methods. The generic number of data

for a Bi Bi reaction and n concentrations tested for each substrate

will be 3n®2 instead of n#. This is one of the strong points of the

normalized plot : the lessened demand on data acquisition. In

the classical approach, when the model is known, maximal pre-

cision in the determination of the p parameter values is obtained if

measurements are made only in p experimental points, but when

the model is unknown, it is advisable to make measurements that

cover all independent variables at low, intermediate and high

values [14]. The advantage of using fewer points in this normal-

ized approach versus fewer points in the classical approach is

that all the range of concentrations of substrates or effectors
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Table 1 Parameters that describe the normalized velocity equation in different Bi Bi systems, in the absence of products

In (a), den1 ¯ KiAKmBKmBAKmABAB ; in (b), den2 ¯ KmBAKmABAB.

Term a ¯ b Series a ¯ 1 Series b ¯ 1 Series

(a) Bi-Bi ordered systems and Bi Bi Theorell–Chance systems

Second-order KiAKmB

den1

First-order KmBAKmAB

den1

KiAKmBKmBA

den1

KiAKmBKmAB

den1

Independent AB

den1

KmABAB

den1

KmBAAB

den1

(b) Bi Bi Ping Pong systems

First-order KmBAKmAB

den2

KmBA

den2

KmAB

den2

Independent AB

den2

KmABAB

den2

KmBAAB

den2

is actually covered in the normalized plot design while allowing a

proper distance between experimental points. Fewer points in the

classical approach would in contrast compromise the quality of

the constants obtained and}or would not fully explore the

response of the system.

Graphic solutions in the absence of products

When graphic approaches are used, the data are linearized and

plotted into families, which correspond to the rows or columns

of the data matrices. The tendency of the plotted lines to

convergence is studied. It is often necessary to resort to the

replotting of slopes, x-intersects or y-intersects in order to

characterize the system. Data-normalization procedures have

been proposed to ease interpretation, but these have been

developed for the presence of inhibitors in a Uni Uni system.

Absence of products in Bi Bi systems

Bi Bi ordered systems

The particular cases of eqn (4) for the three experimental series

give rise to the expressions given in Table 1.
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¯
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(9)

V{
a,b

b="

¯
K

iA
K

mB
K

mA
B

den1

1

a


K
mB

AAB

den1

Simultaneous plotting of these equations gives the characteristic

representation for Bi Bi ordered systems: a parabola for the a¯
b series, and two straight lines for the a¯ 1 and b¯ 1 series, with

a common intersection point at (1, 1). The plots of the a¯ b and

a¯ 1 series also intersect at 1}a¯K
mA

B}K
iA

K
mB

. The plots of

the a¯ b and b¯ 1 series also intersect at 1}a¯®(A}K
iA

). The

parabolic representation identifies the Bi Bi ordered mechanism.

This characteristic plot is depicted in Figure 1.

Bi Bi Ping Pong systems

The velocity equation in the steady-state is :

�¯
V

max
AB

K
mB

AK
mA

BAB
(10)

and the normalized velocity in the absence of products will be:

V{
a,b

¯
K

mB
aAK

mA
bBaAbB

ab[den2
(11)

where the parameter den2 is defined as:

den2¯K
mB

AK
mA

BAB

From the three series of experimental data, enough information

will be obtained to discern Ping Pong systems from ordered

systems:

V{
a,b

a=b

¯
K

mB
AK

mA
B
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1
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AB
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¯
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b="

¯
K
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1

a


K
mB

AAB

den2

The simultaneous plot of these equations yields the characteristic

representation for Bi Bi Ping Pong systems: three straight lines

with a common intersection point at (1, 1). This representation is

depicted in Figure 2. The parameters that define the plots are

given in Table 1.

