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Stretch Activation and Nonlinear Elasticity of Muscle Cross-Bridges

N. Thomas* and R. A. Thornhillt
*School of Physics and Space Research and *School of Biological Sciences, The University of Birmingham,
Birmingham B15 2TT England

ABSTRACT When active insect fibrillar flight muscle is stretched, its ATPase rate increases and it develops "negative
viscosity," which allows it to perform oscillatory work. We use a six-state model for the cross-bridge cycle to show that such
"stretch activation" may arise naturally as a nonlinear property of a cross-bridge interacting with a single attachment site on
a thin filament. Attachment is treated as a thermally activated process in which elastic energy must be supplied to stretch or
compress the cross-bridge spring. We find that stretch activation occurs at filament displacements where, before the power
stroke, the spring is initially in compression rather than in tension. In that case, pulling the filaments relieves the initial
compression and reduces the elastic energy required for attachment. The result is that the attachment rate is enhanced by
stretching. The model also displays the "delayed tension" effect observed in length-step experiments. When the muscle is
stretched suddenly, the power stroke responds very quickly, but there is a time lag before dissociation at the end of the cycle
catches up with the increased attachment rate. This lag is responsible for the delayed tension and hence also for the negative
viscosity.

INTRODUCTION

From a physical point of view, muscle is a nonlinear me-
chanical system. A striking example of this nonlinearity is
found in fibrillar insect flight muscle, which has the remark-
able property that it produces self-sustained oscillations of
an insect's wings in response to asynchronous nervous
impulses (Pringle, 1949). Machin and Pringle (1959) showed
that the flight muscle has a negative loss, or "negative
viscosity," at the wing beat frequency, and that this sustains
the oscillations by coupling to the mechanical resonator
formed by the insect's wings and thorax. However, even in
the presence of the essential ingredients of calcium and
ATP, the resting stiffness of insect flight muscle at zero
tension is very low (White et al., 1977). The muscle be-
comes much stiffer and develops negative viscosity only
when it is held under a bias tension, demonstrating that its
elastic properties are indeed decidedly nonlinear. Further-
more, one finds that the rate of ATP hydrolysis by the flight
muscle also increases in response to the bias tension (Riiegg
and Tregear, 1966; Ruegg and Stumpf, 1969). This phe-
nomenon and the ability to perform oscillatory work when
under tension are generally referred to as "stretch activa-
tion" of the muscle, for it seems that stretching the muscle
in some way activates the cross-bridge cycle.

Various mechanisms have been proposed to account for
the nonlinear phenomenon of stretch activation. Thorson
and White (1969) proposed a modification of the original
Huxley (1957) two-state cross-bridge cycle, suggesting that
the rate of cross-bridge attachment was directly proportional
to the strain in the thick filaments, whereas Julian (1969)
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proposed an alternative modification of Huxley's theory,
incorporating an additional exponential process. The reader
will find an excellent review of this early work in White and
Thorson (1975). Some years later, Thorson and White
(1983) modified their model to include changes in the
detachment rate due to cross-bridge distortion, but they
retained the assumption of strain activation in the thick
filaments. Before this work, Wray (1979), following De-
schevereskii (1971), proposed a quite different structural
model in which stretch activation arose because stretching
insect flight muscle brought more actin binding sites into
register with the cross-bridges. However, this structural
model has been queried by Squire (1992) on the basis of
x-ray diffraction experiments.
The above models all assume that the mechanism of

stretch activation is special to insect flight muscle. How-
ever, Steiger (1977) pointed out that cardiac muscle also
displays stretch activation and that negative viscosity is
even present to some extent in skeletal muscle. Kawai and
Brandt (1980) also observed this effect in several different
muscle preparations. It is possible therefore that stretch
activation may be a more general nonlinear property of
cross-bridges. Indeed, we have shown that even a two-state
cross-bridge model (Schoenberg et al., 1984) exhibits strik-
ing nonlinear elasticity (Thormhill and Thomas, 1993;
Thomas and Thornhill, 1995a). Extending this analysis to a
three-state model similar to that discussed by Herzig (1977)
and Murase et al. (1986), we showed (Thomas and Thorn-
hill, 1995a,b) that stretch activation and negative viscosity
may arise as natural features of the cross-bridge cycle for a
cross-bridge interacting with a single attachment site.
The three-state model incorporates thermally activated

cross-bridge attachment to stretch the cross-bridge spring
(Schoenberg et al., 1984), followed by a power stroke
(Huxley, 1969; Huxley and Simmons, 1971) and subsequent
detachment. This simple model provides a useful insight
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into the possible origin of stretch activation, but inevitably
it omits some important features of the cross-bridge cycle.
We wish to show in this paper how stretch activation may
be produced as a nonlinear property of cross-bridges within
a more realistic six-state model for the cross-bridge cycle,
similar to that discussed by Rayment et al. (1993) and
Cooke (1993). A particular strength of the six-state model is
that it distinguishes between weak- and strong-binding
cross-bridge states before and after the power stroke. Hence,
it takes proper account of the different roles played by
inorganic phosphate, ADP, and ATP in the cross-bridge
cycle. Indeed, the six-state model may be regarded as a
simplification of a scheme originally proposed by A. F.
Huxley (1980). In the following sections we describe the
model and analyze its response to both oscillatory and
stepwise filament displacements. Some of the properties of
this model have also been described very briefly elsewhere
(Thomas and Thornhill, 1994a,b, 1995c,d).

