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Two-Dimensional Distributions of Activation Enthalpy and Entropy from
Kinetics by the Maximum Entropy Method

Peter J. Steinbach

Laboratory of Structural Biology, Division of Computer Research and Technology, National Institutes of Health, Bethesda,
Maryland 20892 USA

ABSTRACT The maximum entropy method (MEM) is used to numerically invert the kinetics of ligand rebinding at low
temperatures to obtain the underlying two-dimensional distribution of activation enthalpies and entropies, g(H,S). A global
analysis of the rebinding of carbon monoxide (CO) to myoglobin (Mb), monitored in the Soret band at temperatures from 60
to 150 K, is performed using a Newton-Raphson optimization algorithm. The MEM approach describes the data much better
than traditional least-squares analyses, reducing x? by an order of magnitude. The MEM resolves two barrier distributions
suggestive of rebinding to different bound conformations of MbCO, the so-called A, and A; substates, whose activation
barriers have been independently estimated from kinetics monitored in the infrared. The distribution corresponding to A,
possesses higher activation entropies, also consistent with infrared measurements. Within an A substate, correlations of S
and H are recovered qualitatively from simulated data but can be difficult to obtain from experimental data. When the
rebinding measured at 60 K is excluded from the inversion, two peaks are no longer clearly resolved. Thus, data of very high
quality are required to unambiguously determine the kinetic resolvability of subpopulations and the shape of the barrier

distribution for a single A substate.

INTRODUCTION

For more than 20 years, the dynamics of heme proteins have
been studied in great detail by a variety of techniques
(Frauenfelder et al., 1988). In flash-photolysis experiments,
the covalent bond between protein and ligand is broken by
the absorption of light (e.g., from a laser flash), and the
ensuing kinetics of ligand rebinding are monitored opti-
cally. Analysis of the rebinding of carbon monoxide (CO) to
myoglobin (Mb) has contributed greatly to our understand-
ing of proteins as dynamic systems (Austin et al., 1975;
Steinbach et al., 1991). The measured kinetics support the
view of protein conformation in which each protein can
assume a variety of energetically similar configurations or
conformational substates (Ansari et al., 1985).

In a 75% glycerol/water solvent near 300 K, rapid
equilibrium fluctuation among these substates permits
ligand escape into the solvent and creates an averaged,
effective barrier to ligand rebinding as evidenced by
approximately exponential kinetics (Austin et al., 1975).
After flash photolysis at temperatures near 180 K, the
proteins relax on the time scale of rebinding, resulting in
rebinding that is neither exponential in time nor Arrhe-
nius in temperature (Agmon and Hopfield, 1983; Stein-
bach et al., 1991; Panchenko et al., 1995). At tempera-
tures below about 160 K, ligands can no longer escape to
the solvent, and fluctuation among substates is frozen
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out. Proteins in different substates can present different
barriers to ligand rebinding and the observed kinetics are
highly nonexponential, with rebinding rates ranging over
more than ten orders of magnitude.

This study addresses the analysis of this geminate rebind-
ing measured in the absence of conformational relaxation.
This regime shall be somewhat casually referred to as “low
temperature,” with the understanding that it may persist up
to room temperature in some solvents (Hagen et al., 1995).
Traditionally, these kinetics have been described by a tem-
perature-independent distribution of activation enthalpies,
with each protein possessing the same activation entropy
(Austin et al., 1975). The enthalpy distribution inferred
from CO rebinding to Mb in a 75% glycerol/water solvent
below 160 K is peaked near 10 kJ/mol. For systems char-
acterized by such large enthalpic barriers, the data can be
described reasonably well by using a single value for the
activation entropy.

Several heme-ligand systems possess smaller activation
enthalpies, and for these, the effects of distributed entropy
are more important. The enthalpy distribution is peaked at H
=~ 1 kJ/mol or less for CO rebinding to protoheme (Alber-
ding et al., 1976; Miers et al., 1991), at 4 to 5 kJ/mol for CO
rebinding to separated a and B chains of hemoglobin (Al-
berding et al., 1978), and at 2.3 kJ/mol for CO rebinding to
the B chain of hemoglobin Ziirich (Dlott et al., 1983).
Measured CO rebinding to protoheme from 20 to 80 K has
been well described by assuming a linear correlation be-
tween activation enthalpy and entropy (Alberding et al.,
1976). In this way, an entropy distribution was tied to an
enthalpy distribution. At higher temperatures, the distribu-
tion of rebinding rates is less sensitive to the distribution in
activation enthalpy, facilitating a more direct assessment of
entropic effects, and an entropy distribution has been fit to
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ultrafast protoheme-CO kinetics at 200 K (Miers et al.,
1991).

