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Wavelet Formation in Excitable Cardiac Tissue: The Role of
Wavefront-Obstacle Interactions in Initiating High-Frequency
Fibrillatory-Like Arrhythmias

Josef M. Starobin, Yuri 1. Zilberter, Elizabeth M. Rusnak, and C. Frank Starmer
Departments of Medicine (Cardiology) and Computer Science, Duke University Medical Center, Durham, North Carolina 27710 USA

ABSTRACT High-frequency arrhythmias leading to fibrillation are often associated with the presence of inhomogeneities
(obstacles) in cardiac tissue and reduced excitability of cardiac cells. Studies of antiarrhythmic drugs in patients surviving
myocardial infarction revealed an increased rate of sudden cardiac death compared with untreated patients. These drugs
block the cardiac sodium channel, thereby reducing excitability, which may alter wavefront-obstacle interactions. In diseased
atrial tissue, excitability is reduced by diminished sodium channel availability secondary to depolarized rest potentials and
cellular decoupling secondary to intercellular fibrosis. Excitability can also be reduced by incomplete recovery between
successive excitations. In all of these cases, wavefront-obstacle interactions in a poorly excitable medium may reflect an
arrhythmogenic process that permits formation of reentrant wavelets leading to flutter, fibrillation, and sudden cardiac death.
To probe the relationship between excitability and arrhythmogenesis, we explored conditions for new wavelet formation after
collision of a plane wave with an obstacle in an otherwise homogeneous excitable medium. Formulating our approach in
terms of the balance between charge available in the wavefront and the excitation charge requirements of adjacent medium,
we found analytically the critical medium parameters that defined conditions for wavefront-obstacle separation. Under these
conditions, when a parent wavefront collided with a primitive obstacle, the resultant fragments separated from the obstacle
boundaries, subsequently curled, and spawned new "daughter" wavelets. We identified spatial arrangements of obstacles
such that wavefront-obstacle collisions leading to spawning of new wavelets could produce high-frequency wavelet trains
similar to fibrillation-like arrhythmias.

INTRODUCTION

High-frequency arrhythmias leading to fibrillation and sud-
den cardiac death are often associated with inhomogeneities
(obstacles) in cardiac tissue and reduced excitability of
individual cells. However, the link between obstacles, re-
duced excitability, and arrhythmogenesis remains unclear.

Obstacles and reduced excitability can arise from several
different mechanisms. Studies of antiarrhythmic drugs in
patients surviving myocardial infarction revealed an in-
creased rate of sudden cardiac death compared with un-
treated patients (CAST Investigators, 1989). Prior myocar-
dial infarction most probably left a residue of "obstacles" or
poorly excitable myocardial regions, whereas the drugs
utilized in this study reduced excitability by blockade of the
cardiac sodium channel. Studies of atrial cells from patients
with atrial disease revealed reduced excitability secondary
to depolarized rest potentials (Ten Eick and Singer, 1979),
whereas studies of human diseased atrial tissue demon-
strated an increased microfibrosis that would hypothetically
lead to a loss of side-to-side cellular connections, thereby
increasing anisotropy, reducing excitability, and increasing
the size of inexcitable regions (Spach and Dolber, 1986).
Excitability can also be attenuated by incomplete recovery
associated with high rates of excitation (Schalij et al., 1992;
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Konings et al., 1994). The complex interaction of inhomo-
geneities and reduced excitability highlighted in these ex-
amples with the nonlinear dynamics of cardiac cells may
reflect arrhythmogenic conditions that promote formation of
wavelets leading to reentrant arrhythmias, fibrillation, and
sudden cardiac death.

Reentrant activation (spiral wave) is observed in many
excitable preparations (Winfree, 1987, 1989; Zykov, 1988;
Davidenko, 1995). Variations of electrocardiographic po-
tentials (ECG) associated with reentrant cardiac tachycar-
dias are synchronous with the rotation of a single spiral
(Krinsky, 1984; Markin et al., 1981; Pertsov et al., 1993).
Fibrillation, on the other hand, often reflects multiple reen-
trant wavelets (Allessie et al., 1994; Konings et al., 1994;
Cox et al., 1994), leading to high-frequency oscillation of
the ECG potential that is not synchronized with rotation of
a single spiral.
The initial work of Balakhovsky (1965) and Krinsky

(1966) demonstrated that a temporary obstacle, caused by
prolonged refractoriness in a localized region of excitable
medium, was adequate to rupture an incident wavefront in a
manner that led to spiral wave development. Pertsov and
co-workers (1983) extended these results in numerical stud-
ies of the collisions between a planar wavefront and a
permanent obstacle in an otherwise homogeneous medium.
As the medium excitability was reduced (as determined by
a model parameter similar to the Na conductance), they
found that above a critical excitability, the wave fragments
remained "attached" to the obstacle borders and immedi-
ately reattached proximal to the obstacle. Wave fragments
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derived from a wavefront colliding with an obstacle when
the medium excitability was less than this critical value
separated from the obstacle. In these studies, wavebreaks
followed by wavefront-obstacle separation could act as a
source of new spiral wavelets, as described by Balakhovsky
(1965) and Krinsky (1966).
Kogan and colleagues (1990) further explored the role of

wavefront-obstacle separation in a series of numerical ex-
periments. As in the Krinsky model (1966), they showed
that if the obstacle was "transient" (e.g., physically removed
after wavefront collision), then the residual fragments could
evolve into counter-rotating spiral wavefronts.

Using high-frequency stimulation to incrementally re-
duce medium excitability, Panfilov and Keener (1993) ex-
tended the Pertsov et al. (1983, 1990) results and showed
that obstacle-wavefront separation and spiral wave devel-
opment displayed "use-dependent" properties. More specif-
ically, if the stimulation rate was fixed such that the inter-
stimulus interval was less than the time necessary for full
recovery of excitability, they found that no separation oc-
cuffed with the first stimulus (wavefront propagated into
rested, fully excitable medium); separation but no spiral
development occurred with the next few successor stimuli
(due to the accumulated loss of excitability); and if the
stimulation frequency was high enough, further successor
wavefronts fractionated, detached from the object, and
evolved into counter-rotating spiral waves (due to the ac-
cumulated loss of excitability greater than a critical value).
In all of these studies, only single or paired spiral processes
were studied.
The observation of multiple propagating wavelets during

fibrillation (Allessie et al., 1994, Konings et al., 1994;
Schuessler et al., 1995) confirmed an early hypothesis of
Moe (1962). Moe and co-workers (1959, 1962, 1964, 1965)
proposed the multiple wavelet hypothesis, which explained
these high-frequency arrhythmias as a result of repeated
wavefront fractionation secondary to inhomogeneities in
refractory properties. This hypothesis postulated that high-
frequency arrhythmias (e.g., fibrillation) were maintained
by multiple interfering wavelets that migrated around inho-
mogeneous regions such as islets or strands of refractory
tissue. Although Moe's studies (Moe et al., 1964) demon-
strated that multiple wavelets could be produced by certain
combinations of stimulus timing and distributed refractory
properties, the mechanism of wavelet formation and main-
tenance was uncertain. More specifically, after rupture of an
incident wavefront after collision with either an obstacle or
a refractory region, the conditions that promoted or pre-
vented the formation of independent wavelets were not
explored.