THE SIX-STATE CROSS-BRIDGE CYCLE

Description of the model

Fig. 1 shows a conceptual representation of the six-state
cross-bridge cycle. This particular scheme incorporates fea-
tures of the cross-bridge cycle that have been established by
many different experiments, as is discussed by Rayment et
al. (1993) and Cooke (1993). The cross-bridge C is linked
by an ideal spring of stiffness Ao to the thick filament A, and
it can attach to the thin filament B at a single site P by
stretching the spring by an amount that is determined by the
relative positions of filaments A and B. We denote the six
separate cross-bridge states in this model by numbers 0 to 5.
In state 0, the cross-bridge is detached from the filament and
has just hydrolyzed ATP, but the products of hydrolysis
(ADP and inorganic phosphate Pi) are still bound to the
myosin head. The detached cross-bridge can bind weakly

and reversibly to the thin filament, forming the short-lived
"weak-binding" state 1. Release of inorganic phosphate
produces the "strong-binding" state 2, from which the cross-
bridge is able to execute its power stroke, thereby stretching
the spring by a further amount h to produce state 3. As
shown in Fig. 1, we take the extension of the spring after the
power stroke to be x, and this also serves as a measure of the
filament displacement.
The power stroke in Fig. 1 is followed by release of ADP,

after which the cross-bridge is in the rigor state 4. The rigor
cross-bridge is very strongly bound to the thin filament, but
its binding is weakened when a fresh molecule of ATP
binds to the myosin head. This leaves the actomyosin com-
plex in state 5 at the end of the cycle. Subsequent dissoci-
ation of the actomyosin and rapid hydrolysis of the bound
ATP return the cross-bridge to state 0, from which the cycle
can start again.

Role of the cross-bridge spring

We make the same assumptions here about the role of the
spring in the cross-bridge kinetics as in our treatment of the
three-state cross-bridge model (Thomas and Thornhill,
1995b). The detached cross-bridge in state 0 undergoes
thermal Brownian motion, during which the cross-bridge
spring is either stretched or compressed. Cross-bridge at-
tachment to the weak-binding state 1 can only occur when
the cross-bridge is very close to the attachment site P.
Hence, for attachment to occur the spring -must first be
stretched by an amount x - h, as shown in Fig. 1. Such an
extension of the cross-bridge spring requires an elastic
energy of A4(x - h)2/2. This energy limits the extent of the
Brownian motion of the detached cross-bridge and is ob-
tained as heat from the surroundings. Following Schoenberg
et al. (1984), we therefore regard cross-bridge attachment as
a thermally activated process, and we write the rate constant
for attachment as
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FIGURE 1 Schematic diagram of the six-state cross-bridge model. The
cross-bridge C is linked to a thick filament A by a spring, and it can attach
to the thin filament B at a single site P. The length of the power stroke is
denoted by h, whereas x is the extension of the spring at the end of the

power stroke and serves as a measure of the filament displacement.

k0 (x) = koie Ao(x-h)2/2kT, (1)
where kol is the attachment rate when the filament displace-
ment x = h, k is Boltzmann's constant, and Tis the absolute
temperature of the surrounding fluid. Note that the exten-
sion x - h is negative when x < h. This corresponds to the
case where the attachment site P in Fig. 1 is to the left of the
equilibrium position of the detached cross-bridge, so that
the spring must be compressed rather than stretched for the
cross-bridge to attach at P. We show in the following
sections that such compression of the cross-bridge spring at
the start of the cycle is actually a fundamental factor in
producing stretch activation.

At thermal equilibrium, the cross-bridge undergoes con-

tinual random attachment and detachment. In contrast to Eq.
1, the detachment rate constant klo is assumed to be inde-
pendent of filament displacement, because stretching the
spring does not affect the energy needed to detach the
cross-bridge, provided the link to the thin filament is rigid.
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Strictly speaking, this can only be approximately true. In
practice, there must be some compliance in the link, so the
attachment angle will change slightly when the spring is
under tension, and the elastic energy stored in the link will
promote cross-bridge detachment. However, we shall as-
sume here that the link is much stiffer than the cross-bridge
spring. In that case, the elastic energy stored in the link is
much less than that in the series spring, and we may neglect
it to a first approximation. Essentially the same approxima-
tion has been used by Schoenberg et al. (1984) in discussing
a two-state model for cross-bridges in relaxed muscle.
The transition from state 2 to state 3 represents the

cross-bridge power stroke, which stretches the spring by a
further amount h. The change in elastic energy affects the
rate constants for this step in the cross-bridge cycle, and at
thermal equilibrium we find that

k23(X)1k32(X) = k23e -°lI/lT/k32, (2)

where k23 and k32 are the respective rate constants for
forward and backward tilting of the cross-bridge when the
filament displacement x = 0. Following Huxley and Sim-
mons (1971), we assume that only the forward rate is
actually affected by the elastic energy, in which case

k23(x) = k23e Aoxlk, (3a)

k32(x) = k32- (3b)

In principle, we should also consider kO5(x), the rate
constant for the detached cross-bridge to reattach in state 5,
which is given by

k5(X) k5e-ox2/2kT (4)

where kO5 is the attachment rate when x = 0. We argue
below that this extremely slow process may be neglected in
practice for cross-bridges in active muscle.
As with the detachment rate constant klo from the weak-

binding state, we make the simplifying assumption here that
the rate constant k50 for dissociation at the end of the
cross-bridge cycle is independent of filament displacement.
Note, however, that Nishizaka et al. (1995) have studied the
very slow dissociation from the rigor state 4 for actomyosin
in the absence of ATP. They observed an increase in the
rigor dissociation rate at filament displacements of about 20
nm, when the spring tension was about 10 pN. This situation
may actually occur physiologically during rapid stretches of
muscle (Curtin and Davies, 1973; Flitney and Jones, 1990;
Campbell and Lakie, 1996). However, we show in the
following section that, under nearly isometric conditions,
cross-bridges in active muscle cannot readily tilt over to
exert high rigor tensions, because the power stroke is in-
hibited by the large elastic energy in Eq. 3. We therefore
restrict our analysis in this paper to low cross-bridge ten-
sions, where the detachment rate constants are assumed to
be independent of filament displacement. In that case, Eqs.
1, 3, and 4 serve to couple the cross-bridge kinetics to the
filament displacement x in a very simple way.