Even for CO rebinding to Mb, evidence for different
entropic barriers comes from flash-photolysis experiments
monitored in the infrared (Ansari et al., 1987). Three pre-
dominant bound conformations of MbCO, referred to as A,
A,, and A, are distinguished by different stretch frequen-
cies (near 1950 cm™ ') of the ligand’s C-O bond. Monitoring
the three stretch bands individually after flash photolysis at
low temperatures shows that the geminate rebinding to each
substate is nonexponential, with rebinding to A, being the
fastest and rebinding to A, being the slowest. The infrared
kinetics indicate different activation entropies as well as
different activation enthalpies for the three substates.

When rebinding is monitored in the Soret band near
440 nm, the absorption of the heme’s m-electron system
is probed. The Soret signal is much larger than the C-O
stretch signals, but it cannot be used to monitor the A
substates individually. Because CO rebinding to Mb
monitored in the Soret represents a sum over the three A
substates, an accurate determination of the temperature-
independent distribution of barriers is made more com-
plicated. Generally, the enthalpy distribution has been
approximated as a parameterized function that is fit to the
data, requiring only a few adjustable parameters but
yielding values of x* = 0(10>).

A numerical determination of the distribution that does
not force a functional form on the result is desirable. Such
an approach would more fully exploit the information con-
tent of the data, converging to lower values of x* and
possibly resolving the kinetics corresponding to different A
substates. The fundamental shape of the barrier distribution
may also emerge from a stable numerical inversion of the
kinetics. The shape has been of considerable interest in both
experimental (Berendzen and Braunstein, 1990; Steinbach
et al., 1992; Ehrenstein and Nienhaus, 1992) and theoretical
(Agmon and Hopfield, 1983; Young and Bowne, 1984;
Stein, 1985; Srajer et al.,, 1988) studies. The theoretical
models differ in the assumed shape of the protein energy
landscape and in the modeled coupling between conforma-
tion and activation enthalpy. For example, Agmon and
Hopfield assumed a harmonic landscape and an activation
enthalpy that is nearly linear in the protein conformational
coordinate, giving rise to a nearly gaussian enthalpy distri-
bution. Stein has suggested a distribution that is the product
of a gaussian and an exponential. The models proposed by
Young and Bowne and Srajer et al. involve distributions
skewed to high H. A numerical inversion could assess the
ability of the data to distinguish between such models by
characterizing the sensitivity of the recovered distribution to
the quality of the data (e.g., the time and temperature ranges
measured, the signal-to-noise level, etc.).

A recent numerical approach partitions the enthalpy axis
into 32 bins. Each H bin contributes two adjustable param-
eters to a fit to rebinding data; to each value of H is
attributed a value of the probability density in H and a single
activation entropy (Hagen et al., 1995). Consequently, this
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approach can resolve structure in the enthalpy distribution.
However, in general, multiple S values may correspond to a
given value of H, and use of a single S value can inhibit the
recovery of S-H correlations.

Here, the maximum entropy method (MEM) is used to
numerically invert the geminate rebinding data measured in
the absence of protein relaxation to obtain a static two-
dimensional distribution in activation enthalpy and entropy,
g(H,S). Thus, entropy and enthalpy are treated equally
generally in an attempt to infer the barrier distribution
directly from the data. The next section defines the g(H,S)
distribution to be recovered from the low-temperature ki-
netics. The MEM rationale is then summarized, followed by
an overview of the algorithm developed for this work. The
performance of the algorithm is characterized by numerical
inversions of simulated data sets before being applied to
experimental data. The two-dimensional distributions of
activation barriers recovered from the simulated and actual
data sets are presented and discussed.

