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Bile-salt hydrophobicity regulates biliary phospholipid secretion

and subselection. The aim of this study was to determine whether

bile salts can influence liver plasma membrane phospholipids

and fluidity in relation to the ATP-dependent transporter. Rats

were depleted of bile salts by overnight biliary diversion and then

sodium taurocholate was infused intravenously at a constant rate

(200 nmol}min per 100 g of body weight), followed by infusion

of bile salts with various hydrophobicities (taurochenodeoxy-

cholate, tauroursodeoxycholate, tauro-β-muricholate, tauro-α-

muricholate at 200 nmol}min per 100 g of body weight). The

hydrophobicity of the infused bile salts correlated with that of

biliary phospholipids, but was inversely related to that of the

canalicular membrane bilayer. Canalicular membrane fluidity

(estimated by 1,6-diphenyl-1,3,5-hexatriene fluorescence depolar-

INTRODUCTION
Previous studies performed by our laboratory [1,2] and others

[3–5] have shown that alterations in the physical state of plasma-

membrane lipids (i.e. fluidity and lateral packing) can influence

the function of membrane carriers that mediate the transport of

various nutrients, electrolytes and drugs, including membrane-

bound enzymes. In fact, the carrier-mediated transport of tauro-

cholate (TC) into canalicular membrane vesicles (CMVs) has

been shown to be partly modulated by membrane fluidity [6].

Excretion of a large variety of endogenous and exogenous

compounds from hepatocytes into the bile is an ATP-dependent

process, predominantly performed by members of the P-gly-

coprotein (Pgp) subfamily and the multidrug-resistance protein

subfamily of theATP-binding cassette (ABC) protein superfamily

[7–10]. In this regard, there have been several reports that the

expression of these proteins is modulated by drugs causing

intrahepatic cholestasis, as well as by bile-duct ligation [11–16].

However, the mechanism(s) of such regulation of the ABC

transporters is yet to be established.

We recently demonstrated [1] that bile-salt hydrophobicity

regulates the subselection of phospholipid (PL) species secreted

into bile and thereby modulates bile metastability, and that these

changes are associated with alterations of the PL species within

cell-membrane bilayers. We suggested [1] that the function of

canalicular membrane transporters may be modulated by such

changes of the lipid bilayer in association with alterations of

membrane fluidity. Accordingly, bile-salt hydrophobicity may

play an important role in the regulation of hepatic excretory
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ization) and expression of multidrug-resistance proteins (Mrp2,

Mrp3) and apical Na+-dependent bile-salt transporter (ASBT)

were increased by hydrophilic bile salts, although there was no

marked change in the expression of P-glycoprotein subfamilies

(Mdr2). Bile-salt export pump (Bsep) expression was increased

along with increasing bile-salt hydrophobicity. Bile salts modu-

late canalicular membrane phospholipids and membrane fluidity,

as well as the ATP-dependent transporter expression and func-

tion, and these actions are associated with their hydrophobicity.

The cytoprotective effect of hydrophilic bile salts seems to be

associated with induction of Mrp2, Mrp3 and ASBT.

Key words: ASBT, Bsep, canalicular membrane fluidity, Mrp2,

Mrp3.

systems. Therefore, the aim of this study was to investigate

whether changes of bile-salt hydrophobicity affect the fluidity

and lipid composition of the canalicular membrane, as well as the

function of liver plasma-membrane transporters.

MATERIALS AND METHODS

Chemicals

Sodium salts of TC, taurochenodeoxycholate (TCDC), taurour-

sodeoxycholate (TUDC), tauro-β-muricholate (TβMC) and

tauro-α-muricholate (TαMC) were provided generously by

Tokyo Tanabe (Tokyo, Japan). These salts were " 99% pure

when examined by HPLC. HPLC-grade acetonitrile and propan-

2-ol were obtained from Wako Pure Chemical Industries (Osaka,

Japan) and 1,6-diphenyl-1,3,5-hexatriene (DPH) was obtained

from Molecular Probes (Eugene, OR, U.S.A.). Polyclonal rabbit

antibodies against multidrug-resistance protein Mrp2 (K3, di-

lution 1:1000) and polyclonal antibodies against bile-salt export

pump (Bsep; K12, dilution 1:1000) were kindly provided by Dr

M. Muller (Groningen Institute for Drug Studies, University of

Groningen, Groningen, The Netherlands). Mouse monoclonal

antibody C219 (dilution 1:1000; Signet Laboratories, Dedham,

MA, U.S.A.) was used to detect all Pgps. Mouse monoclonal

antibody 6}1G (dilution 1:300; Chemicon International,

Temecula, CA, U.S.A.) was used to detect multidrug-resistance

protein Mdr2. Rat antibodies against Mrp3 (dilution 1:1000)