Thermodynamic considerations

The cross-bridge cycle is not in thermodynamic equilibrium
under normal physiological conditions, owing to the con-
tinuous hydrolysis of ATP, as indicated in Fig. 1. However,
the rate constants must nonetheless be chosen so that the
cross-bridge model does not in principle violate thermody-
namics (Chen and Brenner, 1993). If the system were in
thermodynamic equilibrium, then according to Einstein's
principle of detailed balance (Reif, 1965), the forward and
backward rates for each step in the cross-bridge cycle would
be equal. Each of these rates is the product of a rate constant
and the appropriate occupation probability for the cross-
bridge state. Hence we find that the rate constants at ther-
modynamic equilibrium must obey the relation

k-I (x)=kl2k23(x)k34k45k50=kO5(x)k54k43k32(x)k21kjO. (5)

The exponential terms in Eqs. 1, 3, and 4 ensure that this
equality can be satisfied for all values of x. Hence the ATP
hydrolysis rate at thermodynamic equilibrium is zero, inde-
pendent of filament displacement x. This is an essential
requirement for any cross-bridge model. Note that Eqs. 1, 3,
and 4 specify the explicit temperature dependence that
arises from the elastic energy, but the rate constants them-
selves may also depend implicitly on temperature, pH, and
ionic strength.
The rate constant k45 for ATP binding on the left-hand

side of Eq. 5 is proportional to [ATP], whereas k43 and k2l
on the right-hand side are proportional to [ADP] and [Pi],
respectively. For 1 mM concentrations of ADP and Pi, the
equilibrium ATP concentration is about 10-8 mM. If the
rate constant for ATP binding is taken to be 4 X 103 MM-1
s- 1 (Finer et al., 1994), this implies an equilibrium value for
k45 of only 4 X 10-5 s- .This very small equilibrium value
for k45 must be balanced by a comparable term on the
right-hand side of Eq. 5. We assume here that it is the
reattachment rate constant kO5 that is very small, which
amounts to saying that the final dissociation and hydrolysis
step in Fig. 1 is essentially irreversible. The equilibrium
value of ko5 is therefore so small that one can set kO5 = 0 in
the kinetics with very little error. In contrast, we treat the
release of phosphate and ADP as reversible processes, be-
cause it has been found that increasing [Pi] or [ADP] has an
appreciable effect on the cross-bridge cycle (White and
Thorson, 1972; Thirlwell et al., 1994; Horiuti et al., 1994;
Thomas and Thornhill, 1995c).

Choice of parameters

There are 14 parameters in the six-state model. For the pur-
poses of illustration we have chosen their values to be
h = 10 nm, A0= 0.2 pN nm-1, k01= 20 s-1, klo = 1000Is,
k= 10000 s , k2 = 5 s-19 k23 = 5000 s-1, k32 = 100 s,
k34 = 100 -i, k43 = 5 s-1, 45 = 500 s-1, k54 = 5 s- k5o
= 500 s1 and k05 = 0. In choosing these values, we were
guided by the following considerations.
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1. In relaxed muscle, where phosphate release is slow
owing to the absence of calcium activation, cross-bridges
readily detach from the weak-binding state. We have taken
the ratio kllkol to be 50, which means that only a small
fraction (about 2%) of cross-bridges in relaxed muscle
would be attached at steady state.

2. Calcium activation catalyzes phosphate release in ac-
tive muscle (Rayment et al., 1993). We have taken k12/k1o =
10, so that a weakly bound cross-bridge in active muscle is
much more likely to release phosphate than to detach from
the thin filament. The transition from the weak-binding state
1 to the strong-binding state 2 therefore occurs very rapidly,
and the lifetime of the weak-binding state 1 in active muscle
is extremely short. It also follows that most cross-bridges
before the power stroke in active muscle will be found in the
strong-binding state.

3. The rate constant k21 for phosphate rebinding has been
chosen to be fairly low here, corresponding to a low con-
centration of free phosphate. Note that detachment from the
strong-binding state 2 is a composite process, in which the
cross-bridge must first rebind phosphate and then detach
from the weak-binding state. The effective detachment rate
constant for this process is therefore k21k1d(k1o + k12). This
corresponds to the very low value of klo = 0.455 s- used
for the detachment rate in the simplified three-state model
(Thomas and Thornhill, 1995b). The six-state model pre-
sents a much clearer picture of the important role that
phosphate plays in the cross-bridge cycle.

4. Forward tilting in the power stroke must be very fast to
account for the rapid tension transients observed in quick-
release experiments similar to those of Huxley and Sim-
mons (1971).

5. Release ofADP is slower than phosphate release (Finer
et al., 1994). State 3 after the power stroke is therefore
longer lived than the weak-binding state 1.

6. Binding of ATP is rapid, provided, of course, that
sufficient ATP is available (Finer et al., 1994).

7. Dissociation of state 5 after binding ATP is also rapid.
Hence, ADP release represents a "bottleneck" that limits the
rate of dissociation after the power stroke. Note, however,
that our simulation of the effect of ADP on the response of
rigorized cross-bridges to the release of caged ATP (Thom-
as and Thornhill, 1995c), as in the experiment of Thirlwell
et al. (1994), required the dissociation of state 5 to be much
slower.
Our choice of parameters leads to behavior that compares

reasonably well with the properties of fibrillar insect flight
muscle (Thomas and Thornhill, 1994a). However, it should
be borne in mind that the actual values of basic quantities
such as the length of the power stroke h and the stiffness of
the cross-bridge spring Ao are the subject of considerable
uncertainty. Recent experiments on actomyosin from differ-
ent groups have yielded very different values for these
parameters (Finer et al., 1994; Ishijima et al., 1994; Molloy
et al., 1995; Nishizaka et al., 1995).

Cross-bridge rate equations

The kinetics of the six-state cross-bridge model are deter-
mined by the following rate equations for the occupation
probabilities of the states in Fig. 1:

dp1/dt = koj(x)po - (k1o + kl2)pI + k2lP2,

dp2/dt = kl2p1 - (k2l + k23(x))p2 + k32P3,

dp3/dt = k23(x)p2 - (k32 + k34)p3 + k43p4,

dp4/dt = k34p3 - (k43 + k45)p4 + k54p5,

dp5/dt = k45p4 - (k50 + k54)p5 + ko5(X)Po,

(6a)

(6b)

(6c)

(6d)

(6e)

wherep0 = 1 - (PI + P2 + p3 + p4 + p). Note that we
have used the fact that the sum of the occupation probabil-
ities for the six states in the cycle must add up to unity, so
that there are only five independent rate equations. These
equations determine both the steady-state properties and the
elastic response of the six-state cross-bridge model, as we
show in the following sections.