LIGAND REBINDING AT LOW TEMPERATURES

After flash photolysis at low temperatures, protein relax-
ation contributes negligibly to changes in the absorption,
AA, of the sample. The measured signal is attributable
solely to ligand rebinding as governed by a time- and
temperature-independent distribution of barriers. In general,
both activation enthalpy and entropy are distributed:

AA(t, T) = AA N, T)
ey

= AAu f ds J dHg(H,S)e xHSDt

0

where Nz, T) is the fraction of proteins at temperature T that
have not yet rebound a ligand at time ¢ and g(H,S) dH dS is
the fraction of proteins in conformational substates possess-
ing an activation enthalpy between H and H + dH and an
activation entropy between S and S + dS. The normalization
constant, AA,,,, can be estimated reliably from the kinetics
measured at a very low temperature, e.g., 10 K. The rate
coefficient can be written as

k(H,S, T) = WT/Ty)e T, )

where the activation Gibbs free energy is G = H — TS, vis
an attempt frequency taken to be 10’ s™', Ty, is taken to be
100 K, and £ is a parameter often taken to be 0 or 1 (Dlott
et al., 1983).

To compare the current results to traditional analyses in
which only enthalpy is distributed, it is convenient to inte-
grate the probability density over S and to average the
logarithm of A, the pre-exponential of k:

g'(H) = f dSg(H.,S) 3
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and

©

dSg(H, S)log(ve®™)

(10g A)H) = g’(H) s 4

where log connotes base 10.

NUMERICAL INVERSIONS VIA THE MAXIMUM
ENTROPY METHOD

Consider a discretized data set that is linearly related to a
distribution or image, f-

M
Data, = Dc;;f, + B; + . 5)

j=1

B; accounts for any background signal present. The noise,
m;, shall be assumed gaussian with standard deviation o;.
For the current application, the AA(z, T) data are represented
as a vector, the ith point having been measured at time ¢; and
temperature 7;. Similarly, f is g(H,S) represented as a vector
with the jth element associated with activation enthalpy H; and
activation entropy S;. In the discretized H-S plane, enthalpies
are separated by dH and entropies by dS. The physics of Eqs.
1 and 2 are encoded in the matrix c: ¢;; = AA,dS
dHe ™8T4 The uncertainty o, is estimated by signal aver-
aging (see below), and B; = 0.

In numerical inversions, a representative distribution
must be chosen from all those consistent with the noisy data.
That is, when judged solely by a goodness-of-fit statistic
such as x°,

. 2(Flt, - Data,) ’ ©

many distributions, with different amounts of structure,
produce equally acceptable fits to the N data points.

From all distributions yielding a particular value of X,
the MEM chooses that which maximizes the entropy given
by (Skilling, 1989):

2If; = F; = filn(5/F)]. @)

j=1

S F) =

F is the default distribution used to incorporate desirable
characteristics in f based on previous experiments, e.g., the
expectation that the distribution should be smooth. It de-
fines maximum entropy; unconstrained maximization of S
with respect to the M values of f; yields f; = F;.

The MEM has been used to invert a variety of experimental
measurements (Gull and Skilling, 1984). It is particularly ap-
plicable to linear transformations (Eq. 5) involving positive,
additive distributions. For such transformations, there is a
unique distribution f that maximizes S for a given value of x*
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and default distribution F. The natural logarithm in Eq. 7
ensures that all f; are positive. Clearly, the distribution is biased
in some way by any method that selects a single distribution
from the many that yield a given value of ). By biasing f
toward F, the MEM introduces no correlations in f that are not
present in the data or in F. In other words, it is “maximally
noncommittal” with regard to unavailable information. Conse-
quently, as the signal-to-noise ratio of the data decreases,
structure in the distribution is washed out without the intro-
duction of spurious peaks (Steinbach et al., 1992).

One way to maximize S for a given value of x* is to
maximize the function

0=5-A¢.

An iterative optimization is begun fromf = F, A =~ 0. The
Lagrange multiplier A is adjusted to constrain x> to the
desired value, say x°,;, = 1.0, at the maximum of Q.