Choice of the mechanism and acquisition of parameter values from plots

The usual choice between rival models, Bi Bi ordered and Ping

Pong, depends on the tendency to convergence or on the

parallelism between families of lines. In a Bi Bi ordered system,

the plot l}� versus 1}A at different fixed B intersect at 1}A¯
®(1}K

iA
). In a Bi Bi Ping Pong system, this double-reciprocal

plot yields parallel lines at different B. The family of parallel lines
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Figure 1 Ideal plot of Va,b versus 1/a for a Bi Bi ordered system in the absence of products

The three experimental series are indicated. The parabolic representation for the a ¯ b series characterizes the Bi Bi ordered mechanism. The relative position of the a ¯ 1 and b ¯ 1 series

depends on the actual data. The values for the slopes and intersection points are indicated in Table 1.

and the linear reciprocal plot when A and B are varied together

identify a Ping Pong system. However, a Bi Bi ordered system

with a very small K
iA

as compared with the K
mA

would yield the

same results. Hence, it is quite possible that the best fit will be

parallel lines, and product-inhibition studies will be necessary to

distinguish between the two models [15].

When using normalized velocities and normalized substrate

concentrations, the difference between Bi Bi Ping Pong and

ordered systems is the inclusion of the additional addend

(K
iA

K
mB

)}den, responsible for the parabolic representation in a

Bi Bi ordered system plot :

V{
a,b

a=b

versus
1

a
(13)

Thus discriminating between both models becomes a question of

deciding whether the difference in squared differences in the

fittings, if it exists, is large enough to justify choice of the second-

order equation, i.e. the ordered model, instead of the first-order

equation, i.e. the Ping Pong model. The option can be tested by

using the F-statistic at the desired level of probability [14]. The

advantage of this normalized approach versus the situation

found when comparing parallel-like lines with the classic initial

rate equations arises in the presence of a ‘scientific constraint ’,

following the nomenclature from Beechem [5], namely, the

secondary parameter den. The value obtained for den must be

checked against the one obtained by means of its definition. The

agreement between both values will reflect the ‘scientific good-

ness ’ of the mathematical fit. This self-consistency criterion

would either support or call into question the biological signifi-

cance of the best fit, making it necessary, if required, to reject the

meaningless solution and to search for a mathematically poorer,

but enzymically consistent fit.

With the currently available fitting software, we propose the

equations for the a¯ b, a¯ 1 and b¯ 1 series to generate an

over-determined linear equation system, as follows for a Bi Bi

ordered system: α¯ second-order term in the a¯ b series ; βγ

¯first-order term in the a¯ b series ; δ¯ zero ordinate in the

a¯ b series ; αβ¯ slope in the a¯ 1 series ; γδ¯ zero

ordinate in the a¯ 1 series ; αγ¯ slope in the b¯ 1 series ;

βδ¯ zero ordinate in the b¯ 1 series.

We have used the following nomenclature for the sake of

conciseness : α¯ (K
iA

K
mB

)}den, β¯ (K
mB

A)}den, γ¯K
mA

B}den

and δ¯AB}den. However, experimental errors will usually

generate an incompatible equation system. For this reason, here

we propose an improvement in the fitting software; namely

simultaneous fitting of the three series of experimental data

a¯ b, a¯ 1 and b¯ 1. In this way, the least-squares algorithm

would be performed sequentially on the equation for each series,

varying the values of α, β, γ and δ at each step to generate a

better approximation. The process would then be repeated,

applying these better answers as initial estimates until the

approximations converge to a stable set of answers [6]. Thus all

the experimental data are fitted simultaneously, and the weighted
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Figure 2 Ideal plot of Va,b versus 1/a for a Bi Bi Ping Pong system in the absence of products

The three experimental series are indicated. The straight line for a ¯ b series characterizes the Bi Bi Ping Pong mechanism. The relative position of the a ¯ b, a ¯ 1 and b ¯ 1 series depends

on the actual data. The values for the slopes and intersection points are indicated in Table 1.

sum of the squared differences is minimized outright. The

continuous monitoring of the value of den for each loop of the

algorithm differentiates this fitting from that used in Cleland’s

original fitting routines, in which all datasets are fitted simul-

taneously. This procedure is comparable with the global data

analysis proposed by Beechem [5], which performs a series of

non-linear analyses, systematically altering each parameter, while

adjusting all other fitting parameters so as to obtain the minimum

possible χ# value. The values of the four parameters that we wish

to fix, K
iA

, K
mA

, K
mB

and den1, will be obtained from the overall

interpretation of the results.
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K
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1