STEADY-STATE BEHAVIOR

Steady-state tension

At steady state, the time derivatives in the cross-bridge rate
equations (Eqs. 6a-e) are zero, and we are left with five
simultaneous equations that determine the occupation prob-
abilities. Their algebraic solution for the simple case where
kO5 = 0 is given in Appendix I, whereas Fig. 2 illustrates the
resultant steady-state behavior with the model parameters
chosen as above. The average tension f is shown as the
heavy line in Fig. 2 A. Algebraically, it is given by the
expression

f =f2 +f345 = Ao(x - h)(PI + P2)

+ Ao1x(p3 + p4 + P5),
(7)

where fi2 and f345 are the respective contributions from
attached cross-bridges before and after the power stroke.
These two components are represented by the light line and
the dashed line in Fig. 2 A. Note thatfl2 is negative for x < h
because the cross-bridge spring is then in compression in
states 1 and 2 before the power stroke. Two notable features
of the curve for the average tension f are the broad peak in
the region of x = 20 nm, indicative of a mechanical yield
point (Thomas and Thornhill, 1995a), and the virtual ab-
sence of any tension for x < 0. The asymmetry of the
tension curve for positive and negative filament displace-
ments is a reflection of the ratchet-like behavior of cross-
bridges.

Stretch activation

Fig. 2 B shows the variation of the cross-bridge attachment
probabilities with filament displacement x. We show the
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The increase in the attachment rate with increasing fila-
ment displacement produces an increase in the overall turn-

A345 \2 \ over rate for the cross-bridge cycle. This rate is the same as
M.5 > , 1fl2 \ the dissociation rate k50p5 at the end of the cycle, because

the net rate for each of the steps in Fig. 1 must be equal at
10 20 30 steady state. Furthermore, it must also be equal to the

steady-state rate of ATP hydrolysis, on the assumption that
1 p one ATP molecule is hydrolyzed per cycle. Fig. 2 C ac-
5 P12P cordingly shows the steady-state ATPase rate as a function

L5 4- -P3451 \ of filament displacement. One can see that the ATPase rate
0 P increases for small filament displacements up to a peak of
0 10 20 30 about 10 s-1 at x = 8 nm. Since increasing the filament

x (nm) displacement x corresponds to stretching real muscle, we

may say that the cross-bridge exhibits stretch activation for
10 filament displacements from zero to 8 nm.

Fig. 2 D shows another way to view the stretch activation.
0 Here we have plotted the ATPase rate as a function of
0 10 20 30 tension in the region of stretch activation. The ATPase rate

x (nm) increases roughly linearly with tension, as is in fact ob-
served experimentally (Ruegg and Tregear, 1966; Ruegg

0 and Stumpf, 1969). A similar linear variation is found for
the high-frequency stiffness (which is shown in the follow-

s ing section to be AQp) shown in Fig. 2 E, and this behavior
0 has also been observed experimentally (Herzig, 1977;
0 0.05 0.1 White et al., 1977). Note that, although the ATPase rate

Tension (pN) increases as a function of bias tension, the cross-bridge is
not performing any net mechanical work here, because the

)6 filament displacement is static. This corresponds to isomet-

)3
ric conditions in a real muscle sample. The chemical energy
released in the ATP hydrolysis is therefore dissipated as

n heat.

0 0.05
Tension (pN)

0.1

FIGURE 2 Equilibrium behavior of the six-state model as a function of
filament displacement x. (A) Behavior of the average tensionf (heavy line)
together with the contributions fi2 from states 1 and 2 before the power
stroke (light line) and f345 from states 3, 4, and 5 after the power stroke
(dashed line). (B) Variation of the attachment probabilitiesP12 and p345 and
their sum p. (C) The ATPase rate indicates stretch activation along the
rising part of the tension curve in A up to x = 8 nm. (D and E) Variation
of the ATPase rate and high-frequency stiffness as a function of tension in
the region of stretch activation.

probabilities P12 = PI + P2 andP345 = p3 + p4 + p5 for the
cross-bridge to be attached before and after the power
stroke, together with the total attachment probability p =

P12 + p345. At small values of x, we find that P12 << P345,
because the cross-bridge rapidly releases its inorganic phos-
phate and executes the power stroke. The cross-bridge
spring in this case is strongly compressed before the power
stroke. The attachment probabilities therefore increase with
filament displacement x, because increasing x relieves the
spring compression and hence reduces the elastic energy
required for attachment. This in turn increases the attach-
ment rate constant kol(x) given by Eq. 1.

Trapping in the strong-binding state

Stretch activation only occurs along the lower part of the
tension curve in Fig. 2 A. One can see from Fig. 2 C that the
ATPase rate decreases at higher filament displacements,
whereas the tension continues to rise up to the yield point at
about 20 nm. The continued rise of tension is due to the
increase infl2, representing the contribution from states 1
and 2 before the power stroke. Indeed, Fig. 2 B shows that
the attachment probability P12 also increases to a peak for
large filament displacements. In fact, the cross-bridge tends
to get trapped in the strong-binding state 2 before the power
stroke (Thomas and Thornhill, 1995d).