Observations of high-frequency arrhythmias in a medium
of reduced excitability (Leier et al., 1978; Buxton et al.,
1984; Yamashita et al., 1994), combined with medium
inhomogeneities, may provide a substrate for formation of
multiple wavelets leading to high-frequency arrhythmias. In
our opinion, the studies of Krinsky (1966), Pertsov et al.

(1993), and Agladze et al. (1994) all point to a critical role
played by wavefront-obstacle separation in new wavelet
formation. To date, the relationship between medium pa-
rameters and conditions for wavefront-obstacle separation
has been limited to modeling different transient time-depen-
dent regimes of medium excitability. In addition, there are
no studies that indicate how high-frequency arrhythmias
associated with multiple wavelets might arise from a single
wavefront propagating in a low-excitability medium.
To explore these issues, we have defined three subprob-

lems that lead from fractionation of a wavefront to a high-
frequency arrhythmia:

1) How to spawn a new wavelet after wavefront-obstacle
separation;

2) How to insert the newly spawned wavelet behind the
parent wavefront;

3) How to multiply wavelet formation.
We explored multiple wavelet formation by first investi-

gating the behavior of the boundary layer between a single
obstacle and a colliding wavefront as determined by the
balance of charge available in the wavefront and the exci-
tation charge requirements of adjacent medium. Using this
approach we found analytical expressions relating critical
values of medium parameters to conditions for wavefront-
obstacle separation. We approached the question of wavelet
formation and transformation of a single wavelet into mul-
tiple wavelets leading to fibrillatory-like arrhythmias by
exploring spatial arrangements of primitive obstacles in an
otherwise homogeneous medium.

MODEL

The normal cardiac action potential duration is approxi-
mately 0.3 s, and the excitation wave propagation velocity is
approximately 0.5 m s-1. Such rapid propagation makes
multiple reentrant wavelets unlikely because the action po-

tential wavelength (approximately 15 cm) can be compara-
ble to the spatial extent of the heart. However, when excit-
ability is diminished as a result of reduced sodium channel
availability secondary to Na channel blockade, incomplete
recovery from Na channel inactivation secondary to rapid
reexcitation, or reduced cellular coupling, the wavelength is
reduced so that the spatial requirements for reentry become
more probable. In some cases the spatial wavelength may

decrease to several millimeters (Spach et al., 1988).
For our numerical and analytical investigations, we used

an excitable membrane formulation of the 2D FitzHugh-
Nagumo (FitzHugh, 1961) model, describing wave motion,
which is given by

au a82u a2u\
Cmat=3x2+ ay2)

aV (OKU

at TK

Here (Na('rK mimic the maximum sodium and potassium
(1983, 1990), Kogan et al. (1990), Panfilov and Keener
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slow recovery process, INa = oNa(u) represents an inward
excitation current, and IK = V represents an outward recov-
ery current. To facilitate analyses, we used this system in
dimensionless form (Tyson and Keener, 1988; Winfree,
1991):

au a2u a2u
at ax2+ay2+f( ) V (1)
av
at = E(yU- , (2)

where u(x,yt) is a dimensionless membrane potential, and
V(x,y,t) is a dimensionless slow recovery current. The scale
of u is the maximum action potential amplitude UO, the scale
of V is given by crNaUO, the scale of time is T0 = Cm/0rNa,
and the scale of the length Lo is given by (D/O'Na)1/2. Here
Cm is a membrane capacity and D is a diffusion coefficient.
The scale factor, y, is the ratio of slow potassium to fast
sodium conductances. The small parameter, E, is equal to
Cm/(TkO(Na).
The functionJfu) is the piecewise linear function similar

to that used by Starobin et al. (1994) and represents the i/v
properties similar to those of a membrane sodium current
(Fig. 1 A). The slope of the right- and left-hand branches of
this function, A, determines the maximum current that is
available to depolarize adjoining regions of the excitable
medium. Pertsov et al. (1983) used a three-segment piece-
wise linearjAu) and varied the slope of the middle segment,
which is an equivalent way of altering the current available
for propagation.

In an otherwise homogeneous medium, we explored con-
ditions for wavefront-obstacle separation resulting from the
collision of a plane wave with a simple obstacle. As a first
approximation, we have chosen an L-shaped obstacle (Fig.
1 B) as a piecewise linear approximation of the proximal
aspect of a solid (2D) obstacle that might be encountered in
diseased ventricular tissue after infarction. The filament-

FIGURE 1 (A) The null-cines of
the system of Eqs. 1 and 2. The func-
tion,fu), is a piecewise linear function,
where the slope of each linear element,
A, refers to the rate of the fast excitation
process. With respect to membrane ion
channels, the functionfu) corresponds
to the Na current ilv relationship and
the slope, A, determines the maximum
Na conductance and hence influences
media excitability. The slope y refers to
the rate of the slow recovery process.
(B) The relationship between the inci-
dent wavefront and a periodic lattice of
inexcitable filaments. The y axis coin-
cides with the direction of the incident
wavefront. The x axis is perpendicular
to the direction of the incident wave-
front. Lines A+1 andA 1 correspond to
a period of the lattice that is equal to 2L.

A

like nature of the piecewise linear obstacle also approxi-
mates micro-fibrotic regions observed in diseased or aged
atrial tissue (Spach and Dolber, 1986). We also investigated
the interaction of a plane wave with a lattice of L-shaped
obstacles. Here, we sought to approximate diffuse disease
and investigate the fate of newly spawned wavelets.
The lattice semiperiod, L, and the dimensions of the

obstacles were adjusted to investigate the fate of newly
spawned wavelets. The boundary conditions for the inex-
citable obstacles were "no-flux" conditions, au/an = 0,
where n is normal to the obstacle boundary. We used
periodic boundary conditions for the domain boundaries
along the lines of symmetry, Ai (Fig. 1 B).

