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Model Structure

We describe here a general model of tuberculosis (TB) transmission in which the identity
of specific circulating strains of Mycobacterium tuberculosis is known. Each individual
in the model is characterized by age category, household, neighborhood, HIV infection,
and latent TB infection. These variables were assigned randomly to individuals based on
their overall distribution in the population. The model is run in time steps of 1 week,
during which a series of events may occur. Each of these events occurs as the stochastic
realization of specified probability; where it is not otherwise stated, individuals at risk for
an event were assigned random numbers between 0 and 1, and those with a number equal
to or less than the “rate” specified for a process were “successes” for this process,
whereas the remainder were “failures.” The distribution of these outcomes therefore
followed a binomial distribution with success probability equal to the specified rate.

(i) A person with latent TB may reactivate at an age-specific and HIV-dependant rate and
enter the pool of cases of active TB. Infected people develop either pulmonary or
extrapulmonary disease depending on age and HIV status.

(ii) TB may be transmitted from an individual with pulmonary TB to a susceptible or
partially susceptible person in the population. Infection may occur within a household,
within a neighborhood, or between neighborhoods. The transmission probabilities are
different for each of these possibilities and are bounded by estimates derived from the
literature on the probability of TB infection after exposure in different social settings.
Within these bounds, transmission probabilities are varied to obtain an approximate fit to
the incidence of disease in each of nine populations modeled. Each person in the
population is assigned a transmissibility factor that remains fixed throughout the
simulation. Thus, the factors that impact the likelihood that a transmission event will
occur are modeled as host characteristics and are not transmitted from one individual to
another with the infecting strain. These host-specific transmission factors are drawn
randomly from a widely dispersed beta distribution. This distribution was chosen to
represent the full range of clinical presentations of TB and their impact on transmission.
Thus, individuals assigned a low transmissibility factor represent those with a low
probability of transmission such as smear-negative pulmonary cases and those with
limited social mixing. Those with a high transmissibility factor correspond to cases with a
very high probability of transmission such as those with laryngeal TB and/or those with a
large number of social contacts. The probability of transmission to a latently infected
individual is modified also by the age-specific immunity afforded by previous infection
with TB to the individual at risk for infection.

(iii) People infected during the time step may develop primary active TB at age- and
HIV-dependent rates and enter the pool of cases of active disease. Those who do not
develop primary disease enter the pool of people at risk for primary disease. Those not
removed from the pool remain at risk for 2 years.
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(iv) People in the pool of cases of primary disease may leave this pool and enter or
reenter the state of latent TB infection.

(v) Those with active disease are assigned a duration of disease, during which they
remain in that pool. Individual disease durations are drawn from a normal distribution.

The model was run for 208 time steps (4 years), during which time the population was
considered closed with no births, deaths, or migration. One case was forced to reactivate
during the first time step. To calibrate the model and ensure that its assumptions were
consistent with observed data, cluster distributions and measures of incidence were
generated for nine different settings for which estimates of TB incidence are available.
These included seven countries and two U.S.-based prisons. We fit the model to the
estimated incidence of TB in the nine settings modeled by allowing the parameters of the
beta distribution to vary to give transmission probabilities within the bounds specified. At
the end of each simulation, final output was generated including the annual incidence of
infection, annual incidence of all active disease, annual incidence of pulmonary disease,
and prevalence of infectious cases. The number of cases of a specific strain of M.
tuberculosis was counted, and a subsequent count was made of the number of a cluster of
a specific size. Summary statistics describing these cluster distributions were reported
including mean and maximum cluster size and the proportion of unique isolates in the
data set. Simulations for each setting were repeated 20 times, and Monte Carlo means and
95% confidence intervals were calculated for each simulation setting.

