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ABSTRACT Blochemical and structural data suggest that eletrostatic forces play a crical role in the binding of secretory
phosphlipases A2 to substrate aggregates (micelles, vesices, monolayers, and nmmbranes). This inital binding (adsorpbon)
of the enzyme to the interface is kinetically ditinct from the subsequent binding of substrate to the burled acbve site. Thus, in
the absence of specific acfive-site interactions, eletroatic forces operating at the molecular surface may orient and hold the

enzyme at the interface. We have calcuated the elecrostatic potentals for 10 species of secretory phosphoipases A2 whose
atomic coordinates have been determined by x-ray crystallography. Most of these enzymes show a marked elecostatic sid-
edness that is accentuated to a variable degree by the presence of the essental cofactor calcium ion. This asynmetry suggests
a discrete interfacial binding region on the protein's surface, the location of which is in general agreement with proposals derived
from the results of chemical modification, mutational, and crystallographic experiments.

INTRODUCi ON

Phospholipases A2 (PLA2) specifically hydrolyze the 2-ester
bond of 1,2-diacyl-3-sn-phosphoglycerides. The large family
of small (14 kDa) homologous proteins derived from extra-
cellular sources (e.g., exocrine pancreas, reptile and insect
venoms, and human synovial fluid) possesses a distinct set
of functional features: (1) high specific activities (V., of up
to 5000 IU), (2) alkaline pH optima, (3) full enzymatic ac-
tivity only in the presence of organized lipid-water interfaces
(micelles, monolayers, vesicles, or membranes), and (4) cal-
cium dependence (Waite, 1987; Achari et al., 1987; Dennis,
1983; Verheij et al., 1981).

Secretory PLA2 (sPLA2) hydrolyze phospholipids that
contain one of several naturally occurring polar head groups
(e.g., choline, ethanolamine, inositol, serine, and glycerol).
High affinity binding ofsPIA2 to substrate aggregates occurs
without any significant deformation in the gross organization
of the bilayer or leakage ofvesicle-trapped components (Jam
and Rogers, 1989). Because adsorption of the enzyme to the
substrate interface can be kinetically distinguished from the
binding of a phospholipid molecule to the catalytic site (Fig.
1), it is possible to analyze the qualities of an interface sepa-
rately from the process of substrate selection and the chem-
istry of catalysis (Ghomashchi et al., 1991; Berg et al., 1991;
Jain et al., 1991; Ramirez and Jain, 1991). A crucial role for
electrostatic interactions in interfacial adsorption is likely
given that the affinity of sPLA2 for anionic bilayers is gen-
erally orders of magnitude larger than for zwitterionic bi-
layers regardless of the precise phospholipid composition of

the bilayer (Volwerk et al., 1986; Berg et al., 1991). Anionic
and cationic additives (e.g., detergents) to the substrate in-
terface increase and decrease, respectively, the catalytic ef-
ficiency of several sPIA2 species (Volwerk et al., 1986; Jain
and Jahagirdar, 1985; Apitz-Castro et al., 1982; Jain and
Cordes, 1973). The binding of calcium ion to sPLA2 also
increases the affinity for aggregated substrate in some,
but not all, enzyme species (van den Bergh et al., 1989;
Menashe et al., 1986; Wells, 1972). Indeed, the adsorp-
tion of sPLA2 to highly anionic vesicles can be suffi-
ciently strong to make the enzyme completely processive;
that is, the enzyme remains attached to the vesicle until
virtually all of the phospholipid in the outer leaflet is
hydrolyzed.
The three-dimensional structures of several sPLA2s have

been determined both in the absence (Freemont et al., 1993;
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FIGURE 1 Schematic ilusttion of the scooting mode of catalysis by
sPIA2 (Berg et aL., 1991). In this mechanism, which has substantial kinetic
support (Ghomashchi et aL-, 1991; Berg et aL, 1991; Jain et al, 1991;
Ramirez and Jain, 1991; Jam and Rogers, 1989), adsorption of the enzyme
(E) to the interface (Et) is a process that ociws before, and independent of,
binding of substrate (S) to the active site (E*S) Tlhis permits the facos
affecting adsorption and perssence of sPLA2 at lipid-water interfaces to be
selectively studied. (P = products, I = an inhibitor)
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TABLE 1 dndbcch watistic of the hAsp specis d in this study
PU '2 (>g