METHODS

We solved the system (Eqs. 1 and 2) numerically, with
boundary conditions described above, by using the implicit
difference scheme with second-order approximation on the
space grid interval, Ax, and first-order approximation on the
time grid interval, At. The two-dimensional version of this
method is based on replacing the multidimensional Laplace
operator with a sequence of two one-dimensional second-
order Laplace differential operators, one for the X dimen-
sion and one for the Y dimension. This method is known as
the fractional-step difference method (Richtmayer, 1957).
Each one-dimensional problem can be solved independently
in each direction by the implicit second-order approxima-
tion difference scheme resulting in a computationally effi-
cient method. This approach has two important advantages.
The first is that it allows a larger time step while maintain-
ing unconditional numerical stability, and the second is that
being locally one-dimensional, this method significantly
simplifies the approximation of the multidimensional
boundary conditions while maintaining a high-order numer-
ical approximation of differential equations.
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The spatial numerical domain was a rectangular grid that
did not exceed 1400 X 400 nodes in Y and X, respectively.
The grid parameters were At = 0.2, Ax = Ay = 0.25. Such
values of the grid parameters allowed us to keep at least four
or five grid nodes per wavefront and, thus, to find a stable
solution without significant influence of grid effects. Re-
sults of the two-dimensional studies were displayed with a
color format so that patterns of membrane potential could be
readily identified.
We studied the variations in response of the 2D lattice to

single-plane wave stimuli for different values of the exci-
tation parameter A and relaxation parameter E for constant y
= 7 and a = (M3 - M2)/(M2- M1) = 2.75 (see Fig. 1 A).
Varying A permitted us to adjust the amount of source
current available for propagation and to simulate conditions
associated with slow conduction secondary to Na channel
blockade, high-frequency stimulation, or depolarized rest
potentials.

For analytical studies, we used the singular perturbation
technique with a nonasymptotic matching of u(x,y,t) written
in terms of a functional series for the small parameter E (see
Eqs. 1 and 2) (Starobin et al., 1994). We have defined a
safety factor for propagation, SF, similar to that introduced
by Rushton (1937) and used by Spach et al. (1981), and
applied it to the boundary layer at the wavefront-obstacle
interface. Written in terms of the available wavefront
"source" charge, QS, and the charge requirements (load) of
adjacent medium, QL'

SF= Qs -QL. (3)

From the resulting equation we estimated the critical value
of A, Ac,zt, for a range of E where wavefront-obstacle sepa-
ration occurs, i.e., where SF = 0 with respect to the con-
figuration of the wavefront and obstacle.

QUALITATIVE CONDITIONS FOR
WAVELET FORMATION

We hypothesize that wavefront-obstacle separation is nec-
essary for wavelet formation. To demonstrate this, we first
consider the likelihood of wavelet formation when the
wavefront remains attached to the obstacle after collision
(Figs. 2 and 3), i.e., the medium excitability is high.

Initially, the incident wavefront collides with the inexcit-
able obstacle (Fig. 2 A, a and b). Because the boundary
conditions for the obstacle are "no flux" boundary condi-
tions (i.e., aulan = O, where n is normal to the obstacle
boundary), the flow of charge at the wavefront-obstacle
interface is directed parallel to the obstacle boundary, re-
sulting in propagation parallel to the boundary. If the prop-
agation vector were directed away from the obstacle bound-
ary, separation would occur. Consequently, the wavefront
tips associated with the two parent wave fragments propa-
gate toward each other following a path along the obstacle
boundary (Fig. 2 A, c-d). As the two wave fragments

(e-f). After pinch-off, the parent wavefront fragments col-
lide and reattach. The residual excited regions attached to
the obstacle propagate toward each other, eventually extin-
guishing propagation (f-h).

Fig. 3 illustrates a similar sequence of events where the
vertical component of the obstacle has been extended. In
this case, a large "pocket" of excited medium remains after
the "pinch-off' of the curled, daughter segment of the parent
wavefront (f). Note the polygon-like object formed by the
daughter segments and the obstacle boundary. The velocity
vectors at all points along the daughter wave fragments that
define the boundary of this polygon are directed "inward"
toward the excitable medium. Because each daughter frag-
ment propagates toward the interior of this region (f-j),
escape to excitable medium outside this enclosed region is
not possible. The "attachment" of the wavefront to the
obstacle boundary maintains "virtual" continuity, thus elim-
inating the possibility of wavelet "birth." In other words, a
"classical" wavebreak in the Balakhovsky-Krinsky sense is
not created after collision of the wavefront and the obstacle.
Note that this argument is true only when the medium is
homogeneous (except for the presence of inexcitable obsta-
cles). If there are spatial differences in refractory properties
as used in the original Krinsky model (1966), then there
may be conditions that permit "escape."

In contrast, when the excitability of the medium is re-
duced, the "parent" wavefront separates from the obstacle
(Fig. 2 B, b)-and the right fragment end begins to curl
because of the increased load "seen" by the tip region. The
vertical element of the L obstacle acts to prevent curling of
the left attached fragment, creating an asymmetry in spiral
development that reduces the spatial requirements for frag-
ment formation (c-e). In concert with curling, the tip re-

gions of both parent fragments also propagate toward each
other and eventually collide (f). As the curled regions of the
two parent fragments collide, a small "daughter" fragment
resulting from the asymmetric development of the two
parent fragments is "pinched off' (g) and propagates ap-
proximately perpendicular to the parent propagation vector
(h). This daughter fragment becomes the source of a new
wavelet. We will now concentrate our analysis on the con-
ditions for wavefront-obstacle separation before wavelet
"birth."

ANALYTICAL CONDITIONS FOR WAVEFRONT
SEPARATION FROM THE OBSTACLE

Let us consider the collision between a plane excitation
wave and an inexcitable obstacle. For analytical simplicity,
we will consider the element parallel to the x axis of the
L-shaped obstacle, which is formed by a straight long (1>>
Lf) and narrow (d < Lf) filament and aligned parallel to the
wavefront (Fig. 4 A). Here Lf is the wavefront thickness.
Therefore, one can assume that wavefront-obstacle separa-

tion depends only on the behavior of the medium within a
approach each other, a small region will be "pinched off'
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FIGURE 2 Wavefront-obstacle interactions for safety factors near zero. The temporal evolution of the wavefront is shown in frames from left to right,
top to bottom. The membrane potential is color coded: the orange background in all frames refers to the rest potential u(x,y,t) = ml; the red shadows
represent the area of membrane recovery; the green region represents the excitation zones. (A) When the safety factor is positive so that A > Akct, then the

charge in the wavefront segments adjacent to the obstacle is adequate to excite all of the medium between the wavefront tips and the obstacle. The model
parameters were A = 0.9; E = 0.018; y = 7; a = 2.75. Under these conditions, there is no wavefront-obstacle separation. After the two wave fragments
rejoin (bottom sequence of frames), the "pinched-off tail" dies because the velocity vectors of the residual wave fragments are directed toward refractory
media. (B) The reverse phenomenon: wavefront-obstacle separation and formation of a daughter wavelet. In this case, we reduced A = 0.738 = Acrt, so

that the SF = 0. With this choice of parameter, there is insufficient charge in the wavefront tip to excite all of the medium between the tip and the obstacle
border so that the wavefront separates from the obstacle and begins to curl. After reattachment of the two parent fragments (bottom sequence offrames),
a daughter wavelet is "pinched off' from the parent wavefront and propagates in a direction that is approximately perpendicular to that of the parent
wavefront. Note that the reduction in A results in a shorter wavelength, indicating slower propagation.