were prepared at the Graduate School of Pharmaceutical Sci-

ences, University of Tokyo (Tokyo, Japan). Rat antibodies
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against the apical sodium-dependent bile-salt transporter (ASBT;

RIBMAL1, dilution 1:1000) was provided by Dr W. Kramer

(DG Metabolic Diseases, Aventis Pharma Deutschland GmbH,

Frankfurt, Germany).

Animal model and experimental protocol

Adult male Sprague–Dawley rats (250–300 g; Hiroshima Jikken

Doubutsu, Hiroshima, Japan) were housed together in cages and

were allowed free access to food and water before the study. The

rats were anaesthetized with sodium pentobarbital (50 mg}kg,

intraperitoneal). After opening the abdomen, the bile duct was

cannulated with a polyethylene tube to allow sampling of the bile

and the left femoral vein was catheterized for administration of

solutions. The catheters used (PE10) were purchased from

Nippon Becton Dickinson (Tokyo, Japan). After surgery, the

rats were placed in restraining cages and intravenous infusion of

0.9% NaCl was started at a rate of 0.4 ml}h per 100 g of body

weight. After the endogenous bile-salt pool had been drained for

15 h, the animals were intravenously infused with TC at a

constant rate (200 nmol}min per 100 g of body weight). After

2 h, the rats were infused with TCDC, TUDC, TβMC or TαMC

(200 nmol}min per 100 g of body weight) for 2 h. Bile was

collected into pre-weighed tubes at intervals until the end of the

experiment. Subsequently, the rats were killed by an intravenous

injection of pentobarbital and their livers were excised, weighed

and prepared for the examination of crude liver homogenate and

liver plasma membranes. The study protocol was approved by

the Hiroshima Animal Care and Use Committee, and the animals

received humane care in compliance with the directives of the

National Research Council as outlined in [16a].

Bile-salt hydrophobicity

The hydrophilic}hydrophobic balance of bile salts was deter-

mined by the retention times on reversed-phase HPLC (Shimadzu

LC-6A system; Shimadzu Industruments, Tokyo, Japan) as

described previously [17]. The hydrophobic index was calculated

from the retention time of each bile salt.

Isolation of canalicular membranes

Liver crude membrane vesicles and CMVs were isolated using

the sucrose-gradient centrifugation technique described by

Takenaka et al. [18]. Then the membrane fraction was stored at

®70 °C until use.

The activity of two CMV marker enzymes, leucine amino-

peptidase and γ-glutamyltranspeptidase, was measured with

commercially available kits (LAP C-test Wako and γ-GTP C-

test Wako; Wako Junyaku Kogyo, Osaka, Japan). Compared

with the crude liver homogenate, the activities of the respective

enzymes showed 55-fold and 80-fold increases in CMVs.

Analytical procedures

Total biliary bile salts were measured enzymically using 3-α-

hydroxysteroid dehydrogenase [19]. The biliary cholesterol con-

centration was measured using a commercial kit after lipid

extraction with diethyl ether [20], and the PL concentration was

measured directly as described by Bartlett [21]. Fatty acid

composition of lecithin was measured by GLC. Lecithin hydro-

phobicity was estimated by the ratio of saturated fatty acid to

unsaturated fatty acid, the S}U ratio.

Membrane lipids were extracted for analysis by the method of

Bligh and Dyer [22]. The chloroform layers were pooled, washed

with an equal volume of methanol}water (1:1, v}v), and

evaporated to dryness. After being redissolved in 100 µl of 10%

Triton X-100, aliquots (20 µl) were taken for the determination

the PLs and total cholesterol using a commercial enzymic method.

Total protein levels in the liver homogenates and membrane

subfractions were measured with a commercially available kit

(Coomassie Brilliant Blue dye-binding assay; Bio-Rad Labora-

tories, Richmond, CA, U.S.A.) [23].