In a Newton-Raphson optimization, Q is approximated to
second order in the neighborhood of the current point]‘. The
update to f is obtained as the solution of a linear system of
M equations. This requires O(M>/3) operations and is re-
peated at multiple points f as iterations converge to x* =
Xaim- Because this approach is not feasible when recovering
images made up of M = 0(10°) pixels, a rather complicated
MEM algorithm has been developed that solves a linear
system of equations in a small subspace of only a few
dimensions (Skilling and Bryan, 1984).

Cornwell and Evans (1985) have used an efficient ap-
proximation to a true Newton-Raphson optimization of Q
for the deconvolution of large astronomical images via the
MEM. By approximating the second-derivative matrix, or
Hessian, of Q as a diagonal matrix, they avoided the expen-
sive O(M?/3) operations. To compensate for this approxi-
mation, line searches were performed along the update to]“.
The automated adjustment of A was performed gradually to
keep Vol acceptably small.

Not all transformations are amenable to a diagonal ap-
proximation of the Hessian. Nonetheless, straightforward
Newton-Raphson optimization may be expedient whenever
modest-sized distributions are to be recovered from exper-
iments that take a few hours or longer to complete. Such is
the case when inverting AA(2,T) to obtain g(H,S), a distri-
bution requiring only M = 6(10°) pixels.

CALCULATING g(H,S)

For the recovery of g(H,S), the MEM algorithm developed
by Cornwell and Evans was generalized to perform a true
Newton-Raphson optimization of Q. A diagonal approxi-
mation to the Hessian was used only at small values of A.
Line searches (Press et al., 1992) were performed, first
attempting a full Newton-Raphson increment to }‘ and, if
necessary, reducing the length of the increment until Q
increased sufficiently. The full step was generally always
accepted. Matrix algebra was performed using the public-
domain LINPACK routines (Dongarra et al., 1979).
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In contrast to previous work (Steinbach et al., 1992), the
noise was approximated as gaussian in AA, not in transmit-
tance. The transmittance, 7, is the ratio of light intensity
transmitted through the sample at time ¢ to that transmitted
just prior to the reaction-initiating laser pulse: J(1,T) = I(z,
TYI(0~, T) = 1074AD_ Because intensities are actually
measured, the standard errors in the mean were originally
estimated in J space as og;. However, it is convenient to
invert the data in AA space because the Hessian of x* is
independent of the current pointfin this space. For data of
sufficient signal-to-noise ratio, it is reasonable to approxi-
mate the uncertainties in AA as o; = log(e)og/J;.

Iteration was terminated when )? stopped changing ap-
preciably while keeping IVQ! small. Distributions stored
during convergence were then compared. The value of A
(i.e., x?) yielding the distribution that optimally trades
smoothness for goodness of fit is not obvious. Gull has
proposed a criterion that seeks an amount of structure in
equal to the number of good, independent measurements f
present in the data (Gull, 1989). Here, the presence of
nonstatistical noise in the experimental data complicates the
issue, and an admittedly subjective but reasonable choice of
representative distribution was adopted. The g(H,S) distri-
bution with the lowest value of x* that resulted in a smooth
g'(H) function was chosen.

In many applications improved distributions have been
found by convolving the distribution f corresponding to a
uniform F with a gaussian to create a new F for a second
calculation (Cornwell and Evans, 1985; Gull, 1989). In this
way, spatial correlations of low frequency (broad features)
are included in the definition of maximum entropy, reduc-
ing the bias incurred with a uniform F.. For the calculation
of g(H,S), this approach was found to yield somewhat better
S-H correlations within subpopulations. Relative to distri-
butions obtained with a uniform F, (logA)(H) was more
faithfully determined from synthetic data when a blurring
gaussian with full width at half-maximum of 3 to 5 pixels
was used to create F from a previousf.

RESULTS FOR SIMULATED AA(t,7)

Before a MEM algorithm can be applied with confidence to
experimental data, it must successfully converge to Y=1
when applied to stimulated data for which the transforma-
tion from distribution to data and the noise are known
accurately. Failure to do so indicates algorithmic deficien-
cies, and convergence was achieved here only with true
Newton-Raphson optimization using the full Hessian matrix
to update f

The algorithm was tested with two data sets that were
simulated using Egs. 1 and 2 (with £ = 1) and a random
number generator (Press et al., 1992) to add gaussian noise.
The times, temperatures, uncertainties, and AA_,,, from an
experimental data set (Steinbach et al., 1991) were used to
simulate AA(z,T) (Fig. 1). The other data set was extended
at each temperature by five points before the first datum and
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five after the last datum. Consequently, the earliest time
point in this extended set was AA(6.1 ns, 150 K) = 1.085
and the latest was AA(15.6 ks, 60 K) = 0.091. The g(H,S)
distribution used to create the two data sets and the distri-
butions recovered by the MEM are shown in Fig. 2, a—c.