corner of the filament. Under these conditions, the analysis
can be considered to be quasi-one-dimensional.

Earlier we showed that if the wavefront thickness Lf is
less than Lcit (the maximum wavefront thickness necessary

for propagation at zero velocity), there is insufficient charge
available in the wavefront to support propagation in a ho-
mogeneous medium. Consequently, our analysis will as-

sume medium properties such that Lf > Lcnt (Starobin et al.,
1994).

In a highly excitable medium the ends of a wave fragment
are able to excite adjacent medium such that they can turn
around the corners of the obstacle, slip along its surface, and
recombine to reestablish the incident wavefront. As excit-
ability is reduced (a smaller safety factor), the fragment
ends are progressively less able to excite adjacent medium,
thus reducing the coupling with the surface of the obstacle.

As the excitability is further reduced, the tip velocity will
become negative and a portion of the wavefront will with-
draw from the obstacle boundary (Mikhailov and Zykov,
1991). The transition value of the excitability where a
wavefront separates from the obstacle is determined by the
critical wavefront thickness, LfC > Lcrt. LfC is determined
when SF = 0, which reflects the balance of "charge"
available within the wavefront adjacent to the obstacle
boundary and the amount of charge necessary to form an
impulse that accelerates from C = 0 to C,rit. This approach
has been developed by Zeldovich et al. (1985) and modified
by Starobin et al. (1994).
We assume that wavefront separation evolves within a

small region of order Lf,. Because we can neglect the
changes of wavefront thickness that are less than Lfc, we
assume that separation occurs in a square transition region

Starobin et al.
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FIGURE 3 Similar to Fig. 3, this sequence of frames illustrates the fate of daughter fragments when the media excitability is adequate to maintain
wavefront-obstacle attachment, i.e., A = 0.9; SF > 0. In this illustration, the vertical arm of the "L" obstacle has been extended to demonstrate the nature
of daughter wavelet annihilation after "pinch-off' from the parent wavefront. The no-flux boundary conditions at the obstacle boundary (au/dn = 0) ensure
that propagation of the daughter fragments at the obstacle boundary is parallel with the boundary. This condition ensures that the velocity vectors of each
residual wave fragment (bottom sequence offrames) point toward refractory media. As shown, the polygon enclosed by the daughter wavelets eventually
collapses.

with a side of LfC (Fig. 4 B). Separation occurs if the portion
of the transition region adjacent to the corner of the obstacle
has a zero (in both X and Y directions) propagation velocity
associated with a critical value of a wavefront thickness,
Lcrit.

Integrating Eqs. 1 and 2 over the transition region and
time interval At, one can find that the source amount of
charge, QS = (M3 - ml)At (Lfc)2/2, produced in the tran-
sition region (source charge) during the time interval At.
The factor of 2 arises from our assumption that the wave-
front velocity in the Y direction decreases linearly from Ccrit
to 0 (so we use Ccri/2), whereas in the X direction the
velocity is 0. The load charge is equal to the sum of the
charge flowing into the two leading wavefronts (this charge
is approximated by the gradient over the distance, Lcit),
QLW = 2Lcrit (M3 - m1)At/Lcit, and the charge required for
wavefront acceleration from C = 0 to C = Ccnt of the two
developing wavefronts (approximated by square impulses
of size, Lun1) propagating in both X and Y directions, QLR =

2(Lcrt)2 (Veq - Vcrt)At. Under normal conditions of prop-
agation, the time constant of the slow process is much
greater than the time constant of the fast process, so that this
term is zero (i.e., the medium in the region of the developing
wavefronts is at Veq). However, during early impulse devel-
opment when the wavefront velocity is near zero, the time
constants are comparable (Ostrovskii and Yakhno, 1975), so
that the "slow" current cannot be ignored. We have conser-
vatively estimated this charge requirement in terms of the
gradient, Veq - Vct. With these components, we can write
the equation for SF as

Here Veq is the equilibrium level of a slow recovery
current, and Vcit and Lcit are the critical values of a slow
current and a wavefront length associated with a zero prop-
agation velocity, respectively. According to the assumptions
mentioned above, these values can be found from the ID
theory described in (Starobin et al., 1994)

b = -O.5Co + (0.25CO + A)'`2,

b2= 0.5CO + (0.25CO + A)1'2

/b bll(b, +2+ (b) -b2l(bl +b2)
G= tbl +b K= (m3- ml)IG

(5)

Lf = ln(M-' K) b b =Lcrt 2 ln(M-' K)l Xb,b2 C

a-i
Veq = Vct-A(m2-iml) 2

Here C0 is a wavefront propagation velocity in a 1D excit-
able cable which (for fu) shown in Fig. 1 and E = 0) is
given by

(6)Co= (a -1)(A)

where

a = (M3 - M2)/(M2 - MI)

SF = QS- QL = QS - (QLW + QLR)

SF = /2(M3- mi)Lf - 2(m3 -Ml)- 2(Vq -Vcn)L,

The factorM is a small constant that defines the threshold
4) of u, relative to ml (ml + M) and M3 (M3- M), associated

with the wavefront boundaries.
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FIGURE 4 The boundary layer between a plane wavefront and an inex-
citable obstacle. (A) Orientation of the plane wave relative to the inexcit-
able obstacle of length I and thickness d. (B) Areas of the wavefront and the
obstacle that are considered in the analysis of separation. The incident
wavefront of thickness, LfC, supplies charge to the transition region of
similar thickness. The transition from wavefront-obstacle attachment to
wavefront-obstacle separation occurs when SF = 0, i.e., when the charge
available from the incident wavefront is equal to the charge requirements
necessary to excite all of the media within the transition region. The parent
wavefront velocity Ccj, and the critical wavefront length LfC associated
with transition from wavefront-obstacle attachment to wavefront-obstacle
separation reflect properties of the wavefront when SF = 0 at the wave-
front-obstacle boundary.