Trapping in the strong-binding state is due to two factors.
First of all, Eq. 3 implies that the rate constant for the power
stroke decreases for large filament displacement x because
of the increase in the elastic energy required to stretch the
spring. Thus it becomes more and more difficult for a
cross-bridge in state 2 to tilt over into state 3. Second,
we have also assumed that the rate constant k2l for resto-
ration of the weak-binding state 1 by rebinding inorganic
phosphate in state 2 is rather low. Hence the effective rate
constant k2jkl0(kjo + k12) for detachment from the strong-
binding state is also very low. The result is that the cross-
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bridge becomes virtually locked in the strong-binding state
2 for large values of x.
The trapping effect is even more pronounced if we further

decrease the rate constant k2j, which corresponds to de-
creasing the concentration of inorganic phosphate. This may
be related to, the "phosphate starvation" effect observed by
White and Thorson (1972) in fibrillar insect flight muscle.
Increasing k2j, which is equivalent to adding phosphate,
decreases the size of the tension peak, but only has a small
effect in the region of stretch activation.

Comparison with skeletal muscle

We have assumed here that a cross-bridge under nearly
isometric conditions interacts predominantly with a single
actin-binding site. Abbott and Cage (1978) found some
evidence for this in fibrillar insect flight muscle in the form
of a 38.5-nm periodicity in the response to large-amplitude
slow stretches. This periodicity corresponds to the helical
repeat of the thin filament, and a similar periodicity has
been observed more recently in an actomyosin preparation
by Molloy et al. (1995). In contrast, to model skeletal
muscle one needs to take account of attachment sites on
successive actin monomers (Slawnych et al., 1994). Be-
cause the spacing of actin monomers is only 5.46 nm, the
Brownian motion of a detached cross-bridge may allow it to
interact with several nearby attachment sites, even under
isometric conditions.

Dantzig et al. (1992) have studied the effect of phos-
phate release on skeletal rabbit psoas muscle. They found
that increasing [Pi] decreases the isometric tension in a
way similar to that of the decrease in the tension peak in
Fig. 2 A. However, they interpreted this as a reversal of
the power stroke due to phosphate binding, whereas we
would suggest that it may be due to reduced trapping in
the strong-binding state. We would expect such trapping
to occur in skeletal muscle with low [Pi] at any filament
position owing to attachment sites with large x, which are
to the right of P in Fig. 1. Our Monte Carlo simulations
(Thomas and Thornhill, 1995d) show that cross-bridges
may become trapped in the strong-binding state after
attaching to these sites, leaving the spring under a large
tension. Hence, the strongly attached cross-bridges will
make a large contribution to the average isometric ten-
sion exerted by the cross-bridges. Adding phosphate re-
duces the number of strongly bound cross-bridges, and
hence the isometric tension is also reduced. Note, how-
ever, that we would expect relatively little change in the
ATPase rate, which is mainly due to sites with smaller
x-values (in fact, in the region of stretch activation in Fig.
2), where the cross-bridges can tilt over easily.

ELASTICITY

Cross-bridge elastic constant

The elastic response of the six-state cross-bridge model can
be analyzed by introducing a small oscillatory displacement

Ax at angular frequency w into Eqs. 6a-e. Neglecting terms
in Fx2 and making use of the complex representation for the
oscillation, we find that Eq. 6a may be rewritten as

j&J5Pl = -SPI/Tj -ko0(X)(SP2 + jP3 + 6p4 + Sp5)

+ k2ISp2 + pOFx dkoI(x)/dx,
(8)

where SP, is the complex amplitude of the oscillatory com-
ponent in the occupation probability PI We can write down
similar equations for the other probabilities and solve the
resultant simultaneous equations to determine API, etc. The
algebra for this is rather complicated, so we have consigned
the details to Appendix II.
The amplitude of the oscillatory tension is easily shown

by taking differentials of Eq. 7 to be

Ff= Ao(x - h)(Spj + SP2) + A4X(FiP3 + SP4 + Pp5)

+ Ao(pI + P2 + p3 + P4 +p5)5Xx
(9)

Hence the frequency-dependent complex elastic constant of
the cross-bridge is

A(w) = Lim ) (10)

At zero frequency the elastic constant is just the slope dfldx
of the tension curve in Fig. 2 A. One can see that this slope
increases in the region of stretch activation, although it
decreases at higher filament displacements and is in fact
negative in the mechanically unstable region beyond the
yield point.

In the high-frequency limit, the occupation probabilities
cannot respond rapidly enough to the oscillating displace-
ment &x, so we may set SP, = 0, etc. In that case, one can
see from Eq. 9 that the high-frequency elastic constant, or
stiffness, is given by

A(oo) = AXPI +P2 +P3 +p4 +p5)=op. (11)

In other words, the high-frequency stiffness is a direct
measure of the total attachment probability p, a fact that is
often used in muscle experiments. Fig. 2 E shows that the
high-frequency stiffness increases with tension as the at-
tachment probability increases in the region of stretch acti-
vation.

Nyquist plots

The frequency-dependent elastic constant k(w) for x = 4 nm
is represented graphically in Fig. 3 A in the form of a
Nyquist plot, as used, for instance, by Machin and Pringle
(1959), White and Thorson (1975), Kawai and Brandt
(1980), and Murase et al. (1986). The Nyquist trajectory is
a plot of the imaginary part of A(co) against its real part, in
this case from 0 Hz to 1 kHz. The real part represents the
in-phase, or elastic, response of the tension produced by the
oscillatory displacement Fx, whereas the imaginary part
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FIGURE 3 Theoretical and experimental Nyquist plots. (A) Theoretical
Nyquist plot for a single cross-bridge in the six-state model when x = 4
nm. (B) An experimental Nyquist plot for a bundle of glycerinated fibres
from Lethocerus indicus (Thomas and Thornhill, 1994b).

represents the quadrature component of the tension, which
is a measure of the viscous response of the system. One can

see from Fig. 3 A that the cross-bridge has a normal,
positive, viscous response at frequencies above 41 Hz,
reaching a maximum at 140 Hz. In contrast, the viscous
response is negative below 41 Hz, reaching a maximum
negative value at 12 Hz. Hence the cross-bridge displays
negative viscosity below 41 Hz.
By way of comparison, Fig. 3 B shows an experimental

Nyquist plot that we obtained for a bundle of glycerinated
fibers of fibrillar insect flight muscle taken from a giant
water bug Lethocerus indicus (Thomas and Thomhill,
1994b). Similar behavior has been observed by Jewell and
Riiegg (1966). The real muscle exhibits negative viscosity
below 40 Hz, and the general similarity with the theoretical
curve in Fig. 3 A is very striking.