Phosphl A2 SoWce Pi Crysalli*io cOIkkNs gioFis
1. Porcine paiceas I 7.4 Moneric pII 75/(+) Ca?+Akganic -15/+16
2. Bovine pams - zymogn I Mcxneric pH1 7.5,(+) Ca2+/Oranic -15/+15
3. Bovine patseas - enzyme I 92 M- meuic pH 7-5,+) Ca2+/Orgmic -14/+14
4. Naja nja atr venom I 5.2 Munneric pH1 75/(+) Ca2+Oganic -1/+10
5. Agtrrdom p oms pscnornz vemSm II 6-5 Dinmeric pH7.5/(-) C2/Opic -17/+16

pH1 7-54+) Ca2iOraaic
6. Agkido ivp 9.5 M ic pH 75/(-) iOrpDic -13/+21
7. Croohasara vem II 5.5 Dimeric pH1 7-5/(-) Ca2+A/H bSah -18/+12
& CroahJs adomamtsve II Dimeric pH 7-5/(-) Ca12+lgh Salt -16l+14
9. Hum no. IWri (symovial flid) II >103 Monomeric pH1 7-5t+) Ca?+/Hgh Salt - 8/+27

10. Apis mi*u v >105 ric pH1 7-S+) Ca2+/Hlg Salt -161+25

Oass distintions (I or U) are m based upon the of disuifide bonis within the protem (Randolph et aL, 1980w The bee vem PIA2 is

evoluionarily divergent but retains many of the cm features of Cass /II enzyms (Scott et aL, 1990b) The refined dinates of hese PL4Awere derived
fom crystals obined ma variety of solvent systems; however, it is unlikely tha thse dIstn ono r than the presence or absence of calcium ion,
are impota to the "Charged residues" refers to a simple tabulation of the potential sources of negative charge [Asp, GIul ani the
potental sorces of positive charge [His, Arg Lys].

TABLE 2 Amno acid seqm enm for the P l A2 incdd inh fs study
10 15

1 I K C A I P G
* * * * K * * S
* * Q * T V * -
L * t KI A K -
L * * K N T G -

L * M K I A G -

L * M{ X V A X -

* * * L T T G -

20
S H P L 11SHLN

*3Z* * L
* R S W W
R S G M F
K S G M L
R S G * L
R S G * L
K Z A A L

25
D F N N Y

* * A D *
W Y S A *
W Y S A *
W Y S A *
W Y S A *
S Y G F *

*29 * a

G C Y C G L G G

* * * * * R * *

* * * * * W * *

* * * * * W* *

* * * * *WN* *

* * * * * W* *

* * H * * V * *

35 40
G T P V D F L D R
* * * * * D* * *

* * * * * D* * *

* R * Q * A T * *
* R * K * A T * *
* L * Q * A T * *
* R * Q * A T * *
* K * K * * * * *

45
CC s
**Q

**Q

*F
*F
*F

o a 50

T H D N C

V * * * *

V * * C *

V * * C *

V * * C *

V * * C *

0 55 60 65
YRDAKNLDSCKFLVDNPY
* K Q * * K * D * * * V * * * * * *

*N*ZK I S G * - - - - - W **
* G K V T - - G - * - - - - - D * K
* G KV T - - G - * - - - - - * * K
* G K * T - - * - * - - - - - * * K