Taking into consideration that the factor G in Eq. 5 is
insensitive to the propagation velocity CO, and substituting
Eq. 5 into Eq. 4, we get

SF lC2 10 1 a - I

Lcrit a8 J t2r c + 1J

= In (M`(m3 - m,)/2)

In a zero-order approximation of E (singular limit, E = 0)
the wave propagation velocity C is equal to CO, but adding
the first-order term reduces the velocity: C = CO(1 -40E)
(Mikhailov, 1990). It was shown by Starobin et al. (1994)
that the wavefront propagation velocity of the peak of the
wavefront, C(V*), is given by

C(V*) = CO(V,)(I - C0E) V* = V, - Ey(m3 -M)T
(8)

where CO(Veq) is the propagation velocity of a trigger wave
where recovery is absent, V* represents the value of the
recovery current at the peak of the wavefront, and ro =
Lf(CO)/CO is the front formation time. Using Eqs. 5 and 6,
one can find Co, keeping the linear term in Taylor's expan-
sion of C(V*) near CO(Veq),

o= y(aA)-3/2(a + 1) (9)a - 1

Substituting Eqs. 8 and 9 into Eq. 7, we find the equation for
SF in terms of medium parameters and the roots ofJ(u)
SF Ia-- I- (]A3a 1)3 y(a 1)'o
Lcnit L 2or' a - 1J 8at(a-1) 8a2(a- 1)

(10)
Here we see that the transition between wavefront-obstacle
separation and wavefront-obstacle attachment (i.e., SF = 0)
can be altered by varying any of the medium parameters.
Because of the link between A and the sodium current i/v
relationship in excitable cells, we have chosen to focus our
analyses on conditions where A = Acrit, where Acrit is a root
of the equation SF = 0 (Fig. 5 A).

Because or > 1 and E > 0, Eq. 10 has a single positive
real root, Acit when SF = 0. When A > Acrt then SF > 0,
and propagation at the wavefront-obstacle boundary suc-
ceeds, whereas when A < kcntq then SF < 0 and local
propagation fails at the obstacle-wavefront interface and
wavefront-obstacle separation occurs (Fig. 5 A). As we
indicated in the introduction, depolarization of the mem-
brane potential, Na channel blockade, and high-frequency
stimulation all reduce Na channel availability, equivalent to
reducing A. This results in a reduction of the SF because the
available wavefront "source" charge, Qs, decreases. Fig. 5 A
shows that the smaller the value of A, the smaller the SF. It
is important to point out here that the safety factor we have
defined above is a "local" property and is determined by the
interaction between a local source and load presented by the
obstacle-wavefront interface as indicated in our approxima-
tions.
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1.0 o~
Q0 Wavefront-obstacle separation

M equal to 0.293 (M = 4.688Ax2). The values of grid
intervals used for all numerical experiments were At = 0.2
and Ax = Ay = 0.25.
With the value of M determined, we evaluated the accu-

racy of Acrt derived from the roots of SF = 0 (Eq. 10) by
estimating numerically the critical value of A associated
with the transition from wavefront-obstacle attachment to
wavefront-obstacle separation using numerical experiments.
We set y = 7, selected a value of E and then numerically
solved the FHN equations (Eqs. 1 and 2) for different values
of A using a binary search. We terminated the search when
the difference between two successive estimates of A asso-
ciated with wavefront-attachment and separation was
<0.01. Fig. 5 B illustrates the theoretical predictions (Eq.
10) and the numerically determined values (circles). These
experiments revealed good agreement with Eq. 10 for val-
ues of E < 0.04, comparable to physiologic conditions
reflecting a 25-fold difference between the excitation and
recovery time constants. For smaller E when CCrit < 1, our
numerical results illustrate a departure from the theoretical
curve because the linear approximation of the front forma-
tion time o- = Lf(CO)/CO in Eq. 7 is valid only for Cci =
0(1) (Starobin et al., 1994).

WAVELET EVOLUTION AND INSERTION BEHIND
THE PARENT WAVEFRONT

Wavefront formation and insertion is a function of both
wavefront-obstacle interactions and wavefront-wavefront

0. 00 0.010 0.020 0.030 0.040 collisions. Here we will illustrate the role of wavefront-
£ wavefront collisions in the insertion process. Because of the

mirror symmetry of the L obstacles in the lattice, it is
FIGURE 5 (A) The relationship between A and SF/Lci,. Shown are helpful to follow the evolution of paired wavelets as shown
theoretical plots of the safety factor (SF, Eq. 10)) as a function of A and E in Fig. 6 for several lattice elements.
when -y = 7. Note that as E is increased (decreasing excitability), , After collision of the parent wavefront and the obstacle

defining the transition between wavefront-obstacle separation and wave-

front-obstacle attachment, also increases, indicating the increased charge (Fig. 6, bc), attached (a) and unattached (u) wavefronts

requirements necessary for propagation into less excitable media. (B) The develop. Next the daughter wavelets (labeled d in frame d)
dependence of the critical slope of fu) for wavefront-obstacle separation, are "pinched off' as a result of reattachment of the parent
Acit, as a function of the model parameter E while y = 7. The solid line wave fragments (as illustrated in detail in e-h of Fig. 2 B).
represents the analytical approximation of Ac*t (root of SF = 0), and the These daughter wavelets propagate toward each other in a

circles represent numerically determined values. The curve of AC*t as a
s v

function of E separates the plane into a region where wavefront-obstacle direction that is approximately perpendicular to the parent

separation occurs (below the curve) and where wavefront-obstacle attach- propagation vector (Fig. 6, d-e). After collision of the
ment is maintained (above the curve). The numerical experiments reveal daughter fragments at the lines of symmetry, A+1 andA 1,

good agreement with the analytical approximation. residual wavelets develop that propagate antegrade to the

parent wavefront, and their end points begin to curl (Fig. 6,
f-g). The final event in the insertion process is the collision