K
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aAbBpP
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(15)

The secondary parameter, den, depends on the primary par-

ameters, K
iA

, K
mA

and K
mB

, and will therefore show covariance

with all of them. This does not reduce the validity of the fittings,

since there is covariance between the primary parameters, unless

they are broken down into independent elementary rate con-

stants, because they share these rate constants in their definitions

[14]. In addition, the correlation between parameters can be

modulated through an intelligent choice of the points on the x-

axis and appropriate data managing. Moreover, it has been

reported that some data transformations improve the acquisition

of parameters when a correlation exists between them [16].

Presence of products in Bi Bi systems

Presence of products in a Bi Bi ordered system

In the presence of P and absence of Q, three terms appear in the

steady-state velocity equation. When we normalize the concen-

trations of the substrates and the product, the velocity in the

presence of a times A, b times B and p times P (V
a,b,p

) is expressed

as:

In addition, the normalized velocity will be:

In this case, the secondary parameter, den3, is :

den3¯K
iA

K
mB

K
mB

AK
mA

BAB


K

mQ
K

mB
K

iA

K
iQ

K
mP

P
K

mQ
K

mB

K
iQ

K
mP

AP
1

K
iP

ABP (16)

Four experimental series are prepared: (1) varying A, B and P

concentrations, keeping a¯ b¯ p ; (2) varying P concentrations,
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Table 2 Parameters that describe the increments in the normalized velocity equation in different Bi Bi systems, in the presence of the product P

Term a ¯ b Series a ¯ 1 Series b ¯ 1 Series

(a) Bi Bi Ordered systems

Second-order KmQKmBKiA

KiQKmP

P

den1

First-order KmQKmB

KiQKmP

AP

den1

KmQKmBKiA

KiQKmP

P
KmQKmB

KiQKmP

AP

den1

KmQKmBKiA

KiQKmP

P

den1

Independent 1

KiP

ABP

den1

1

KiP

ABP

den1

1

KiP

ABP
KmQKmB

KiQKmP

AP

den1

(b) Bi Bi Ping Pong systems

Second-order KiAKmB

KiP

P

den2

First-order KmB

KiP

AP

den2

KiAKmB

KiP

P
KmB

KiP

AP

den2

KiAKmB

KiP

P

den2

Independent KmB

KiP

AP

den2

(c) Bi Bi Theorell–Chance systems

Second-order KiBP

den1

First-order KmB

KiP

AP

den1

KiBP
KmB

KiP

AP

den1

KiBP

den1

Independent KmB

KiP

AP

den1

keeping a¯ b¯ 1; (3) varying A concentrations, keeping b¯
p¯ 1; and (4) varying B concentrations, keeping a¯ p¯ 1.

Thus, if six concentrations of A, B and P are tested, only

(4¬6)®3¯ 21 data need to be collected, instead of the 6$¯ 216

necessary in other methods. The generic number of data to be

obtained when introducing one product and when testing n

concentrations for A, B and P will be 4n®3 instead of n$.

(i) Bi Bi ordered system: presence of P. We shall break down

eqn (15) into its addends, as follows:

α¯
K

iA
K

mB

den3
β¯

K
mB

A

den3
γ¯

K
mA

B

den3

δ¯
AB

den3
ε¯

K
mQ

K
mB

K
iA

K
iQ

K
mP

P

den3
ζ¯

K
mQ

K
mB

K
iQ

K
mP

AP

den3
(17)

η¯

1

K
ip

ABP

den3

Each set of experiments gives rise to a different mathematical

expression:

V{
a,b,p

a=b=p

¯α
1

a$

(βγε)
1

a#

(δζ )
1

a
η (18)

where all the variables, a, b and p, have been renamed as a.