DPH polarization value

Membrane fluidity was estimated by the DPH fluorescence

depolarization method. In brief, 2¬10−$ M DPH in tetrahydro-

furan was first diluted 1000-fold with vigorous stirring for 10 min

at 25 °C and a stable aqueous dispersion of 2¬10−' M DPH was

obtained. One volume of CMV suspension (100 µg of protein}ml)

was mixed with one volume of the DPH dispersion and was

incubated with gentle shaking at 37 °C in darkness for 45 min

(the time required to reach the maximal fluorescence intensity).

Steady-state fluorescence polarization measurements were per-

formed using a Hitachi F2000 spectrofluorometer (Hitachi,

Tokyo, Japan) equipped with a circulating-water bath to

maintain the temperature at 37 °C. The excitation and

emission wavelengths were 360 and 430 nm, respectively.

The emission intensity of vertically polarized light was detected

by an analyser oriented parallel (Ivv) or perpendicular (Ivh) to

the excitation plane and fluorescence polarization (P) was

calculated by the following equation: P¯ (Ivv®Ivh)}(Ivv­
Ivh). The calculated values were corrected for light scatter

according to the method of Lentz et al. [24] and were used as an

indicator of membrane fluidity, with increased anisotropy indi-

cating a decrease of PL acyl chain motion within the membrane

[25]. All determinations were performed in triplicate.

Western-blot analysis

Crude liver homogenate and liver plasma-membrane proteins

(50 µg) were separated by SDS}PAGE [26] and were transferred

to nitrocellulose membranes (Millipore, Bedford, MA, U.S.A.)

using a tank-blotting system according to the manufacturer’s

instructions (Bio-Rad Laboratories). After transfer, the mem-

branes were blocked for 2 h at room temperature with 5%

powdered skimmed milk dissolved in Tris-buffered saline con-

taining 0.05% Tween 20, and they were then incubated overnight

at 4 °C with the first antibody. Immune complexes were detected

using alkaline phosphatase-conjugated anti-rabbit IgG or rabbit

anti-mouse IgG (1:3000 dilution) according to the manu-

facturer’s instructions (Bio-Rad Laboratories). Detection of

membrane transporters was performed by comparison with the

following standards: myosin (200 kDa), β-galactosidase

(116 kDa), phosphorylase b (97 kDa), BSA (66 kDa) and ovalbu-

min (43 kDa). The immunoreactive bands on the membranes

were quantified by densitometric analysis.

Statistical analysis

Statistical differences were determined by one-way ANOVA,

followed by a multiple-comparisons test. The significance level

was P! 0.05.

RESULTS

Bile-salt hydrophobicity

The hydrophobicity of the various bile salts was ranked in the

following order: TCDC (2.13)"TC (1)"TUDC (0.46)"
TβMC (0.21)"TαMC (0.16).
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Table 1 Effects of bile salts on biliary lipid secretion and on lipid composition of CMVs

The effects of bile salt on PC, cholesterol (CH), CH/PL ratio and S/U ratio are expressed as the mean percentage³S.D. of the value during infusion with TC alone. The output of PC and cholesterol

were significantly reduced by the hydrophilic bile salts whereas the CH/PL ratio was significantly increased (P ! 0.05). In contrast, PC concentration was significantly increased by the hydrophilic

bile salts (P ! 0.05) whereas the CH/PL ratio had a tendency to be reduced (not significant). The S/U ratio in bile was significantly decreased by the hydrophilic bile salts. In contrast, the S/U

ratio in CMVs was significantly increased by the hydrophilic bile salts (P ! 0.05).

TCDC TC TUDC TβMC TαMC

Retention factor (hydrophobic index)… 2.13 1.00 0.46 0.21 0.16

Bile

PC secretion (nmol/min per 100 g of body weight) 40.3³8.77* 31.35³6.76 23.15³5.01* 14.89³3.21* 12.54³3.55*

CH secretion (nmol/min per 100 g of body weight) 4.82³0.88* 3.91³0.49 3.01³0.85* 2.8³0.51* 2.83³0.42*

CH/PL ratio 0.162³0.04* 0.203³0.05 0.223³0.06* 0.232³0.04* 0.23³0.05*

PC S/U ratio 1.09³0.06 0.97³0.05 0.8³0.12* 0.74³0.07* 0.71³0.05*

CMVs

PC (nmol/mg of protein) 232.3³86.7* 298.1³127.9 432.3³36.9* 425.2³20.1* 428.4³36.9*