* G K * T - - N - * - - - - - * * Kr
* * * * * ** .-- -* * *

85 90
NSKNNAC3AF
S * 3 * * * * * * *

K G G * * * * A * A
G G - * * P * KKK
G G - T * P * K K Q
G G - D D P * G T Q
G G - D D P * G T Q
* * - D D * * D * *

95 D7100
I C 3 C D R 3

V * D * ** L
* * 3 * * * A
* * Z * * * A
* * Z * *KKA
* * Z * *K A

105 110
C F S Ir A --P Y

* * V _ _ * *

* * A G * - - * *

* *RDNKVT*
* *RD N L K T*
* *RD I P S*
* *RD N I P S*
* * * * * L D * *

1 5 *9
I I Y P G T L W C
35 40
D M C P D V M S A
70 75
C L K N S A D T I
105 110
C G Z R T Z G R C

115 120
NKUHKNLD

* DNY* 3I
DNK-YWRF
D S ICK T Y W R
D S 1K T N L S
D N K T W L S
R N K * * * *

0 15

G H G N 1K S S G
45 50

G Z S K H G L T
80 85

115 120
L H Y T V D K S

T K

PLP
YP
P P
P P
* A

A

125
- KY C
- * *

-A R *
- Q *

-* D *

- * D *
- S * *

130

K U s3z P C

R * * p * * *

R Q * P * * *

Q * D * * * *

20 25 29 0

PNFLGRFKHTDACCRTH
55 60 * 65

N T A S H T R L S C D C D D K F Y D
u 90 95 100
YFNLIDTKCYKLZHPVTG

125 130 134
KP K V Y Q W F D L RK Y

Asterisks are used to identify residues that are homologous to the prototype sequence (porcine pancreatic) The numbering system used is based upon the
homologous core developed by Renetsder et aL, 1985. Lter of resius bearing a potental positive charge (His, Arg, and Lys) or negative charge (Asp,
Glu) are iaic and bldfce, respectively. Blai rectangles appear above residues involved in biing the primary calcium ion open rectanges appear above
conserved residues of the catalytic network, and His48 appears with an open circle. The refeences for tese ques are porcine pan c (Puijk et aL,
1977). bovine pancreatic (Fleer et aL, 1978). Naja naja atra (Tsai et aL, 1981),Ap-u (App) D49 monomer (Maragnoe and H ei_o,
1993) and D49 dime (HEinrikso 1991). C. atrox (Ranolph and Heinrln, 1982), C (Heikson et aL, 1977), and human nonp -atic
(Selhamer et al, 1989) The sequence of the App-D49 monomer dife at position 78 (Asp-aGlu) from the cited reference based on the intepretation of
the high rsolution (15 A) crystal strKlue. The bee-venom PLA2 sequence (Kuchkr et aL, 1989) is not aligned because of its low overal homology.

Porcine pam
Bovine pam
Najan.oa atra
Apdiner
App4D49
C
c
Hun noD

1
A L W Q

N * y *

D *Pi *
Jl * F *
S * V *

S * V *

N * V N

5
F R S
* N G
* KN
* ZT
* UKx
* U T
* U T
*H R

Porcine pam
Bovine pmanra
Naja neja atra

C a&-a

Humnas noupnc

S

Q
Q
H
H
R

Porcine pam
Bovie pam
Naja n.ja a"-
App,dmer
App-D49

C a&s
Human nonpac

75
SYS

T**

T* *
T* *
T* *

70
T Z S Y
* 3 3 *
F Kr T *
L D S *
M D I *
* V I *

* V I *

* GK *

c s

V

* W

80
N T B
* N *
Q G T
* G D
* G N
* G *

* G *

Q * N

I T C

L * *
V V *
* V *

* I *

* V *

A A I

Porne pam
Bovine pamce
Naj. naja an-a

App-D49
C ano
C _
Human o r

Aps nerv

494 Vduffie 67 August 1994



EecMrstatc of Secrety Phospholpse A2

Figure 2(a)

Figure 2(b)

FIGURE 2 (a) Sla oir the m ed sil_g-O degrees The cx of the C, tr Ff this tyia (JassL IA2 (hPm
mmpanereatic secretoy) carresponds to the zero degree views sed in su figes displaying the caculated eletostatic poten The cakium ion
c t (yelow phere), the se analog (coled refd the side chains of the hyL dannel (coled gree) [Lu-2, Phe-5, His6, e-9,

Ala-19, Val-31, Cys,45, Tyr-52, Lys-69, amd Phe-106],ad l surfac residues also considered to be impornt o intefacial bixding [Val-3, Glu-17,
LJ-1), amd Phe-24] are shown. (b) Steropair of the proipoed interil fc-"9 degrees." The molecule shown in a has been roated 90°

ter-dockwise (as viewed fm above) awmud a vertic axis that lies in the plane of the figure.