Variables

Variables characterizing individuals in the modeled populations were based on
demographic and health indicators for the nine regions chosen for analysis (Table 2).
These regions were selected to capture both a wide range of disease burden as well as
different levels of HIV infection and demographic features. Because many of the
parameters that describe TB epidemics are age-dependent, individuals were characterized
by three age categories derived from country-specific age structures projected by the
United Nations Development Program for the year 2000 (1). These categories included
people under 11, 11-20, and over 20 years old to accommodate age-specific differences
in rates of reactivation and primary disease as well as the proportion of cases of disease
that are infectious. For most scenarios, the age-specific prevalence of latent TB in the
population was based on projections of the annual risk of infection and the trends in the
annual risk of infection for each area reported by the World Health Organization (WHO)
global surveillance and monitoring project (2). The age-specific prevalence of latent
infection was back-calculated from the estimated annual risk of infection and the trend in
the annual risk of infection. Annual risks were established for each calendar year during
which the current population had been alive, and the cumulative incidence of infection in
each age group by the year 2000 was calculated. Assuming no differential mortality
among the TB infected, the prevalence of latent infection is equivalent to the cumulative
incidence of infection in each age cohort. The prevalence of latent infection in the three
age categories and the overall population then was based on the relative contribution of



3

that age group to the age categories and total population. For the two prison populations,
the prevalence of latent infection with TB was obtained from direct observation of
purified protein derivative (PPD, tuberculin skin test) positivity (T. M. Hammet, P.
Harmon, and W. Rhodes, unpublished data). Country-specific estimates of HIV sero-
prevalence from 1997 were taken from those published by the Joint United Nations
Programme on HIV/AIDS and WHO (3). For simplicity, HIV and TB were considered to
be acquired independently, and thus the risk of coinfection is just the product of the risk
of each infection in each age group. HIV prevalence within prisons was obtained also
through direct observation (T. M. Hammet, P. Harmon, and W. Rhodes, unpublished
data).

The effects of various control measures were incorporated into the models by estimating
the use and effectiveness of bacillus Calmette--Guérin (BCG) vaccination,
chemoprophylaxis among household contacts, and the duration of infectiousness for each
scenario. Levels of BCG coverage among children were taken from country estimates
published by the Expanded Programme for Immunization/WHO (4). Estimates of
coverage among adults generally were not available and were based on reports of BCG
scars in adults in areas with similar socioeconomic profiles (5). BCG efficacy was
estimated at 50% (6). Good data on the use of chemoprophylaxis among household
contacts is not available; nonetheless, the current debates on chemoprophylaxis among
the HIV-infected in developing countries make clear that preventive therapy rarely is
used outside Europe and the U.S. (7). Levels of household chemoprophylaxis used for the
U.S. and Europe were based on speculation. Approximations of the mean duration of
infectiousness for each country was obtained by dividing the prevalence of smear-
positive cases by the incidence of smear-positive cases for each country as estimated by
the WHO Global Surveillance and Monitoring Project (2).

Parameters

Estimates of the parameters summarized in Table 3 were taken from the literature and
selected to correspond to those used in standard differential equation models of TB
epidemics (8, 9). We defined primary TB to be a disease that occurred within the first 2
years after infection. Rates of primary and reactivation disease as well as the fraction of
extrapulmonary disease in immunocompetent hosts were specified for three age
categories. Although the immunity to a subsequent infection conferred by previous
infection with TB has not been established in epidemiologic studies, the age-specific
estimates used in this model were derived from studies that fitted epidemic models to
incidence data (8). In the absence of reasonable data, we chose age-independent rates of
primary disease, extrapulmonary disease, and reactivation disease in the HIV-infected.
Importantly, as noted by Dye et al. (10), the parameter estimates available in the
literature are based on analyses of the natural history of TB in developed countries; the
presentation of disease may depend on a variety of factors such as genetic profile of the
human host, concurrent infection, and previous exposure to other infectious diseases.
Because these factors may be markedly different in the less-developed areas in which the
burden of TB is high, these estimates should be considered highly provisional until better
data are obtained.
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Table 4 summarizes the results of the validation exercise by comparing consensus
estimates to modeled incidence and modeled statistics on the annual risk of infection,
mean and maximum cluster size, and proportion of isolates found to be unique.

Determinants of Cluster Distribution

We assessed the impact of determinants on the frequency distribution of cluster size by
varying levels of specific variables over reasonable ranges while holding the other factors
constant. These factors were varied in the moderate-burden setting of Algeria. We chose
the following factors for analysis: age structure of the population, prevalence of latent
disease, duration of infectiousness, BCG coverage, use of chemoprophylaxis, and HIV
prevalence. Prevalence of latent infection was calculated by applying a range of annual
risks of infection from .004 to .02 and a declining trend in the annual risk of .04 to the
age structure of Algeria to estimate age-specific prevalence of infection. The prevalence
reported in Table 2 is the overall prevalence of infection obtained by summing over age
groups. Summary statistics for the cluster distributions were reported for each level of
these factors, again based on Monte Carlo means and ranges for 20 simulation runs.