CH (nmol/mg of protein) 214.8³63.5 263.7³117.9 312³45.6 332.5³24.2 330.3³23.4

CH/PL ratio 0.942³0.23 0.903³0.19 0.606³0.38 0.685³0.16 0.64³0.26

PC S/U ratio 3.32³0.21 3.61³0.28 3.58³0.16 3.85³0.09* 3.72³0.12*

Figure 1 Effects of bile acid on canalicular membrane fluidity in rats

Rats were treated after their endogenous bile-salt pools had been drained for 15 h and were

infused intravenously with TC, TCDC, TUDC, TβMC or TαMC (200 nmol/min per 100 g of body

weight) for 2 h. They were killed 120 min after the intravenous infusion and livers were isolated

from each rat group. Canalicular membrane fluidity was estimated by DPH fluorescence

depolarization. Steady-state fluorescence polarization measurements were performed by using

a spectrometer. The polarization value of DPH fluorescence, shown on the y axis, is taken

as a measure of membrane fluidity, increased anisotropy indicating a decreased extent of PL

acyl chain motion within the membrane. Values are means³S.D. from four rats. *P ! 0.05,

compared with TC alone (control).

Effect of bile-salt infusion on biliary lipid secretion and lipid
composition of CMVs

After 15 h of bile diversion, the biliary secretion of cholesterol

and lecithin was low. When rats were subsequently infused with

the various bile salts after diversion, the output of lecithin and

cholesterol increased rapidly and then remained constant. Leci-

thin output increased with increasing bile-salt hydrophobicity.

Cholesterol secretion also increased with increasing bile-salt

hydrophobicity. In contrast, the biliary cholesterol}lecithin ratio

decreased in proportion to bile-salt hydrophobicity. In theCMVs,

phosphatidylcholine (PC) concentration decreased with increas-

ing bile-salt hydrophobicity, whereas the cholesterol}PL ratio

had a tendency to be increased (Table 1).

Figure 2 Immunoblot analyses of transporters after administration of bile
acid in rats

Rats were treated after their endogenous bile-salt pools had been drained for 15 h and were

infused intravenously with TC, TCDC, TUDC, TβMC or TαMC (200 nmol/min per 100 g of body

weight) for 2 h. They were killed 120 min after the intravenous infusion and livers were isolated

from each rat group. Membrane proteins (50 µg) were resolved by SDS/PAGE (7.5% gel),

and immunoblots were performed using primary antibodies : polyclonal rabbit antibodies against

Pgps (C219, dilution 1 : 300), Mrp2 (K3, dilution 1 : 500) and Bsep (K12, dilution 1 : 500),

monoclonal mouse antibody against Pgp specifically recognizing mdr2-encoded gene product

(6/1G, dilution 1 : 300) and rat monoclonal antibody against Mrp3 (dilution 1 : 1000). Rat

antibodies against ASBT (RIMBAL1, dilution 1 : 1000).

Effect of bile-salt infusion on biliary and CMV lecithin species

The hydrophobicity of the lecithin species was dependent on the

hydrophobicity of the infused bile salt. Relative hydrophobicity

of the lecithin species was defined from the retention times on

HPLC, and the hydrophobic index of each PC was calculated.

It was found that the hydrophobic index of biliary lecithin

increased in proportion to the bile-salt hydrophobic index,

whereas the hydrophobicity of lecithin in CMVs decreased. The

S}U ratio in bile was significantly decreased by hydrophobic bile

salts. In contrast, the S}U ratio in CMVs was significantly

increased by hydrophilic bile salts (Table 1).
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Figure 3 Densitometric analysis of liver transporters protein levels

Immunoblots of liver crude homogenate and liver plasma-membrane vesicle from TC (control) and TCDC, TUDC, TαMC and TβMC were prepared as described in the Materials and methods section.

Autoradiographs were quantified by densitometry. Data are means³S.D. from four rats. *P ! 0.05 compared with TC alone.

Effect of bile salts on canalicular membrane fluidity

Canalicular membrane fluidity was estimated by the DPH

fluorescence depolarization method. DPH fluorescence was taken

as an indication of membrane fluidity, with increased anisotropy

indicating a decrease of PL acyl chain motion within the

membrane. Infusion of hydrophilic bile acids resulted in signifi-

cantly lower polarization values than infusion of hydrophobic

bile acids. In particular, canalicular membrane fluidity was

increased markedly by TUDC (polarization values, ®20%).