Fibrillar insect flight muscle only displays appreciable
negative viscosity when the muscle is under a steady bias
tension. This aspect of stretch activation is also present in
the theoretical model and is illustrated in Fig. 4, which
shows a series of theoretical Nyquist plots for different
values of the filament displacement x in the range 0 to 8 nm.

There is no negative viscosity, and indeed very little loss at
all, when x = 0 nm, but a small negative-viscosity loop is
just visible for x = 1 nm. This negative-viscosity loop
grows rapidly with tension up to x = 7 nm. Beyond this, the
high-frequency loop becomes more prominent, and, as the
filament displacement is increased further, the high-fre-
quency loss loop grows at the expense of the low-frequency
negative viscosity.

At x = 20 nm (not shown in Fig. 4), there is no negative
viscosity, and the Nyquist plot looks like that for a two-state
system (Thomas and Thornhill, 1995a). The two-state sys-
tem arises here because the cross-bridge spends most of its
time trapped in the strong-binding state but occasionally
manages to detach from the filament via the weak-binding
state. It almost never executes the power stroke, owing to
the large elastic energy in Eq. 3. The strain-induced detach-
ment at high rigor tensions observed by Nishizaka et al.
(1995) may therefore not be important in active muscle. We
find that the zero-frequency stiffness at x = 20 nm is
practically zero, and it becomes negative in the mechani-
cally unstable region beyond the yield point.

Isotonic instability

Fig. 4 also provides an indication of another potential me-
chanical instability that occurs within the region of stretch
activation. One can see that the Nyquist loop encircles the
origin for filament displacements above 4 nm. Under
strictly isometric conditions this would not be significant, as
the origin simply represents a zero in the response function
in Eq. 10. However, the situation is very different if we
consider a cross-bridge held under isotonic conditions (that
is, under a constant load rather than at a constant filament
displacement). In that case, the origin represents a pole (that
is, an infinity) in the mechanical compliance, and one would
expect that an isotonic system whose Nyquist plot encircles
this pole would tend to oscillate spontaneously. Such oscil-
lations are a consequence of the intrinsic mechanical insta-
bility of cross-bridges and do not require the presence of a
mechanical resonator, as in the work of Machin and Pringle
(1959).
One can achieve nearly isotonic conditions by placing a

weak spring in series with a muscle. As we have discussed
briefly elsewhere (Thomas and Thomhill, 1996), this sys-
tem would exhibit spontaneous tension oscillations, even
under isometric conditions provided that 1) the Nyquist plot
for the muscle encircles the origin and 2) the stiffness of the
series spring is less than the value where the Nyquist plot
for the muscle crosses the negative real axis. We have also
shown that a vestige of these oscillations is present in the
transient response of the system, even in the presence of a
stronger series spring, which stabilizes the system. This may
account for the tension oscillations that are sometimes seen
in quick-stretch experiments with glycerinated fibrillar in-
sect flight muscle and cardiac muscle (Steiger, 1977). Such
a situation may not normally occur in intact flight-muscle
preparations, where the presence of parallel elastic compo-
nents tends to stabilize the system by adding to the cross-
bridge stiffness and shifting the Nyquist plots in Fig. 4 to the
right (D. C. S. White, private communication).
An important potential source of series elasticity is the

muscle filaments themselves. Higuchi et al. (1995) have
recently shown that the thin filaments in rabbit skeletal
muscle have a significant compliance, as had previously
been inferred from high-resolution x-ray diffraction (Hux-
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FIGURE 4 Stretch activation for the
six-state model showing Nyquist plots
for filament displacement x varying
from 0 to 8 nm. The negative-viscosity
loop grows with bias tension as x in-
creases from 1 to 5 nm. At larger dis-
placements the high-frequency loop
grows and it progressively moves to
lower frequencies.

Real Part (pN/nm)

ley et al., 1994; Wakabayashi et al., 1994). However, thin-
filament compliance may be less important in fibrillar insect
flight muscle, because this type of muscle has a very narrow

I-band. We have therefore omitted filament compliance
from the calculations in this paper.

Structural relaxation

It is rather surprising that the mechanical response in Fig. 3
B for a fiber bundle should be so similar to that for a single
cross-bridge in Fig. 3 A. The periodicities of the actin and
myosin filaments are, after all, quite different, and so one

would expect the cross-bridges in real muscle to display a

wide range ofx values. We have suggested that the apparent
narrow range of x values may be the result of structural
relaxation (or "creep") in the cross-bridge spring (Luo et al.,
1993; Thomas and Thornhill, 1995b,e). Such structural re-

laxation would cause each cross-bridge spring to increase its

rest length in proportion to the average tension in the spring.
Hence, cross-bridges with large x values would develop
springs with longer rest lengths, reducing considerably the
effective range of x values. This process may play an

important regulatory role in real muscle specimens, because
the cross-bridges in insect flight muscle would all have
similar Nyquist plots and would therefore be better placed
to perform their oscillatory work in unison.

Structural relaxation has been observed in rigorized mus-
cle (Steiger, 1977; Thomas et al., 1993) and in the presence
of ATP analogs (Schoenberg and Eisenberg, 1985). It in-
troduces an additional loss process into the muscle at very
low frequencies. We have suggested that this may be the
origin of the low-frequency loss loop present below 2 Hz in
the experimental Nyquist plot for real muscle in Fig. 3 B
(Thomas and Thornhill, 1995e). However, for simplicity,
we have omitted this additional relaxation process from the
present theoretical analysis.
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A corollary of the above argument is that an additional
series elastic element may also extend the range of muscle
lengths over which stretch activation can occur. When a
muscle is stretched, part of the extension will be taken up by
the series elastic element so that the change in filament
displacement x is reduced. Indeed, Huxley et al. (1994) have
suggested that this may occur in skeletal muscle owing to
the compliance of the thin filaments. Structural relaxation in
the cross-bridge spring would also effectively reduce the
change in x. We have shown that the range of stretch
activation with a 10-nm power stroke is about 8 nm, which
corresponds to a less than 1% change in muscle length.
Series compliance may usefully extend this range.
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RESPONSE TO A LENGTH STEP

Stretch activation and the delayed tension

Many investigators (for instance, Huxley and Simmons,
1971; White and Thorson, 1975; Herzig, 1977) use large
(-5-10 nm) length steps rather than small sinusoidal dis-
placements when measuring the mechanical response of
muscle. It is straightforward to adopt the same approach in
our theoretical model by introducing a step in the filament
displacement x into Eqs. 6a-e. These equations are then
integrated numerically on a computer using a Runge-Kutta
algorithm.