Limitations of the Model

The model described in this study was designed to generate cluster distributions and to
identify factors that impact these distributions. Many of the parameters used in this and
other models of TB transmission have been based on limited observations in developed
countries and may not characterize the behavior of TB in other settings adequately.
Similarly, often there was little information available on some of the variables in the
models, and the estimates used may vary substantially from their true values. In
particular, the results of the models are highly sensitive to the parameters that describe
the natural history of TB in the HIV-infected and to the overall and age-specific
prevalences of latent TB infection. Because tuberculin skin test (TST) surveys
traditionally have been used to estimate the annual risk of infection and have been limited
to children, estimates of overall prevalence are necessarily based on diverse methods of
imputation that have not been validated by comparison to the results of TST data in
adults (2). The finding that 89% of cases are clustered in Afghanistan, for example,
seems inconsistent with most molecular epidemiologic studies. This discrepancy may
reflect the fact that the prevalence of latent infection would have to be higher than that
reported to attain the observed incidence of disease without overestimating rates of
ongoing transmission.

In addition to these potential problems, the simulations presented here were based on a
population of 40,000 people. Because many, if not most, “real-world” mixing populations
are much larger than this, we would expect larger clusters and altered dynamics in real
communities.

Previous studies have noted that the estimates of clustering in a community will depend
on the molecular clock of the marker used, the duration of the study, and rates of



5

immigration and emigration of cases (11–13). The model is not constructed to capture the
behavior of specific molecular markers or to address issues such as the effect of
immigration, emigration, or sampling strategies on estimation of cluster size. We
therefore have not modeled genetic change in the molecular marker over time, assuming
instead that the generic marker is stable over the 4-year simulation but that it is
adequately polymorphic and that all latent strains are different. Cluster distributions in
real populations therefore will differ from those generated by this model because the
prevalent latent cases would not all have been caused by different strains but also would
be grouped into clusters defined by the original source of their infection. We thus ignore
the possibility that identical strains may reactivate during the time period of the study.
Although this is the assumption made by most molecular epidemiologic studies, this
simplification is reasonable only if the latently infected strains are diverse. Furthermore,
the model statistics do not take into account any clusters that might already have been
circulating at some arbitrary start-up time and persisted into the time period modeled.
Although this simplification may alter the proportions of clustered cases, it should not
impact the observed effect of specific determinants of cluster distribution.

We also simplified the model by assuming that many of the variables were distributed
independently within the population. Although it is clear that factors such as HIV and TB
infection often are jointly distributed, country-specific data on these associations are not
available, and we therefore lack the information with which to structure a more complex
but realistic model. Finally, this model was run for a 4-year period and thus captures only
the short-term effects of changing specific determinants on cluster distribution. Long-
term TB dynamics are determined largely by changes in the prevalence of latent TB
infection, i.e., in the number of potential “source” cases for transmission. By looking only
at short-term effects, we essentially treat the class of latently infected individuals as fixed
and do not consider the ultimate effect of changing variables on the pool of source cases.
Changes in HIV prevalence, intervention practices, and demography, however, may
occur much more quickly than significant changes in the pool of latently infected people.
Further, because many of the factors that determine the prevalence of latent infection
have changed sporadically over the lifetimes of people in the population, it is not clear
how relevant the long-term impact of these factors may be. By using consensus estimates
of latent infection in populations as the initial conditions in this model, we circumvent the
problem of arriving at a set of parameters that correctly describes how these conditions
came to be. Such estimates are unlikely to be precise, especially in areas of rapid
demographic and social change. We believe this approach may provide insight into the
interpretation of cluster distributions that could not be obtained by assessing the impact
of these variables over longer periods. Although the limitations of the model may limit its
usefulness in describing “true” cluster distributions in real population, these analyses
provide perspective on how transmission dynamics affect the distribution of clusters and
thus the data from molecular epidemiologic studies of M. tuberculosis.
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