Westerlund et al., 1992; Wery et al., 1991; Scott et al., 1990a;
Brunie et aL, 1985; Dijsta et al., 1983, 1982, 1981) and
presence of transition-state (Scott et al., 1992; White et al.,
1991; Scott et al., 1991b) and substrate analogs (Thunnissen
et al., 1990). These structures, along with data from muta-
tional and chemical modification stuie (Yang and Chang,
1989, van Oort et aL, 1985; Yoshida et aL, 1988; de Haas
et al., 1987; Dijkstra et al., 1981b), have implicated a

discrete surface of the protein in the process of interfacial
adsorption. This surface consists of a ring of positively
charged side chains surrounding a hydrophobic channel
that leads to the centrally located active site (Scott et al.,
1990a). The binding, orientation, and persistence of
sPLA2 at the lipid-water interface is thought to be
governed by the electrostatic and hydrophobic forces op-
erative at this surface.
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(3a) C. aoxsPIA2 (dimer):
alpha-carbon rce - (inear numbering system).

3c) C. a& dimer (ceated by using the coord-
iates for only one of the two molecules of the
dimer) - 90 degrees - 2.0 kT - 0 calcium ions.

(3b) C. atrox sPIA2 (dimer)
0 degrees - 0.5 kIT - 0 calcium ions.

(3d) C a s sPLA2 (dimer)
0 degrees - 0.5 kT -0 calcium ions.

FIGURE 3 Elecostatic potentials alculated from the coordntes of aytallin phospholipases Ai category L Figures depict the ekcical po Ias
of one or both stndard orentations (0O/90) An electstatic potential of 1 kT/e (where k is the Boltnann constant and T the is Kelvin tempature) is
equal to 25 mV at 300 Kelvin. TIhe contour levels of the maps were chosen to provide the maximum pictorial informton possible about the respecive
electrfltic potential magnitdes and orientations A contour klvd of 1 kTmeantdtt an atom of one unit of positive charge, s g at a point on the contour
grid, would have an interaction energ of +lkT (approximaely +06 kCal/mole at 300 Kelvin) with the lecrostatic potetial at that poinL Blu is used
to indicate positive tials, and red is used to indicate negative potentials. In three cases (theA ppisd s and C atrar dimes, and the bee-venom
sPLA,). additional skeletal traces are provided to clarify the molecular orentati a. C. atr sPLA2(dimer): alpta-cabbon trace-Qiear numbering system)
b. C atrm sPLA2 (dimer): 0 degrees-05 kT-0 calcim ions. c. C a rsPLA2 (monomer created by only one of the two moecles of the dimer).
90 degrees-qO kT-O calcium ions. & C s sPiA2 (dmr): 0 degrees-O5 kT-0 cakium ions c Ap.pgsiom sPA2 (dinwrr. alpha-carbon
trn-lit numbering system) LA p.pcsciwoussPA2(dimer). 0 degrees-1.0 kT-O calium ks. g.A p. psdwrv sPLA2(moated by

only oe of the two molmls of the dimer) 0 degrees-1.0 kT- 0 calium ions. h Apis ueflifra sPLAj: alp cbn trae-Q r nmbering
system) i Apis neiifera sPLA2 (the glycosyl group of AsnL3 was not imnudcd in te elecrostatics calculations) 0 degrecs-025 kT-1 calium ion.
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Electostafie of Secrety Phospholss A24

(3e)A p. piscivonrs dimer: alpha-cubon trace-
(inear-numbering system).

(3t)A. p. pisciwns dimer
0 degrees- 1.0 kT - 0 calcium ions.

(3g) A. p. piscwonuw dimer (created by the coord-
inates for only one of the two subunits of the dimer)
0 degrems - 1.0 kT - 0 calcium ions.