To compare the numerical solution of Eqs. 1 and 2 and shown in frame h resulting in reattachment of adjacent
analytical results given by Eq. 10, it is necessary to define fronts. With our choice of obstacle and lattice dimensions,
factor M (Eq. 7) designating the boundaries of a wavefront. new secondary daughter wavelets arise along the A_ -L,
The precision of our numerical results is bounded by M = AO, and A+1 + L lines of symmetry (Fig. 6 h) that lead to a

rq(At + Ax2) = max(ij,n)IuiA,x jAy, nAt - Uexact(XyYt)I. We repetition of the insertion process as illustrated in Fig. 7.
used this quantity as a threshold for defining the beginning The growth of the two wave fragments shown in Fig. 6,
and the end of a wavefront. Here uexact(x,y,t) is the exact f-h, reflect what we have labeled as "insertion," that is, a
solution of Eqs. 1 and 2, and io, jo, and no are the grid new wave front has been inserted behind the parent wave,

parameters, with 1 s i s io, 1 sj sjo, 1 s n s no. Our increasing the apparent frequency of excitation of a region
numerical experiments found that q is equal to 1.12, making in front of the parent. Moreover, it is now possible to

A

SF

2.0

X crit

1.5

1.0

0.5
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FIGURE 6 The development of secondary waves and insertion behind the incident wave (SF = 0). The orange background in all frames refers to the
rest potential u(x,y,t) = ml; the red shadows represent the area of membrane recovery; the green region represents the excitation zones. The inexcitable
obstacle is shown in white. Time increases, left to right, top to bottom (a-h). The medium is initially excited behind the obstacle in a. The break of the
parent wavefront shown in a is followed by propagation of an attached (a) wave fragment and unattached (u) wave fragment (b-c). The ends of the
unattached fragment begin to curl, daughter (d) fragments are "pinched off" and propagate toward the A+1 and A-, lines of symmetry (c-e).
Simultaneously, the parent wavefront is restored (d). After collision of the daughter wavelets (e), residual secondary excitation zones (new wavelets) begin
to grow around the A+1 and A 1 lines of symmetry (f and g). These wavelets propagate both antegrade to the parent wavefront and toward the AO line of
symmetry (g), where they collide (h) and the insertion behind the restored parent wavefront (f-h) is completed. The model parameters were A = 0.738 =

A,,ri; E = 0.018 and y = 7, At = 0.2.

visualize a mechanism for increasing the frequency of the
post-obstacle wave train. If the post-obstacle train were the
result of a single rotating spiral (in the absence of obstacles),
then the time between successive wavefronts would be
equal to the time required for one spiral revolution. In
contrast, the time required for insertion of a new wavefront
using interfering wavelets is approximately one-fourth the
revolution time of a single spiral. As we will see in the next
section, the lattice spacing can lead to two daughter wave-
lets arising between each pair of obstacles (Fig. 7 c) that will
further double the insertion rate.

MULTIPLE WAVEFRONT INSERTIONS BEHIND
THE INCIDENT WAVEFRONT

The final stage of our study was to demonstrate how high-
rate excitation of a region of excitable medium in front of
the lattice is continued in the absence of additional stimu-
lation. This is accomplished by rapidly creating and insert-
ing new wavelets behind the original incident wavefront.
Above, we illustrated insertion of the first new wavefront

behind the parent wavefront. Here we illustrate the role of
the lattice and obstacle dimensions in creating interference
patterns that permit rapid additional wavelet formation and
insertions.

Although we consider the events after a single incident
wavefront, our study approximates the clinical setting
where the excitation rate may be low (SA node rate of 1/s).
It is important to note that the combination of low-excit-
ability and low-frequency periodic stimulation results in a
large excitable gap (i.e., the wavelength is much less than
the distance between wavefronts initiated by stimulation),
so that insertion of additional wavefronts is feasible. Recent
studies of regional excitability during atrial fibrillation re-
vealed that the reentry circuits do contain excitable gaps,
allowing regional control of atrial fibrillation by local ex-
ternal stimulation (Kirchhof et al., 1993).

In our model, the collision of wavelets near the lines of
symmetry results in fragments that can potentially be in-
serted behind the parent wavefront. The wavelet multipli-
cation results from repeated wavelet spawning along the
A+1 + L, AO, and A 1 + L lines of symmetry as illustrated
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FIGURE 7 This sequence of frames (left to right, top to bottom) is a continuation of the events shown in Fig. 6 and highlights the sequence of events
leading to multiple wavefront insertion. Note that in Fig. 6, the wavelets that are eventually inserted behind the parent wavefront are located at the A+1
and A 1 lines of symmetry (Fig. 6 f). After insertion and collision of the curled regions (Fig. 6 g-h), residual fragments remain at the A+, + L, AO and
A 1 + L lines of symmetry, which become the new wavelet generators. Fig. 7 illustrates the development of these fragments. Note that first, the residual
fragments propagate retrograde to the parent and inserted wavefronts (b). These wavelets collide with the obstacles, resulting in paired new zones of
excitation (c) that propagate toward the A_ l and A +1 lines of symmetry (d). The wavelets above the obstacle collide while the wavelets below the obstacle
grow and collide (e). Now the process shown in Fig. 6 is repeated. The residual daughter wavelets (developed both in front of and behind the obstacle)
propagate antegrade to the parent wavefront (f and g) and eventually join, completing the insertion process. Note that in this illustration, the obstacle and
lattice semiperiod dimensions are such that two new wave fragments are formed that are eventually inserted behind the parent wave.

in Fig. 6, c-f, and Fig. 7, b-e. Fig. 7 a illustrates the first
repetition of residual wavelet development near the obstacle
at the A+1 + L, AO, andA1- L lines of symmetry (shown
in Fig. 6 h). These wavelets propagate retrograde to the
parent wavefront and collide with the obstacle (Fig. 7, b-c).
In this case, two daughter fragments are born (Fig. 7 c), one
that propagates behind the obstacle and one that propagates
within the obstacle and escapes. As these two pairs of new
fragments grow, they collide with their symmetrical partner
around the A+1 andA 1 lines of symmetry (Fig. 7, d-e) and
the residual wavelets propagate antegrade to the parent
wavefront, developing into two newly inserted wavefronts
(Fig. 7, f-h).

In this example, wavelet multiplication and insertion is
dependent on the obstacle and lattice dimensions. Shown in
Fig. 8 are the relationships between the critical slope offtu),
Acr,t, the minimal lattice semiperiod (Lmn,), and the mini-
mum horizontal length of the obstacle ( ,m) for wavelet
formation and subsequent interference leading to insertion.
ACrit was computed as a function of E when y = 7. Obstacle
lengths < lmi. provide insufficient area for the pinched-off

wavelet to develop subsequent to "pinch-off' (Fig. 6, c-d).
Similarly, lattice semiperiods < Lmin provides insufficient
space for wavelet development such that subsequent to
collision, an inserted wavelet is born (Fig. 6J).
The rate of insertion is also dependent on Acrit Fig. 9

shows the rate of insertion per dimensionless time unit. The
larger Acrit (indicating large e; Fig. 5, A and B), the shorter
the time interval required for paired fragments initiated near
symmetry lines A+1 and A 1 to reach the Ao symmetry line
(Fig. 6, e-h; Fig. 7, e-h). Similarly, the fragment initiated
near the Ao line of symmetry (Fig. 6, b-e; Fig. 7, a-e) can
evolve rapidly toward the A+ 1 and A -lines of symmetry,
and hence, the larger the number of additional plane waves
available to be inserted behind the restored incident wave-
front.