The “true” g(H,S) distribution contains three cigar-
shaped subpopulations (Fig. 2 a), in the spirit of the three A
substates of MbCO, seen near 1950 cm™~'. One-tenth of the
distribution is peaked at H = 8.2 kJ/mol and S/R = —17.6
(representing A,), one-tenth at H = 19.5 kJ/mol and S/R =
—3.7 (A;), and 80% at H = 10.1 kJ/mol and S/R = —6.4
(A,). These values of H and S at the peaks of the A-substate
barrier distributions were estimated from enthalpy-distribu-
tion fits to flash photolysis experiments monitored in the
infrared (Johnson et al., manuscript submitted for publica-
tion). Within each subpopulation, it was assumed that S
decreased with increasing H.

As seen in Fig. 2, b and ¢, two of the simulated subpopu-
lations, A, and A,, are resolved by the MEM. The kinetic
similarity of the A, and A, substates does not require two
well-resolved subpopulations to fit the simulated data ac-
ceptably. From the MEM perspective, evidence for the
kinetic separation of A, and A, has been lost in the process
of acquiring a limited sampling of noisy data. The recovered
probability densities do compare very well to the true den-
sity after integrating over S (Fig. 2 d). Because the MEM
introduces structure conservatively, no spurious peaks were
introduced into the g(H,S) distributions. The price paid for
this desirable result is a modest reduction in the intensity at
the maximum (Fig. 2 d) and a concomitant enhancement of
the main peak’s shoulder at large H. The agreement among
the distributions in Fig. 2 d illustrates that for populations
peaked at H =~ 10 kJ/mol or more, AA(#,T) is dominated by
the effects of activation enthalpy; values for H are easier to
recover than values for S, limiting any attempt to determine
S-H correlations for such systems.

Still, much of the entropic character of the true g(H,S) is
recovered from both the typical and the extended data sets.
The correlation of S with H is plotted in terms of the

log (AA/OD)
o

log (t/s)

FIGURE 1 Ligand rebinding kinetics, simulated from 60 to 150 K in
10-K steps by adding gaussian noise to the kinetics generated using Eqs. 1
and 2 and the g(H,S) distribution shown in Fig. 2 a. Times, temperatures,
uncertainties, and AA ,,, are as in Fig. 3. Lines depict the fit corresponding
to the g(H,S) shown in Fig. 2 c.
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H (kJ/mol)

FIGURE 2 (a) “True” g(H,S) distribution used to synthesize two data sets:
the data in Fig. 1 and an extended data set (sampled as in Fig. 1, with five
points inserted before the shortest time and five appended after the longest time
at each temperature). (b, ¢) g(H,S) distributions recovered by the MEM from
the extended data set, stopping at x* = 0.69 (b) and from the data in Fig. 1,
stopping at x> = 0.57 (c). Pixels included in the fit are bounded by the lines
drawn in the upper left and lower right comers. A single logarithmic intensity
scale was used for a—c, ignoring intensities below 10™*. (d) g(H,S) integrated
over S for the distributions in (a) (dot), (b) (solid), and (c) (dash). (e) log A
averaged over S with lines drawn as in d.

pre-exponential A in Fig. 2 e. For both A; and A;, the value
of § at the peak density is correctly obtained from each data
set. The correspondence of small S to large H within the
dominant population is recovered qualitatively. Not too
surprisingly, there is insufficient information at long times
in the data set simulated at experimentally sampled times to
determine the S-H correlation within the simulated A; sub-
state. Because of its five additional points per temperature at
long times, the extended data set yields this correlation more
faithfully upon inversion.

Note also that the additional data at short times in the
extended set lead to improved resolution of small activation
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barriers. In the upper left region of the H-S plane, g(H,S) is
of lower intensity in Fig. 2 b than in 2 c.