FIGURE 3-couumwd

In this paper, we examined the surface electrstatic po-
tentials of a diverse group of sPIA2 that includes members
of both Class I and Class II sPLA2, the pancreatic pro-
phospholipase (Class I), as well as the evolutionarily distant
bee-venom enzyme. The electrstatic potentials calculate
for these enzymes demonstrate a marked molecular sided-
ness, with the proposed interfacial binding surface generally
lying in or adjacent to the most positively charged regions.
This is consistent with the enhanced affinity and increased
processivity exhibited by sPIA2 on more negatively chaged
subsate aggregates. The essential, but weakly bound (Kd >
10-4 M), calcium ion accentuates the protein's electrStatic

sidedness and might play a particularly important func-
tional role in those enzymes whose apo- state is only
marginally asymmetric. In contrast, enzyme dimerization
(Myatt et al., 1991) as seen in the sPLA2 species from
Crotalus and Agkistridon venoms confers no obvious
electrostatic advantages.

MATERIALS AND METHODS
Coordinats for the sPLA2s were obtainedfm either the Brookhaven Pro-
tein Data Bank or from recntly completed studies at Yale. Secretory
PLA2 species were chosen for inclusion based on the availability ofwell
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(3h) Apis mellifera sPLA2: alpha-carbon tce -

(linear numbering system).
(3i) Apis mellifera sPLA2 (the glycosyl

group of Asn13 was not included in the
clecrostic calculations) - 0 degrees -

0.25 kT -1 calcium ion.
FIGURE 3-continued

refined crystallographic coordinates, a suitable degree of biochemical
and kinetic characterization, and the presence of unique structural!
functional features (e.g., dimerization). The relevant biophysical prop-
erties and amino acid sequences are provided in Tables 1 and 2,
respectively.

Electrostatic cakulations were carried out using the DelPhi computer
program (Nichols and Honig, 1991; Klapper et al, 1986) and displayed
using INSIGHT II (Biosym Technologies Inc., San Diego, CA). No cor-
rections were made for the overestimation of electostatic charge potentials
by the linear Poisson-Boltzmann equation in the few cases where the po-
tentials were very high. An ionic strength of 145 mM was chosen for the
solvent reion, and the temperatue was set to 298 Kfor all cakulations. The
dielectric constant was set to 4 for the protein interior. The cystallographi-
cally observed water molecules were not treated explicitly but were instead
inclided as part of the solvent region that was assigned a dielectic constant
of 80 (Gilson et aL, 1987; Sharp and Honig, 1990). In most cases, pK,
calculations were made for individual side chains and incorporated into the
determination of electrcal potentials. The effects of these alculatio on
the global results were, however, minor.

RESULTS

The high overall structural homology of these sPLA2s per-
mitted the choice of a single molecular orientation as the
standard for comparison of electrostatic potential maps
(Fig. 2). The view chosen as the standard ("0 degrees") is
similar to that depicted in recent papers descnbing the struc-
tures of several sPLA2 transition-state analog complexes
(Scott et al., 1992, 1991a, b; White et al., 1991). The ad-
vantage of this view is that it looks directly down the hy-
drophobic channel while remaining perpendicular to the
plane of the proposed interfacial binding surface. The cal-
culated electrostatic potential maps (Figs. 3-5) are oriented
according to this system. An additional view ("90 degrees"
of rotation around the in-page vertical axis, Fig. 2 b) is pro-
vided where the standard view failed to illustrate electrical
potential differences adequately between the front and back
of the molecule.