V{
a,b,p

a=b="

¯ (αβγδ)
1

p
(εζη)

V{
a,b,p

a=p="

¯ (αβεζ )
1

b
(γδη) (19)

V{
a,b,p

b=p="

(αγε)
1

a
(βδζη)

Simultaneous plotting of these equations yields a third-order

polynomial, a¯ b¯ p, and three straight lines for the other

# 2001 Biochemical Society



579The normalized plot for complex enzyme systems

Figure 3 Ideal plot of ∆Va,b
P1 0

versus 1/a for a Bi Bi ordered system in the presence of the product P

The three experimental series are indicated. The intersection on the y-axis for a ¯ b and a ¯ 1 series characterizes the inhibition by the product P in an ordered Bi Bi mechanism. The values

for the slopes and intersection points are indicated in Table 2.

cases. All of them intersect at (1, 1). From the fitting of the four

sets of experiments, we obtain ten linear equations built by the

seven parameters to be found; i.e. an over-determined linear

equation system that can be resolved. If the proposed sim-

ultaneous fitting is performed, the self-consistency achieved will

guarantee that the equation system is compatible and determined,

and the unknown parameter K
iP

and the quotient K
mQ

}(K
iQ

K
mP

)

will be worked out directly from the fitting. Again, the parameter

den3 will give us a clue about the biological significance of the

output.

(ii) Bi Bi ordered system: P as an inhibitor. The presence of

product P diminishes the velocity and can therefore be studied as

an inhibitor. In this case, more experiments are necessary. Three

experimental series make up each data family : (1) varying A and

B concentrations, keeping a¯ b ; (2) varying A concentrations,

keeping b¯ 1; and (3) varying B concentrations, keeping

a¯ 1.

Each data family is determined at a different concentration of

P and is compared with the data in the absence of any product.

If six concentrations of A and B are tested, each data family will

contain (3¬6)®2¯ 16 data points. If six concentrations of P are

tested, 16¬6¯ 96 data points will be collected. This is still

far from the 6$¯ 216 data points necessary in the ordinary

approach.

The normalized velocity equation in the presence of a times A

and b times B and in presence of P is given by:

V{
a,b

P1
!

¯

K
iA

K
mB

K
mB

aAK
mA

bBaAbB
K

mQ
K

mB
K

iA

K
iQ

K
mP

P
K

mQ
K

mB

K
iQ

K
mP

aAP
1

K
iP

aAbBP

ab[den1
(20)

The increment in the normalized velocity due to the presence of

P will be:

∆V{
a,b

P1
!

¯

K
mQ

K
mB

K
iA

K
iQ

K
mP

P
K

mQ
K

mB

K
iQ

K
mP

aAP
1

K
iP

aAbBP

ab[den1
(21)

For the experimental series a¯ b, a¯ 1 and b¯ 1, we obtain

three equations whose parameters are given in Table 2. Sim-

ultaneous plotting of these increments generates a parabola, the

a¯ b series, and two straight lines, the a¯ 1 and b¯ 1 series,

with a common intersection point at :

E

F

1,

K
mQ

K
mB

K
iA

K
iP
K

mQ
K

mB
K

iP
AK

iQ
K

mP
AB

K
iQ

K
mP

K
iP

den1
P

G

H

(22)

The second intersection point for the plots of the a¯ b and a¯
1 series is at ²0, [(1}K

iP
)ABP]}den1´. The second intersection

point for the plots of the a¯ b and b¯ 1 series is at ²®(A}K
iA

),

[(1}K
iP
)ABP]}den1´. This representation is depicted in Figure 3.

From these results, we obtain values for K
iP

and for the quotient

K
mQ

}K
iQ

K
mP

.