Fig. 5 A illustrates the response of a cross-bridge to a
5-nm-length step applied at t = 10 ms, starting from an
initial filament displacement of zero. There is a small in-
stantaneous rise in the tension as soon as the length step is
applied, indicating that the initial high-frequency elasticity
at x = 0 nm is very small, as one can also infer from Fig. 2
E. The initial rise is followed by a rapid decay, analogous to
the rapid tension transients studied by Huxley and Simmons
(1971). However, the rapid decay in tension is followed by
a much slower tension rise, which is generally referred to as
the "delayed tension." This phase is particularly prominent
in fibrillar insect flight muscle, although it is also found in
other types of muscle (Steiger, 1977). From a physical point
of view, the delayed rise in tension is very curious, as one
generally expects a tension transient to decay rather than to
grow. This contrary behavior is a reflection of the negative
viscosity in the Nyquist plots of Fig. 4, whereas the initial
rapid decay in the tension transient corresponds to the
high-frequency loop, which has a normal positive loss.
Tension transients similar to Fig. 5 A are generally regarded
as a direct demonstration of stretch activation.

Fig. 5 B shows that the delayed tension is accompanied
by a rise in the high-frequency stiffness. The steady rise in
the stiffness in Fig. 5 B is mainly due to the increase in the
attachment probability P345 after the stretch, as in Fig. 2 B.
The delayed tension is therefore associated with a slow
build-up of attached cross-bridges. In fact, one can see that
the stiffness in Fig. 5 B starts to rise immediately after the
length step and slightly leads the tension. This lead of

0la
a)L-
a)

CL

c-
0

CO)
C
Cu._

12

9

6

3

0

-3
6020 40

Time (ims)

FIGURE 5 Response to a sudden 5-nm stretch, illustrating delayed ten-
sion and stretch activation. (A) Time dependence of the tension. The
instantaneous rise at t = 10 ms is followed by a rapid decay and then a slow
delayed rise. (B) How the high-frequency stiffness rises in response to the
stretch. (C) The variation of three of the transition rates in the six-state
model.

stiffness over tension is due to the contribution from states
1 and 2, which respond extremely rapidly to the length step.

Transition rates

A more detailed view of the delayed tension is provided by
looking at the transition rates between the different cross-
bridge states (Thomas and Thornhill, 1995a). Fig. 5 C
shows the variation of three of these rates given by

rol = koj(x)po -klop

r23 = k23(x)p2 -k32P3,

(12a)

(12b)

r5O= k5oP5- (12c)

The rate rol (denoted by the dashed curve in Fig. 5 C) is
the net rate of attachment in the weak-binding state at the
beginning of the cross-bridge cycle. This rate increases
instantaneously in response to the length step, because the
step increases the attachment rate constant kol(x) in Eq. 1.
The increased attachment rate is a direct illustration of the
phenomenon of stretch activation, and it arises because the
5-nm stretch reduces the initial compression in the cross-
bridge spring. The net rate for forward tilting in the power
stroke is r23 (denoted by the heavy curve in Fig. 5 C). The
stretch causes an instantaneous decrease in r23, because
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k23(x) in Eq. 3 is reduced, owing to the increase in elastic
energy required to stretch the spring during the power
stroke. Indeed, one can see from Fig. 5 C that r23 is briefly
negative immediately after the length step, which means
that the stretch inhibits the power stroke to such an extent
that it is initially driven into reverse. However, the reduction
in k23(x) is quickly offset by an increase in the occupation
probability P2 for the strong-binding state, which is a con-
sequence of the increased attachment rate ro1. The result is
that the cross-bridge tilting rate r23 recovers very rapidly
and comes almost into balance with the enhanced attach-
ment rate by about 10 ms after the length step.

In contrast to the tilting rate, the dissociation rate r5o from
state 5 at the end of the cross-bridge cycle responds much
more slowly to the length step. This rate is represented by
the medium-weight curve in Fig. 5 C. There is hardly any
change in r5o for the first few milliseconds after the length
step, because we have assumed that the detachment rate
constant k50 is independent of x. Hence the dissociation rate
only responds to changes in the occupation probability P5.
(Note that we have assumed here that the rate constant k34
for ADP release is smaller than k45 and k50, so in fact the
real bottleneck after the power stroke will be state 3.) The
result is that p5 increases steadily until the dissociation rate
r5o balances the enhanced attachment and tilting rates rol
and r23. All three rates in Fig. 5 C are ultimately equal at
steady state, and the increased turnover rate for the cross-
bridge cycle implies that the ATPase rate is also enhanced
by the stretch, as in Fig. 2 C.

The origin of negative viscosity

As with the simple three-state model (Thomas and Thorn-
hill, 1995a), Fig. 5 also provides us with some insight into
the origin of the negative viscosity that is so important in
fibrillar insect flight muscle. The negative viscosity in Figs.
3 and 4 implies that tension lags the sinusoidal displace-
ment, and this is closely related to the delayed tension
effect. (Strictly speaking, the correspondence is only true in
the limit of very small length steps, but we find in fact that
the small-signal response is broadly similar to the large-
amplitude case in Fig. 5 within the region of stretch activa-
tion.) When flight muscle is stretched suddenly, the cross-
bridge attachment rate and the rate of executing the power
stroke come into balance very quickly, but it takes longer
for dissociation at the end of the cycle to catch up with the
increased rate of throughput. This causes a slow build-up of
the number of cross-bridges exerting tension after the power
stroke, and it is this lag that is responsible both for the
delayed tension and for the negative viscosity.