These results indicated that hydrophilic bile acids could increase

canalicular membrane fluidity (Figure 1).

Western blotting of liver plasma-membrane transporters after
bile-salt infusion and densitometric analysis

The changes in membrane transporters were quantified by

densitometry, and the transporter levels in CMVs (Mrp2, Bsep,

Mdr2 and Pgps), liver crude membrane vesicle (Mrp3) and crude

liver homogenate (ASBT) were expressed as percentages of the

corresponding control values. The expression of Mdr2 and Pgps

was not altered by bile-salt infusion, whereas increased expression

of Mrp2, Mrp3 and ASBT and decreased expression of Bsep

were evident after infusion of hydrophilic bile salts (Figures 2

and 3).

DISCUSSION

Bile salts are important for stimulating bile flow and biliary lipid

secretion [27]. In the bile, cholesterol is solubilized in PC vesicles

and in mixed micelles that are composed of bile salts, PC and

cholesterol. Formation of such micelles serves to attenuate the

deleterious detergent action and potential cytotoxicity of hydro-

phobic bile salts on biliary epithelial cells [17,28]. The present

study was performed to determine whether bile salts could

influence the PC species of the biliary canalicular membrane in

association with altering bile-solute-transporter expression and

function, and to clarify whether the cytoprotective action of

hydrophilic bile salts was associated with such changes in cell-

membrane bilayers.

This study yielded several interesting findings. First, infusion

of hydrophilic bile salts (TUDC, TβMC and TαMC) significantly

lowered the polarization value, which indicated that canalicular

membrane fluidity was increased, whereas a reduction of cana-

licular membrane fluidity was evident after infusion of hydro-

phobic bile salts. Canalicular membrane fluidity was the most

dramatically increased by TUDC. Similarly, Bellentani et al. [29]
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have reported that TUDC increases canalicular membrane

fluidity. Our previous study demonstrated that hydrophilic bile

salts increased the hydrophobicity of PL species in canalicular

membranes and thus enhanced the lateral packing density,

thereby decreasing the release of canalicular membrane enzymes

[1,2], raising the possibility of increased canalicular membrane

fluidity being modulated by such changes of PL composition.

Hofmann et al. [30] suggested that the diffusion rate of bile salts

through (model) membranes is not only dependent on hydro-

phobicity, but also on bile-salt di- (and poly-)meric associations

and on membrane-lipid composition [30]. Similarly, our data

also revealed that membrane fluidity is not exactly correspondent

with bile-salt hydrophobicity. Taken together, these findings

suggest that bile-salt hydrophobicity at least partly regulates the

physiological function of canalicular membranes during bile

secretion by altering its membrane structure.

Another interesting finding was that the expression of ABC

transporters was affected by bile salts. Expression of Mrp2

was enhanced by hydrophilic bile salts, and Bsep expression was

correlated with the hydrophobicity of the bile salts. Since Mrp2

is the major driving force for bile-salt-independent bile flow [31]

aswell as transporting organic anions including bilirubin glucuro-

nides, its enhanced expression may relate to the increased

excretion of such molecules into the bile. The fact that Bsep, the

major driving force for bile-salt-dependent bile flow, was in-

creased by hydrophobic bile salts could be considered to be a

homoeostatic process occurring in the liver to induce the biliary

excretion of cytotoxic bile salts having a high hydrophobicity. In

hepatocytes accumulation of bile salts is known to cause mito-

chondrial damage and, ultimately, apoptosis and necrosis [32,33].

The farnesoid X receptor (FXR) is critical for bile-salt homoeo-

stasis by virtue of its role as intracellular bile-salt sensor and

transcriptional regulator, suggesting the regulatory relationship

between FXR and Bsep expression [34]. In the present study, the

expression of ABC transporters such as Bsep and Mrp2 was

altered by bile-salt infusion for several hours, although mRNA

levels might not be affected in such a short period. Thus these

changes could be explained by delivery of transporter proteins

from somewhere else. In fact, Kipp et al. [35–37] recently

indicated that ABC transporters cycle between the bile cana-

liculus and large intrahepatic ABC transporter pools. Similarly,

we previously showed that cyclosporin A up-regulates Mdr2

protein expression for several hours [38]. Nevertheless, a hy-

drophobic bile salt such as chenodeoxycholate, a ligand

for FXR, presumably stimulates Bsep expression by up-

regulating FXR, and thus further investigations are certainly

needed to confirm this hypothesis.