The parameters that describe the normalized velocity in a Bi Bi

ordered system in the presence of Q are given in Table 3.
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Table 3 Parameters that describe the increments in the normalized velocity equation in different Bi Bi systems, in the presence of the product Q

Term a ¯ b Series a ¯ 1 Series b ¯ 1 Series

(a) Bi Bi ordered systems

Second-order KmBKiA

KiQ

Q

den1

First-order KmA

KiQ

BQ

den1

KmBKiA

KiQ

Q

den1

KmBKiA

KiQ

Q
KmA

KiQ

BQ

den1

Independent KmA

KiQ

BQ

den1

(b) Bi Bi Ping Pong systems

Second-order KiAKmBKmP

KmQKiP

Q

den2

First-order KmA

KiQ

BQ

den2

KiAKmBKmP

KmQKiP

Q

den2

KiAKmBKmP

KmQKiP

Q
KmA

KiQ

BQ

den2

Independent KmA

KiQ

BQ

den2

(c) Bi Bi Theorell–Chance systems

Second-order KmAKiB

KiQ

Q

den1

First-order KmA

KiQ

BQ

den1

KmAKiB

KiQ

Q

den1

KmAKiB

KiQ

Q
KmA

KiQ

BQ

den1

Independent KmA

KiQ

BQ

den1

Presence of products in a Bi Bi Ping Pong System

(i) Bi Bi Ping Pong system: presence of P. In the presence of

P, two terms appear in the definition of the normalized velocity

in a Bi Bi Ping Pong system:

V{
a,b,p

¯

K
mB

aAK
mA

bBaAbB
K

iA
K

mB

K
iP

pP
K

mB

K
iP

aApP

abp[den4
(23)

We break down this equation to yield simple addends, as follows:

α¯
K

mB
A

den4
β¯

K
mA

B

den4
δ¯

AB

den4
(24)

δ¯

K
iA

K
mB

K
iP

P

den4
ε¯

K
mB

K
iP

AP

den4

where the parameter den4 is defined as:

den4¯K
mB

AK
mA

BAB
K

mB

K
iP

AP
K

iA
K

mB

K
iP

Thus the four experimental data series generate the following

expressions.

V{
a,b,p

a=b=p

¯ (αβδ)
1

a#

(γε)
1

a

V{
a,b,p

a=b="

¯ (αβγ)
1

p
(δε)

(25)

V{
a,b,p

b=p="

¯ (βδ)
1

a
(αγε)

V{
a,b,p

a=p="

¯ (αδε)
1

b
(βγ)
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Figure 4 Ideal plot of ∆Va,b
P1 0

versus 1/a for a Bi Bi Ping Pong system in the presence of the product P

The three experimental series are indicated. The intercept at the origin for the a ¯ b and a ¯ 1 series characterizes the inhibition by the product P in a Bi Bi Ping Pong mechanism. The values

for the slopes and intersection points are indicated in Table 2.

As in Bi Bi ordered systems, simultaneous plotting of eqn (23) for

the four experimental series provides enough information to

characterize the system. The plot of the a¯ b¯ p series yields a

parabola instead of the third-order polynomial obtained from

the same series in the Bi Bi ordered system. An over-determined

equation system can be defined, and the values for K
mA

, K
mB

, K
iP

and K
iA

can be obtained from its resolution. The compatibility of

the system and the uniqueness of the solution are achieved

through the proposed simultaneous fitting. Again, checking of

the value for den4, found in the solution, and the one obtained

by applying its definition, reflects the biological goodness of the

output.

(ii) Bi Bi Ping Pong system: P as an inhibitor. The effect of

the presence of P on the velocity of reaction is isolated as the

increment:

∆V{
a,b

P1
!

¯

K
mB

K
iP

aAP
K

iA
K

mB

K
iP

P

ab[den2
(26)

The same experimental design as in Bi Bi ordered systems is

implemented, resulting in three data series. The equations that

describe these series are given in Table 2. Simultaneous plotting

of eqn (26) in the three experimental series generates a parabola

and two straight lines with a common intersection point at

²1, [(K
iA

A)K
mB

}K
iP
]}den2[P´. The absence of a zero ordinate

in the parabola from the plot of the a¯ b series differentiates

between this Bi Bi Ping Pong system and the parabola in a Bi Bi

ordered system, which bears a zero ordinate. The second in-

tersection point for equations in a¯ b and b¯ 1 is at

(®A}K
iA

, 0). Simultaneous fitting will yield the value for K
iP
.

The overall representation is depicted in Figure 4. The description

of the Bi Bi Ping Pong system in the presence of Q is depicted in

Table 3.

