Supporting Text

Data Processing

Example I (Diabetes)

This data set was studied in Mootha et al. (1). The expression data from HG-U133A arrays for 43 pa-
tients (17 normal glucose tolerance, 18 Type 2 diabetes mellitus) are available at http://www.broad.
mit.edu/mpg/oxphos/, as well as the lists of probe sets belonging to the 149 pathways. For prepro-
cessing, we eliminated those genes whose values were < 100 in all samples.

Example II (Inflammatory myopathies)

This data set contains 49 HG-U133A arrays collected from multiple studies, both published and
unpublished. Dermatomyositis data were described in Greenberg et al. (2) and are available from
Gene Expression Omnibus (http://www.ncbi.nih.gov/geo) with accession no. GSE1551; inclusion
body myositis data were repeat experiments of the same samples initially done on HG-U95A arrays,
described in Greenberg et al. (3), with GEO accession no. GDS198. A larger study containing all 49
samples used in this paper and more will be published elsewhere. For convenience, we have collected
the data into a single table showing expression values processed through Microarray Analysis Suite
5.0 (MAS5), which is available from the authors upon request. For analysis, global normalization
was applied using trimmed mean (2.5% from each end of the distribution), and those probe sets
whose expression values were below the mean in every sample were removed, resulting in 10,526
probe sets.

Example IIT (Alzheimers’s Disease)

This data set was studied in Blalock et al. (4). Both CEL files and processed expression values are
available from GEO with accession no. GDS810. HG-U133A arrays were used, and MAS5 was used
to process the data. There are 22 postmortem subjects with Alzheimer’s disease at various stages
and 9 controls. The same global normalization and filtering used in Example II was applied, which
resulted in 11137 probe sets from the original 22,286. These genes resulted in 939 gene sets whose
size is between 20 and 500 (the number of gene sets are slightly different here from Example II
because the probe sets are different after filtering).

Choice of Optimal Weights for Testing ().

To test whether a gene set contains any genes whose expression levels are associated with the
phenotype of interest (Q2), we proposed a procedure based on the statistic
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The power of this test against a certain alternative could be improved by using more general
linear combination of association measure,

B
1
— E Griwgits,
my < 1

=

where wy; are appropriate weights used to combine my test statistics. The optimal choice of wy;
depends on the alternative we want to detect.

Suppose our goal is to detect coordinated moderate associations for genes in the k-th gene
set. It is reasonable to assume that under such alternative, ti, ~ N(A,1). With {k1, -+ ,km,}
denoting the index set of my genes in the k-th gene set, the objective is to find the optimal weight
Wi = (Wkky, 5 Wkk,,, )" for linearly combining my test statistics to detect the small shift A, which
is too small to be detected individually, while accounting for the correlations in tx,. If we let 3 be
the covariance matrix of the random vector ty = (tg,,- - - ) and 1 be the my-vector with all
the components being 1, then Ex(wy) ~ N(Aw}1, w3, wy) under the alternative, and the most
powerful test in this class is the one with wy, = 3,11 (5).

Since X;, is unknown and its estimator ﬁ]k often is singular, we propose to use
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where I,,,, is the my-identity matrix and Ay > 0 is an appropriate shrinkage parameter. The choice
of A\ is important for the performance of the resultant test procedure. When Ay — oo, Er(Ag)
degenerates to the simple average Ej. Since it is desirable to have all the weights be positive in
terms of interpretability and robust performance against other alternatives, we set A\ as the smallest
positive constant, such that all the components of vector (ﬁ]k + Ak, ) 711 be nonnegative.

Once we decide A\ for k = 1,--- , K, we can compute (E1(\1), -, Ex(Ak)) and approximate
its null distribution by the empirical distribution of (E{ (A1), -, Ej (Ax)), where Ef(Xy) is the test
statistic for the k-th gene set based on permuted phenotype measurements (27, - , 2). To examine
the effect of proposed weighting in Fj (M) for testing Q2, we calculated Ej(\;) when the analysis
based on FE}, failed to discover sufficient number of significant gene sets. For example, we have run
the parallel analysis based on Ej(\) in the diabetes example. There is no significant gene set at
the ¢ value level of 0.05 based on the simple N Fj; on the other hand, N E}()\;) based tests identify
two significant gene sets. It seems that although N Ej(Ax) produces similar rankings for gene sets,
the introduction of weights can improve the sensitivity and power of the testing procedure.

Generation of gene sets

We have collected the gene sets from five publicly available sources:
e Gene Ontology (www.geneontology.org);
e Biocarta (www.biocarta.com);
e KEGG (www.genome. jp/kegg);
e BioCyc (biocyc.org);
e custom arrays (www.superarray.com).

To map the probe sets on each array type to the gene sets, we converted each possible gene
set from the databases (GO category, pathway, etc.) into a set of corresponding LocusLink IDs
(now superceded by Entrez Gene). We then mapped every probe to its LocusLink IDs and then
matched them against the gene sets identified in the first step. The conversion from probe ID
to LocusLink ID was performed using the annotations packages available through Bioconductor



(www.bioconductor.org), using the statistical language R. Our gene sets are based on the annota-
tions last compiled in September, 2004. Due to updates in the databases, small discrepancies should
be expected at later dates.

Because the data sets used in the manuscript were Affymetrix human data, we have curated the
gene sets for Affymetrix HG-U95A and HG-U133A arrays. These are available from the authors upon
request as an object that can imported to the R software package. 1oad(‘ ‘GenesetsU133a.Robject’?)
will create a object G; G[[i]] can be used to view the ith gene set. Each gene set contains a com-
plete annotation, including its source, corresponding LocusLink IDs, biological description, and
probe identifiers.

References

1. Mootha, V. K., Lindgren, C. M., Eriksson, K., Subramanian, A., Sihag, S., Lehar, J., Puigserver,
P., Carlsson, E., Ridderstrale, M., Laurila, E., et al. (2003) Nature Genetics 34, 267-273.

2. Greenberg, S. A., Pinkus, J. L., Pinkus, G. S., Burleson, T., Sanoudou, D., Tawil, R., Barohn,
R. J., Saperstein, D. S., Briemberg, H. R., Ericsson, M., Park, P. J., & Amato, A. A. (2005)
Annals of Neurology 57, 664—78.

3. Greenberg, S. A., Sanoudou, D., Haslett, J. N., Kohane, I. S., Kunkel, L. M., Beggs, A. H., &
Amato, A. A. (2002) Neurology 59, 1170-82.

4. Blalock, E. M., Geddes, J. W., Chen, K. C., Porter, N. M., Markesbery, W. R., & Landfield,
P. W. (2004) Proc. Natl. Acad. Sci. USA 101, 2173-8.

5. Wei, L. J. & Johnson, W. (1985) Biometrika 72, 359-364.