RESULTS FOR EXPERIMENTAL AA(t,T)

Convergence to x> < 1 for experimental data is impeded by
systematic noise such as amplifier ringing at short times,
variations in AA_,, due to intensity fluctuations of the
photolysis laser, and photolysis by the monitoring light
source. At least the first two of these conditions hold for the
experiment treated here. Furthermore, although Eq. 2 is a
well-established physical approximation, it is not a mathe-
matical identity; its limited validity may inhibit conver-
gence even for data without systematic errors.

Three different g(H,S) distributions obtained from the
rebinding of CO to Mb (Fig. 1 b of Steinbach et al., 1991)
are shown in Fig. 4. Rebinding measured at ten tempera-
tures, from 60 to 150 K, was inverted using £ = O (Fig. 4 a)
and § = 1 (Figs. 3 and 4 b). These distributions differ
essentially by a shift to higher H and higher S for § = 0.
Although the distributions are of comparable smoothness,
X’ is 89.6 for £ = 1 and 143 for ¢ = 0, suggesting & = 1 is
the more appropriate value.

The inversion represented in Fig. 4 b yielding x* =
89.6 is a much better representation of the data (Fig. 3)
than is a more traditional four-parameter fit using a
gamma distribution of enthalpies and a single activation
entropy. This earlier fit yielding x> = 922 suggests a
gamma distribution peaked at H = 9.7 * 0.4 kJ/mol and
a pre-exponential with logarithm log[A(s~')] = 8.8 + 0.2
(table II of Steinbach et al., 1991). Although the MEM
inversion does involve the determination of 1909 pixel
intensities, the intensities are not varied independently.
They are constrained by the entropy function (Eq. 7) to
provide the distribution that is least altered from the
slowly varying default distribution at a given value of x°.
By inferring the distribution directly from the data, two
subpopulations are clearly resolved, one peaked at H =
10.9 kJ/mol and a smaller one near 16.6 kJ/mol (Fig. 4
d). The latter population possesses a larger pre-exponen-
tial than the predominant population; {log A) increases as
H increases from 15 to 20 kJ/mol (Fig. 4 ¢). These results
are consistent with the rebinding to A, and A; measured
by flash photolysis monitored in the infrared.

However, these two peaks are resolved only by the intro-
duction of two rather abrupt linear features in the g(H,S), one
extending from (H, S/R) =~ (6.3, —20.0) to (H, S/R) ~ (13.8,
—5.0) and the other from (H, S/R) ~ (6.3, —20.0) to (H, S/R)
=~ (23.7, 10.0) (Fig. 4 b). The slope of such a line in the H-S
plane is inversely proportional to the temperature correspond-
ing to the data giving rise to the feature (see Discussion below).
Thus, these features can be attributed to AA data at 60 and 70
K, respectively. The considerable intensity of these features
suggests that the data are somehow incompatible and that a
simultaneous description of the data at 60 K and the data at
higher temperatures cannot be readily obtained with Egs. 1 and
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log (AA/OD)

log (t/s)

FIGURE 3 Kinetics of CO rebinding to Mb, measured from 60 to 150 in
10-K steps in a 75% glycerol/water solvent (figure 1 b of Steinbach et al.,
1991). Lines depict the fit corresponding to the g(H,S) shown in Fig. 4 b.

2 and a smooth g(H,S) distribution. Indeed, when rebinding at
60 K is excluded from the inversion, these lines essentially
disappear (Fig. 4 ¢), a more uniform distribution skewed to
high H is obtained (Fig. 4 d), and a lower value of »* is
reached. Also, (log A) no longer increases in the range H = 15
to 20 kJ/mol (Fig. 4 e).

When plotted on an expanded scale, AA(z, 60 K) appears
low relative to the data at 70 and 80 K, as might have been
caused by a drop in photolysis-laser intensity when the data
at 60 K were measured. Therefore, two additional inver-
sions were performed, before which AA(#, 60 K) was mul-
tiplied by 1.006 and 1.012. Although x? dropped to 67.2 and
51.07, respectively, the g(H,S) distribution was not changed
significantly from that shown in Fig. 4 b. Thus, the data at
60 K apparently call for two well-resolved peaks, whose
positions agree well with infrared measurements of rebind-
ing to A, and A;. When the 60-K data are excluded, only a
single peak with a shoulder at large H is recovered. The
experimental data of Fig. 3 lack the obvious biphasic char-
acter that is seen easily at each temperature in the simulated
data of Fig. 1. It appears better data are needed to determine
unambiguously whether or not A, kinetics are resolvable in
the Soret band.