Presence of products in a Theorell–Chance system

(i) Theorell–Chance system: presence of P. A Theorell–

Chance mechanism defines a Bi Bi ordered hit-and-run reaction

without a ternary complex. The equation in the absence of

products is the same as for an Bi Bi ordered system. It is product

inhibition that differentiates between these rival mechanisms. In

the presence of P, two terms appear in the definition of the

normalized velocity, as follows:

V{
a,b,p

¯

K
iB

K
mA

K
mA

bBK
mB

aAaAbBK
iB

pP
K

mB

K
iP

aApP

abp[den5

(27)

where the term den5 is defined as:

den5¯K
iB

K
mA

K
mA

BK
mB

AABK
iB

P
K

mB

K
iP

AP (28)
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Figure 5 Ideal plot of ∆Va,b
P1 0

versus 1/a for a Theorell–Chance Bi Bi system in the presence of the product P

The three experimental series are indicated. The intercept at the origin for a ¯ b and a ¯ 1 series characterizes the inhibition by the product P in a Theorell–Chance Bi Bi mechanism. The values

for the slopes and intersections are indicated in Table 2. This representation is identical with that of a Ping Pong Bi Bi system in the presence of P.

The four experimental series of data give rise to the following

equation system:

V{
a,b,p

a=b=p

¯α
1

a$

(βγδ)
1

a#

(εζ )
1

a

V{
a,b,p

a=b="

¯ (αβγδ)
1

p
(εζ )

(29)

V{
a,b,p

a=p="

¯ (αγεζ )
1

p
(βδ)

V{
a,b,p

b=p="

¯ (αβε)
1

p
(γδζ )

where the greek symbols refer to:

α¯
K

iB
K

mA

den5
β¯

K
mA

B

den5
γ¯

K
mB

A

den5
(30)

δ¯
AB

den5
ε¯

K
iB

P

den5
ζ¯

K
mB

K
iP

AP

den5

Simultaneous plotting will yield a third-order polynomial with

no zero ordinate for the a¯ b¯ p series, and three straight lines,

all of them intersecting at (1, 1). Simultaneous fitting will give the

values for K
mA

, K
mB

, K
iB

and K
iP
, and will, moreover, differentiate

between products P and Q, while at the same time ensuring

biological consistence through the parameter den. Furthermore,

it will discern between ordered and Theorell–Chance mech-

anisms, since the F-statistic test can be performed for choosing

eqn (15), ordered, or eqn (27), Theorell–Chance, as the best fit.

(ii) Theorell–Chance system: P as an inhibitor. The increment

in normalized velocity due to the presence of P is :

∆V{
a,b

P1
!

¯

K
iB

P
K

mB

K
iP

aAP

ab[den1
(31)

The experimental data series generate the expressions described

in Table 2. The results from the fitting will yield the value for K
iP

and will differentiate between P and Q. Also, the simultaneous

plotting of the three equations generates a pattern that is different

from a Bi Bi ordered system in the presence of P, thereby

allowing one to discern between both mechanisms. The common

intersection point for the three plots is at ²1, [(K
iB

[K
iP

K
mB

A)}K
iP
]P}den1´. The second intersection point for the

plots of the a¯ b and b¯ 1 series is at [®(K
mB

A)}(K
iB

K
iP
), 0].

The overall representation is depicted in Figure 5.

From the overall results, we can establish that the Bi Bi

Theorell–Chance systems behave as Bi Bi ordered systems in

the absence of products, and as Bi Bi Ping Pong systems in the

presence of products, as observed in Tables 2 and 3.

Ter Ter systems

There exist four basic kinetic schemes for a Ter Ter system: one

Ter Ter ordered system, and three Ter Ter Ping Pong systems.

They can be easily discerned from each other by using normalized
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velocity in the kinetic studies, while considerably reducing the

number of experimental points to be determined. The studies of

product inhibition with only one product will sharply differentiate

between rival models. Solely the Hexa Uni Uni Ping Pong

system, because of its inherent symmetry, needs further studies

with analogues in order to determine the actual reaction pattern.