DISCUSSION

Atrial and ventricular fibrillation are significant clinical
problems, yet our understanding of the mechanisms of ini-

.:e
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spiral reentry, and Moe and co-workers (1962, 1964) dem-
n onstrated that multiple wavelets could evolve after high-

o, E numeric results frequency stimulation of a medium with inhomogeneous
\_splinesrefractory properties. Recent mapping studies of Allessie

splines (1973, 1994), Konings et al. (1994), and Boineau and Cox
(1973) confirmed both multiple wavelets and reentry. In
spite of the availability of a considerable body of experi-
mental data and a theoretical basis for initiating reentry,
there is relatively little theoretical or experimental work
focused on the process of converting from simple reentry of
a single wave of excitation to formation and multiplication
of secondary wavelets. Here it is useful to note that in the
majority of the experimental studies of fibrillation, slow

.616 0.816 1.016 1.216 conduction appears as a common denominator.
Xcrit Balakhovsky (1965) and Krinsky (1966) showed that

rupture of a wavefront (discontinuous wavefront) leads to
imal lattice and obstacle parameters as a function of spiral development. Later studies by Pertsov et al. (1983,
offtu). The model parameter, E, was varied, 'y = 7, 1990) though, demonstrated that a ruptured wavefront, sec-

I from the roots of equation 10. Lengths are reported ondary to a wavefront-obstacle collision may not lead to
The minimal obstacle length, Im, is the minimal . . . .excitability '

velopment of the "pinched" tail that is large enough spiralf ationi the itabilityothmedium exceedsca
ed in Fig. 2 B (g-h) and Fig. 6 (d). Our numerical critical value. Usig high-frequency stimulaton to reduce
e vertical element of the obstacle should be >lmin/3. the excitability, numerical studies by Panfilov and Keener
;emiperiod, Lmin, is also shown as a function of kC. (1993) and experimental studies in the B-Z reagent by
nines the region within which a daughter fragment Agladze et al. (1994) confirmed this observation. In these
lision. Note that as A , is increased, the dimensionalIveioncollis that la toincserted famentsiar studies, new spiral waves evolved when the colliding wave-
-tive collisions that lead to inserted fragments are'

front separated from the obstacle. Wavefront-obstacle sep-
aration was observed to be dependent on the frequency of
excitation, which resulted in attenuated excitability second-

nance is incomplete. The pioneering work ary to incomplete recovery. Although they demonstrated
Garrey (1914), and Lewis and co-workers wavefront-obstacle separation, the underlying mechanism
rich base of observations supporting the was not explored.

y. The theoretical work of Wiener and The role of excitability in spiral formation can be dem-
t6), Balakhovsky (1965), and Krinsky onstrated without incorporating obstacles (either transient or
I theoretical conditions for the creation of permanent). Instead of breaking a wavefront, Kogan and

co-workers (1991) showed that paired spirals could be ini-
tiated by a discontinuous wavefront formed by stimulation
during the vulnerable period, a period of reduced excitabil-
ity after the passage of a wavefront. Stimuli applied during

O numeric results the vulnerable period resulted in wavefront formation only
- spline in directions retrograde to the direction of parent wavefront

propagation. Stimulation outside the vulnerable period, into
recovered medium, on the other hand, resulted in continu-
ous wavefront formation and no spiral formation.
The concept of a safety factor relating source and load

charge requirements was introduced in studies of propagat-
ing wavefront nerve cells by Rushton (1937) and used to
characterize propagation in an anisotropic cardiac tissue by
Spach et al. (1981). A reduced safety factor can arise in

0.616 0.816 1.016 1.216 certain cardiac diseases from the development of poorly066 0.816 1.016 1.216
X crit conducting or nonconducting obstacles secondary to myo-

cardial infarction (Boineau and Cox, 1973), increased atrial
ship between the number of wavefronts that can be fibrosis associated with aging (Spach and Dolber, 1986;
rent wavefront per dimensionless time unit and Ackt. Spach et al., 1988), and the presence of inexcitable cells or
as varied to yield a range values of At. As e was cells with a slightly depolarized rest potential (Ten Eick and
luction velocity and wavelength of the parent wave-
ncreasing the amount of medium into which new Singer, 1979). We questioned whether the interaction be-
iserted. The circles refer to the numeric results; the tween an incident wavefront and a lattice of obstacles under

conditions of a reduced safety factor (as defined in Eq. 3;
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see Fig. 5 A) was adequate to explain initiation and main-
tenance of multiple wavelets and promotion of high-fre-
quency arrhythmias.
The discrete nature of cell-to-cell connections can lead to

alterations in the safety factor as described by Spach and
co-workers (Spach et al., 1981, 1982, 1988). They explored
the nature of propagation in cardiac tissue and demonstrated
that at the cellular level, propagation was discontinuous and
a cell's local response was sensitive to the direction of an
approaching wavefront (Spach et al., 1992), indicative of
alterations in the load "seen" by a cell. Moreover, they
demonstrated that structural resistive discontinuities result-
ing in load variations as a function of the direction of a
propagating wavefront might contribute significantly to the
arrhythmogenic potential of a region of tissue.

Another source of reduced safety factor is due to the
background Na channel (Zilberter et al., 1994), which can
lead to fast Na channel inactivation secondary to depolar-
ized rest potentials. For instance, in diseased atrial tissue,
abnormalities in the balance of resting sodium and potas-
sium conductances (Imanishi and Arita, 1987; Hordof et al.,
1976; Ten Eick and Singer, 1979) resulted in a depolarized
resting potential and a significant reduction in propagation
velocity (Cranefield, 1975).
Sodium channel blockade can also reduce the safety

factor, thereby reducing the propagation velocity and rota-
tional frequency of spiral waves. Concern about the proar-
rhythmic effects of drugs that block Na channels has re-
cently been emphasized by clinical trials (CAST
Investigators, 1989) in which patients treated with Na chan-
nel blocking agents experienced a sudden death rate approx-
imately four times greater than that of the untreated group.
One explanation of these results is that unsuppressed exci-
tations in the treated patients were more likely to initiate
reentrant tachyarrhythmias, leading to sudden cardiac death,
i.e., the treated patients were more "vulnerable" than the
untreated patients (Starmer et al., 1991).