Two other aspects of these results warrant comment.
First, the upper left regions of the H-S plane in Fig. 4, a—c,
are of rather uniform intensity, indicating the data at short
times are insufficient to significantly alterffrom F. Thus,
the gradual rise of the distributions at small H in Fig. 4 d
should not be overinterpreted and the data’s usefulness in
assessing the symmetry of g’'(H) for the predominant sub-
population is limited. Better data at short times would better
resolve small barriers and may result in a more sudden rise
in g(H,S). Second, the increase in (log A) for H > 20 kJ/mol
(Fig. 4 e) should not be taken too seriously. Because the
fraction of proteins possessing enthalpies in this range is
very small (Fig. 4 d), these large pre-exponentials have little
influence on the fit.

DISCUSSION

Previous studies have applied the MEM in Laplace inver-
sions of fluorescence (Livesey and Brochon, 1987; Bajzer
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S/R

S/R

S/R

<log A>(H)

H (kJ/mol)

FIGURE 4 (a-c) g(H,S) distributions recovered by the MEM from the
data of Fig. 3, by inverting all temperatures from 60 to 150 K with £ = 0,
stopping at x> = 143 (a), by inverting 60 to 150 K with £ = 1, stopping
at x> = 89.6 (b), and by inverting 70 to 150 K with & = 1, stopping at x*
= 18.9 (c). Pixels included in the fit are bounded by the lines drawn in the
upper left and lower right corners. A single logarithmic intensity scale was
used, ignoring intensities below 1074, (d) g(H,S) integrated over S for the
distributions in (a) (dot), (b) (solid), and (c) (dash). (e) log A averaged over
S with lines drawn as in d.

and Prendergast, 1993; Kungl et al., 1994) and ligand-
rebinding kinetics (Steinbach et al., 1992; Lavalette et al.,
1991; Lambright et al., 1993), recovering one-dimensional
distributions of lifetimes. By inverting several temperatures
simultaneously, the current application embodies a physical
model, not simply a mathematical relation. The g(H,S)
distribution reflects the metastable configuration of the pro-
tein ensemble, in which each protein is trapped in a confor-
mational substate with fixed activation enthalpy and en-
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tropy. Therefore, the inversion of Eq. 1 is meaningful only
at temperatures low enough to preclude substate intercon-
version on the time scale of rebinding.

The inversion of AA(¢, T) to obtain g(H,S) is underdeter-
mined; there are typically a few hundred measured values of
AA whereas 10002000 image pixels are needed for satis-
factory resolution in H and S. The MEM addresses this
shortage of data by spreading intensity in the H-S plane as
much as is consistent with the measured AA(¢T). This
conservative tendency results in intensity distributed along
lines of positive slope in the H-S plane. The origin of these
lines in g(H,S) is easily explained. Consider data measured
at two consecutive time points, #; and ¢, ;, at temperature T.
Any measured decrease in AA from ¢, to ¢, results from
proteins possessing values of H and S that correspond to a
rebinding rate coefficient £k =~ 2/(; + t;,,,). To fix k at
temperature 7, S must increase linearly with H (Eq. 2).
Hence, all proteins rebinding between times ¢; and ¢, at
temperature T lie close to a common, positively sloped line
in the H-S plane. The slope of the line is determined by the
temperature and the S intercept by the given value of k and
the temperature (for £ # 0). Thus, observed linear correla-
tions of S and H do not necessarily imply chemical causa-
tion (Krug et al., 1976).

When visible in inversions of simulated AA(:,T), the
linear features are relatively subtle (Fig. 2), but nonstatisti-
cal errors in experimental data can accentuate these lines
(Fig. 4). The data of Fig. 1 were simulated with small S
values correlated with large H values within the three sub-
populations (Fig. 2 a) to assess the quality of the measure-
ment required to override the MEM’s noncommittal asso-
ciation of large S with large H. For data simulated over
typical time and temperature ranges with realistic noise, the
S-H correlation is recovered qualitatively for the main sub-
population, but data are required at longer times than are
usually sampled to determine the correlation for the 10%
component peaked at H = 19.5 kJ/mol (Fig. 2 e).