In the case of a Ter Ter ordered system in the absence of

products, the experimental approach in the absence of products

require the acquisition of four series of data: a¯ b¯ c, a¯ b¯
1, a¯ c¯ 1 and b¯ c¯ 1. If six concentrations of each substrate

will be tested, then (6¬4)®3¯ 21 data points will be enough for

a proper description of the system, instead of the 6$¯ 216

necessary when ordinary kinetic methods are used.

When the product P is introduced in the experimental design,

five experimental series are needed to completely characterize the

system: a¯ b¯ c¯ p, b¯ c¯ p¯ 1, a¯ c¯ p¯ 1, a¯ b¯
p¯ 1, and a¯ b¯ c¯ 1. This means that (6¬5)®4¯ 26 data

will give a proper description of the system, instead of the 6%¯
1296 necessary when six concentrations of each substrate and

product will be tested. It has been claimed that it is not strictly

necessary to sweep on the whole experimental design space to

achieve reliable results [17], but the economy in the practical

approach of this normalized plot is anyway obvious.

This dramatic reduction in the amount of experimental data

necessary for an appropriate description of a Ter Ter system

illustrates the utility of the normalized plot, and opens a way for

accelerating the characterization of complex enzyme systems.

Substrate inhibition

Substrate inhibition appears when any substrate binds the wrong

form of the enzyme. This binding can generate a dead-end

complex which sequesters the active enzyme, and is usually only

apparent at high substrate concentrations and}or when the

reaction is studied in the non-physiological sense [15]. Substrate

inhibition is often avoided in the design of the experiments

because of the additional non-linearity it introduces in the

behaviour of the enzyme. Its study frequently needs interpolation

and}or extrapolation from secondary plots, which in turn

introduce uncertainty in the obtention of the parameters. Fur-

thermore, the customary approach requires using separately low

and high concentrations of the inhibitory substrate, as if the

system showed sharp biphasic behaviour. Reality is usually very

different, and estimation of asymptotes from non-linear double

inverse plots is associated with high error levels [2].

The use of the normalized plot and simultaneous fitting opens

a way for obtaining useful information from substrate-inhibited

enzymes. When this approach is used, the inhibited enzyme form

is easily identified, which could reflect changes in the enzyme

conformation depending on the intermediate enzyme forms. The

relationship between conformational changes occurring during

the course of the reaction and changes in the enzyme activity can

therefore be predicted for further studies. Moreover, the presence

of substrate inhibition breaks down the inner symmetry inherent

to Ping Pong systems. This facilitates the classification of the

reaction sequence, since not only can the pairs AP and BQ be

identified but, also, the A and B substrates can be discerned.

Thus product inhibition should not be regarded as a situation to

be avoided, but rather as a source of extra information that

should be exploited. The accompanying paper [18] is an example

of the information that can be achieved by using the normalized

approach in the description of a substrate-inhibited enzyme.
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Conclusions

A new data-managing method based on velocity and substrate

concentration normalization has been described. We have shown

that this dramatically reduces the amount of experimental data

necessary for a proper description of the system and provides a

global statistical fitting algorithm to select kinetic models and

extract constants. This reduction is greater for largermechanisms.

Thus, in the study of a Ter Ter reactant system in the presence

of one of the products, 26 data points will give a correct

description of the system, versus the 1296 data points required

with the conventional approach, using 6¬6# substrate matrices.

In addition, a numeric constraint is introduced so that ‘scientific

goodness ’ of the best fit can be tested, therefore allowing one to

reject a good but inconsistent fit. Visual inspection of the results

yields easy discrimination between complex rival kinetic models,

so that the intuitive aspects of the classical approaches are not

lost in the normalized method. Also, if suitable software can be

developed, the analytical treatment will help in the acquisition of

reliable kinetic data. The proposed normalized plot is therefore

likely to be useful when dealing with complex systems, inhibition

and binding studies, and other possible applications not discussed

here, such as integrated rate equations. Moreover, the normalized

output is amenable to analysis by means of more robust methods,

such as artificial neural networks.
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