In contrast, Mdr2 expression was not significantly altered by

the hydrophobic degree of bile salts infused in the present study.

In this regard, Gupta et al. [39] showed, however, that taurine-

conjugated bile salts (50 mM) increased Mdr2 mRNA levels in

primary rat hepatocytes [39]. The difference between the two

studies could be based upon the experimental design and the

dose of bile salts used, although no direct information was

provided in the present study to clarify this issue.

Canalicular membrane fluidity, lateral packing density and

ABC transporter expression may be affected by changes in the

PC species that comprise the canalicular membrane. No previous

studies have shown that alterations in canalicular membrane

fluidity can influence the expression of a number of important

ABC transporters (Pgps, Mdr2, Mrp2 and Bsep). Canalicular

membrane fluidity was increased in association with a lower

cholesterol}PL ratio in the canalicular membrane lipid bilayer,

which may account for the increased membrane fluidity. The

increases in Mrp2 expression by hydrophilic bile salts and in

Bsep expression by hydrophobic bile salts somehow suggest that

the therapeutic effect of hydrophilic bile salts depends, in part, on

enhancing biliary organic anion excretion, while self-protection

against cytotoxic (hydrophobic) bile salts may induce the se-

cretion of such bile salts.

The basolateral isoform, Mrp3, which is located on the

basolateral membranes of hepatocytes and cholangiocytes

[40,41], is up-regulated in mutant animals with a defect in Mrp2

and in extrahepatic cholestasis [42]. Mrp3 mediates the ATP-

dependent transport of bile salt and anionic conjugates, par-

ticularly of glucuronides and sulphoconjugates, across the baso-

lateral hepatocyte membrane into sinusoidal blood. The inverse

relation in expression of Mrp3 and Mrp2 has been demonstrated

under various conditions, which is explained as a compensatory

role of Mrp3 in the hepatic secretion of bile salt and anionic

conjugates during impaired transport into bile [43]. However, the

expression of Mrp3 as well as Mrp2 was increased with decreasing

bile-salt hydrophobicity. This may suggest that hydrophilic bile

salt up-regulates canalicular and lateral membrane transporter

proteins to mediate the excretion of bilirubin and bile salt.

Although bile-salt transport by bile-duct epithelial cells, or

cholangiocytes, has been postulated, the details of this process

remain unclear. The cholehepatic shunt hypothesis provides a

possible scenario by which cholangiocytes may participate in the

enterohepatic circulation of bile salts. This pathwaywas proposed

by Hofmann and colleagues [44,45]. The hypothesis proposes

that bile salt is protonated in the canaliculus, absorbed passively

into the cholangiocyte, and then secreted at the basolateral

cholangiocyte domain. From there, the bile-salt molecule enters

the periductular capillary plexus and proceeds to the sinusoids to

be reabsorbed by the hepatocyte where it can be resecreted into

bile, promoting additional canalicular bile secretion. Lazaridis et

al. [46] indicate that biliary epithelia actively transport conjugated

bile salts at their apical domain via ASBT. ASBT may serve

physiological functions. Its presence may help to regulate bile

formation and promote water absorption, and to affect cholan-

giocyte signalling pathways, including protein kinase C, Mg#+

and cAMP [46]. In our study, hydrophilic bile salts up-regulate

ASBT protein levels. This indicates that the hydrophilic bile salts

strengthen the role of ASBT in the transport of xenobiotics into

cholangiocytes, leading to their recycling to hepatocytes via a

cholehepatic shunt pathway and}or to their further metabolism

by biliary epithelia. Taken together, hepatocellular cytopro-

tection by hydrophilic bile salts is possibly based on increased

membrane fluidity and enhanced organic anion secretion into

bile.

In summary, bile salts can modulate canalicular membrane PL

species and fluidity as well as transporters, and this action is

associated with hydrophobicity. The cytoprotective effect of

hydrophilic bile salts is seemingly associated with induction

of Mrp2, Mrp3 and ASBT.
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