The MbCO data chosen as the first application for this
analysis are exemplary in a number of respects. They range
over nearly ten orders of magnitude in time and over four
decades in AA (Fig. 3). Ten temperatures are sampled in the
range that excludes the effects of tunneling measurable at
low temperatures and the effects of protein relaxation near
180 K. Furthermore, a published enthalpy-distribution anal-
ysis of these data (Steinbach et al., 1991) facilitates evalu-
ation of the current approach. Although they represent some
of the best data available, they are not devoid of nonstatis-
tical errors. Perhaps the most limiting is the variation in
AA,,, resulting from fluctuations in the intensity of the
photolysis laser. In effect, laser fluctuations scale each AA
trajectory up or down by a multiplicative constant relative to
the curve that would be measured with a constant laser
output. Averaging such curves together can wash out real
undulations in the kinetics and result in relatively large error
bars. In principle, trajectories could be individually rescaled
when they are averaged together to correct for this effect.
However, the current data set were not averaged in this way,
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and fluctuations in AA,,, may consequently have been
misinterpreted as evidence for temperature dependence in
the rebinding, corrupting the g(H,S) distribution and pre-
cluding ¥* ~ 1.

The MEM recovery of g(H,S) is the most demanding
analysis yet applied to this data set, and improved measure-
ments and compensation for photolysis fluctuation can only
lead to better results (e.g., lower values of x?, less pro-
nounced linear features in g(H,S)). Increased resolution in
time and temperature would surely help, providing a total
number of data points comparable to the number of pixels
used in g(H,S). Increasing the temporal resolution would
permit finer resolution in the H-S plane and requires nothing
more than a re-averaging of the raw data, which were not
available here. More importantly, an increase in temperature
resolution amounts to a more complete scanning across the
H-S plane by the data. The features in g(H,S) should then be
less sensitive to the exclusion of a single temperature from
the inversion. Given the current results, it may be advanta-
geous to measure AA(z,T) at 5-K intervals on a less concen-
trated sample. Reducing the sample concentration would
lead to greater saturation of the sample by the photolysis
laser, minimizing the systematic errors that accompany
fluctuations in laser intensity.

CONCLUSIONS

MEM inversions of low-temperature reaction kinetics yield
smooth distributions of activation enthalpy and entropy. For
CO rebinding to Mb, the MEM reaches a value of x* an
order of magnitude smaller than traditional fits by a gamma
distribution of enthalpies and a single value of entropy. By
treating activation enthalpy and entropy on an equal footing
and by permitting the data to influence the shape of the
distribution, the MEM approach probes the data more
closely than least-squares fitting with parameterized func-
tions. Although the MEM g(H,S) describes MbCO data
much better than traditional analyses, x* remains large
enough to prevent unambiguous determination of the frac-
tion of the signal due to rebinding to A, or the true shape of
the g(H,S) distribution for the individual A substates. Com-
parison of the MEM analyses of simulated and experimental
data reported here indicates just how difficult these ques-
tions are to answer experimentally. Although »* < 1 is
easily achieved by the MEM for simulations, it is more
difficult for actual experiments. Data that are virtually free
from fluctuations in photolysis and other systematic errors
are needed for there to be a definitive characterization of the
shape of g(H,S) from this type of experiment.

The MEM recovery of g(H,S) introduced here should
prove especially valuable for biomolecular reactions char-
acterized by lower activation enthalpies, for which a distri-
bution in S would affect the kinetics more strongly. It would
be instructive to apply the current analysis to low-temper-
ature data of high quality for such systems (e.g., CO rebind-
ing to protoheme or to isolated hemoglobin chains) to assess
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the ranges of activation entropy and to identify multiple
subpopulations that may exist.

I am thankful to Hans Frauenfelder and Kelvin Chu for providing exper-
imental data and to G. Ulrich Nienhaus, V. Adrian Parsegian, and Srikanth
Sastry for constructive comments on the manuscript.
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