Recently we showed with in vitro studies that Na channel
blockade was inherently proarrhythmic by prolonging the
period of vulnerability during which premature stimulation
produced unidirectional conduction (Starmer et al., 1991,
1992; Nesterenko et al., 1992), a precursor of reentrant
cardiac arrhythmias. However, the patients that participated
in the CAST study were survivors of a myocardial infarc-
tion suggesting the presence of poorly conducting regions of
cardiac scar tissue. Consequently, there is the possibility
that Na blockade might trigger other proarrhythmic mech-
anisms based on collisions between wavefronts and obsta-
cles in a medium of low safety factor.
To probe possible arrhythmogenic properties of diseased

cardiac tissue, we have studied a medium of inherent low
safety factor instead of a medium of reduced excitability
secondary to high-frequency stimulation. With such a me-
dium, new wavelets could be initiated by a single incident
wavefront. We hypothesized that there are spatial patterns
of obstacles such that a parent wavefront arising from a

duce multiple spiral waves leading to high-frequency ar-
rhythmias.
With periodic excitation, poor excitability will lead to an

excitable gap between successive wavefronts, behind which
new wavelets can be inserted, producing high-frequency
tachyarrhythmias (i.e., wavelength << distance between
two successive wavefronts). Either sustained or nonsus-
tained tachyarrhythmias might be produced by altering ex-
citability. These conditions, approximating those observed
in cardiac disease, however, have received little attention
and there are no theoretical studies describing conditions
promoting wavefront-obstacle separation, an essential pre-
cursor of wavelet formation.
As has been shown by many investigators, premature

stimulation may be considered as a generic mechanism of
reentry initiation regardless of conductivity of cardiac tis-
sue. In normally conducting cardiac tissue, a single rotating
spiral wave can result in tachyarrhythmias. In patients with
structural heart disease (e.g., intercellular fibrosis) excitabil-
ity can be compromised via a reduced safety factor such that
high-rate arrhythmias, as revealed by the ECG, are theoret-
ically impossible. Only with multiple wavelets can the ap-
parent rate of the arrhythmia be increased. The question,
then, is how are multiple wavelets induced?

In our model of the obstacle, the asymmetric L provides
a mechanism permitting wavelet formation in a medium of
cardiac dimension (by reducing the spatial requirements for
wavefront development). The lattice of multiple obstacles
defines the patterns of interference between pairs of adja-
cent wavelets and is essential for directing wavelet devel-
opment and subsequent insertion behind the parent wave-
front. One might reasonably question the role of symmetry
in our model.
We chose to study the interaction of a wavefront and the

L-shaped obstacle as a first approximation of either a fila-
ment-like obstacle seen in atrial tissue (Spach and Dolber,
1986) or as a piecewise approximation to "solid" obstacles
that appear secondary to ischemia. Similarly, the lattice was
selected as a first approximation of what one might call
"diffuse disease." Studies of the sensitivity of wavelet for-
mation, insertion and multiplication to the geometric struc-
ture of the obstacle, and the lattice arrangement of obstacles
remain to be done.

Studies of Moe's cellular automata model (Moe et al.,
1964), though, suggest that the regularity of our symmetric
lattices is not essential for forming wavelets. In his model,
each cell had a refractory period selected from a normal
distribution of refractory periods, and the conduction time
of each cell was dependent on the time since the last
excitation. High-frequency stimulation was used to initiate
"fibrillation." Isochronal maps indicated the presence of
multiple wavelets and multiple "functional" obstacles.
Linking our studies using symmetry with Moe's studies
using random distributions of refractory periods indicates
that symmetry is not essential for multiple wavelet forma-
tion. The symmetry, or lack of symmetry, though, probably
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determines the range of the number of wavelets that can
evolve.
With these ideas in mind, the development of fibrillation

can be viewed as a positive feedback process. Under normal
conditions, the safety factor is positive such that wavefront-
obstacle separation does not occur, thus inhibiting daughter
wavelet formation. Then following a single extrastimulus,
conduction of the next "normal" activation wavefront is
retarded. If the safety factor has been sufficiently reduced
(secondary to the reduced recovery time leading to reduced
sodium channel availability), then a collision between this
premature wavefront and an obstacle can lead to daughter
wavelets. If SF > 0, then the parent fragments will reattach
and continue normal propagation (Fig. 3 A). If, on the other
hand, SF < 0, then the parent fragments will separate from
the obstacle boundaries (Fig. 3 B) and may become the
focus of a reentrant process that will continue to collide with
nearby obstacles. As these wavelets grow and collide, new
wavefronts can be inserted behind the parent wavefront,
thereby increasing the apparent rate of the arrhythmia, re-
ducing the time for cellular recovery and thus further re-
ducing the safety factor. This leads to a further slowing of
conduction and an expansion of the excitable gap (because
the APD* velocity is diminished), and thus the process can
continue until there is a negligibly excitable gap. It is this
hypothetical feedback process that can explain the appear-
ance of very slow conducting regions in tissue that conducts
at normal velocities in the absence of fibrillation
(Schuessler et al., 1992, 1993; Konings et al., 1994).

Based on these concepts, it is useful to compare our
results with experimental and clinical observations of atrial
flutter and fibrillation. For instance, when Lo = 0.05 mm
and To = 1 ms, which approximate conditions of low
excitability (C = 0.05 MAs), our dimensionless minimum
lattice semiperiod in Figs. 6 and 7 scales to the lengths of
observed macroreentry circuits seen in atrial flutter: L > 5
mm and an insertion rate of 5 Hz when e = 0.006. Increas-
ing E to 0.04 results in microreentrant wavelets, L 2 mm,
and higher wavelet insertion rates, 6 Hz < v < 12 Hz
(Konings et al., 1994).

This qualitative agreement permits us to interpret exper-
imental data referring to fibrillation in theoretical terms
using a minimal two-variable model describing the generic
properties of an excitable medium. Based on this model we
theoretically studied the safety factor of propagation and the
associated critical slope of the "apparent" Na conductance,
Acrit These critical parameters are essential for wavefront
separation from the obstacle leading to long-lived secondary
wavelets. In addition, we probed the development of reen-
try, insertion, and wavelet multiplication. These theoretical
results are compatible with the generic spatial and fre-
quency properties of flutter and fibrillation, and may be
useful in designing interventions to control life-threatening
cardiac tachyarrhythmias.

This research was supported in part by HL32994 from the National Heart,
Lung and Blood Institute, National Institutes of Health.
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