CONCLUDING REMARKS

The six-state model (Rayment et al., 1993; Cooke, 1993) is
a significant step toward a realistic model for muscle cross-
bridges interacting with a single attachment site under

the start of the cross-bridge cycle are treated as in a two-
state model, and we have assumed that the power stroke is
also thermally activated, as suggested by Huxley and Sim-
mons (1971). The other steps in the cycle involve binding of
ATP and the subsequent release of the products of hydro-
lysis. The six-state model therefore provides a more realistic
picture than the simplified three-state model (Herzig, 1977;
Thomas and Thornhill, 1995a) of the steps through which
ATP hydrolysis drives the cross-bridge cycle. The coupling
of the cross-bridge kinetics to the filament displacement x

via Eqs. 1 and 3 is particularly simple, and the model
displays many of the characteristics of fibrillar insect flight
muscle.

In the first place, we find that the ATP hydrolysis rate
increases with tension for filament displacements up to
about 8 nm. Hence the six-state model exhibits stretch
activation of the ATPase. An important feature of the six-
state model, which is also present in the three-state model,
is that stretch activation occurs when the cross-bridge spring
is in compression rather than tension at the start of the
power stroke. Pulling the filaments relieves the compression
and hence reduces the elastic energy required for attach-
ment. The result is that the attachment rate is enhanced by
stretching. As a consequence, the elasticity of the system
also increases with tension, and we find that the Nyquist
plot exhibits a negative-viscosity loop, which grows

steadily under tension. Thus the stretch-activated ATPase is
accompanied by an increasing ability to perform oscillatory
work, just as in real fibrillar flight muscle.
The response of the system to a sudden stretch demon-

strates another aspect of stretch activation in the form of the
delayed rise in tension after the initial rapid tension tran-
sient. The cross-bridge tilting rate quickly comes into bal-
ance with the enhanced attachment rate at the start of the
cross-bridge cycle, whereas the dissociation rate at the end
of the cycle only builds up slowly. The result of the inter-
play between these different processes is a slow rise in the
occupation probability P345 after the power stroke and a

corresponding slow rise in the delayed tension. The same

balance of factors underlies the negative-viscosity loop.
Hence we have shown that stretch activation may be a

natural consequence of quite simple cross-bridge kinetics.

APPENDIX 1: STEADY-STATE PROBABILITIES

At steady state, the time derivatives in the rate equations, Eqs. 6a-e, are

zero, and we are left with five simultaneous equations that determine the
steady-state occupation probabilities. Their solution is particularly straight-
forward if we make the simplifying approximation kO5 = 0, and it may be
written in the form

p51p4 = k45(k50 + k54),

p4/p3 = k34/(k43 + k45 -k54p5p4),

P3 1P2 = k23(x)/(k32 + k34 -k43p41p3),
P2lP1 = k,2/(k23(X) + k2l -k32P3/PA

(13a)

(13b)

(13c)

(13d)

nearly isometric conditions. Attachment and detachment at
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where

Po

+ p/po(l + P2/PI(I + P3P2( + P4/P3(1 + P5lP4))))
(14)

APPENDIX II: THE COMPLEX ELASTIC
CONSTANT
We present here an outline of the mathematics required to derive an
expression for the frequency-dependent complex elastic constant A(w) of a
cross-bridge, as defined in Eq. 11. Introducing an oscillatory displacement
of amplitude Ax as in Eq. 8, we find that Eqs. 6a-e become

(ijw + l/Tr)8p1 + (ko1(X) -k2 )p2
(15a)

+ koI(x)(8p3 + 6p4 + bP5) = A a,

-k128p1 + (iw + lI/T2)6P2 - k326p3 = B Ax, (15b)

-k23(x)6p2 + (0j + l/T3)8p3 -k436P4
(15c)

= -B Ax,

-k348p3 + (0j + lI/T4)6p4 - k546p5 = 0, (15d)

-k458p4 + (1j + l/5)8p5 = 0, (15e)

where 1/i- = kol(x) + klo + k12, 1/T2 = k2l + k23(x), 1/T3 = k32 + k34,
l/X4 = k43 + k45 1/T5 = k50 + k54, A = podko,(x)/dx, and B = -p2dk23(x)/dx.

The solution of the simultaneous Eqs. 15a-e is of the form

5Pi = E18p, + FS6x, (16)
for i = 2 to 4. The coefficients in this equation are found to be E2 =

kI2/D21, E3 = k23(x)E2/D32, E4 = k34E3/D43, Es = k45E4/Ds4, F2 =

(1 - k32/D32)BID21, F3 = (k23(x)F2 - B)/D32, F4 = k34F3/D43, and F5 =
k45F4/D54, where D54 = 1w + 1/T5, D43 = (i + 1/T4) - k54k45/D54,
D32 = (jw + 1/73) -k43k34/D43, and D21 = (jW + 1/T2) - k32k23(x)/D32.

The amplitude of the oscillatory component SP, in the occupation
probability Pi is therefore given by

A - (ko(x) - k2j)F2- koI(x)(F3 + F4 + F5)
(jW + 1/Tj) + (ko1(x) -k2j)E2 + ko(x)(E3 + E4 + E5)

(17)

Substituting this into Eq. 16 for the other oscillatory components deter-
mines all of the terms on the right-hand side of Eq. 10. Hence the elastic
constant X(w) in Eq. 10 is also determined. It is straightforward to separate
the above expressions into real and imaginary parts for evaluation on a
computer. A copy of the Fortran program used to calculate the Nyquist
plots in Fig. 4 may be obtained on request from the authors.

We are grateful to Dr. Mark Schoenberg for his helpful comments and
encouragement during the preparation of this paper.
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