DISCUSSION

The 10 sPIA2 included in this study can be divided into three
categories based on their calcldated electrstatic potentials.
Members of the first egory, which includes the enzymes
from the venoms of C. atrox (Westem diamondback rattle-
snake), C. adamanteus (Eastern diamondback rattlesnake),
A. p. piscivorus (American cottonmouth water moccasin)-
dimeric D49, and Apis meUifera (the honey bee), show dis-
tinct molecular sidedness in their distnrbution of positive and
negative electrical potenials, but the scope and magnitude of
the positive potential is relatively small (Fig. 3). The C. atrox
sPLA2 is the most striking in this regard, with the intact dimer
having only a small patch of positive potential (Fig. 3 b).
Calculation of the electrical potential for a theoretical mono-
mer (only the cture of the crystallized dimer is known),
however, reveals that the dimer interface quenches part ofthe
charge distnrbution intrinsic to the dissociated subunits (Fig.
3 c). The magnitude and location of this quenched charge
suggests that on the surface of a negatively charged substrate
aggregate, the monomeric form is preferentially stabilized.
An analogous prediction can be made for the dimeric enzyme
fromA. p. piscivorus venom where most of the positive elec-
trstatic potential also resides at the shielded dimer interface
(Fig. 3, f and g). The oligomerization state of the active
enzyme at the interface remains controversial despite recent
evidence supporting the monomer (Jain et al., 1991; Ferreira
et al., 1993).
The second category of electrostatic distnbutions includes

the enzymes from the venom ofNaja naja atra (Taiwanese
cobra) and from bovine pancreas (Fig. 4). In both of these
sPLA2, the most prominent positive electrostatic potential
envelops a surface that is adjacent, but 45-90O away from the
proposed interfacial binding surface (Scott et al., 1990a). The
electostatic asymmetry of this category of enzymes is quite
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EIcMrsaics of Secrekory Phoshope A29

(4a) Naja naja a"a SPA2
O degecs. 1.0 kT - 2 calcium ions.

(4b)Nap naja aima aL.A2
90dege- 1.0 kT - 2calciun ions.

(4c) Bovie p_mn c SPLA2 (4d) Bovine p e sPLA2
Odepea 0- kT - 1caiumion. 90 degrees - 0.5 kT -1 calcium ion.

FIGURE 4 Eectstatic poials lae d f the coordinate ofa lline Aj category IL Figus depict the eleical potls
of one or both stadard orientato (0o)a). An elekrstatic potentl of 1 kTIe (where k is theB constant and T is the Kelvine ature) is
equal to 25 mV at 300 Kelvin. The contour levels of the maps were chosen to provide the maximal pictoril inhfomtion possible about therespective
ekerostatic potential magnitudes andor A contou level of 1 kT means dtt an atom of one unit of posiftive charge, sitting at a point on the contour
grid, would have an in ion ergy of +1 kT ( ately +0.6 kCal/moe at 300 Kelvin) with the eletrostatic potential at that point Blue is used
to indicate positive poIs, and red is used to indicate negative potentials. a. Naja naja ara sPLA.: 0 degrees-1.0 kT-2 calcum io. b.Na ja
atra sPLAi 90 degrees-1.0 kT-2 calcium ions c. Bovine pancreatic sPLAi 0 degrees-5 kT-1 calcium ion. d. Bovine pancratic sPLA: 90
degrees-qO kT-1 acium ion. e. Bovine pancreatic sPLA2 (trans-aminated): 0 degrees-05 kT-1 cakium iof Bovie pro-enzyme (the posiions
ofthe seven N-terminal resie that are disrdered in the crystal stucture [G1u-Ala-Gly-L&u-Asn-Ser-ArgJ were modeled based on probable Stere m
and packing considerations within the crystallorpic unit cff):0 degres-03 kT-1 aldcium io
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(4e) Bovine pancreatic rns-amnainted SPLA2 (4f) Bovine pro-enzyme (the positions of the
0 degrees - 0.5 kT - 1 calcium ion. seven N-terminal residues which are

disordered in the crystal structure
[Glu-Ala-Gly-Leu-Asn-Ser-Arg] were
modelled based on probable stereo-
chemistry and packing considerations
within the crystallographic unit cell) 0
degrees - 0.5 kT - 1 calcium ion.

FIGURE 4-awd

distinctive, with obvious implicafions for the orientation of
the molecule in its interactions with negatively chaged sub-
strate agg The bovine pancreatic sPIA2 is a partia-
larly ing case because the availability of the refined
coordinates for the transamidated enzyme and the pro-
enzyme permit the impact ofan intact amino-terminus on the
global electotatics to be evaluated (Fig. 4 c-). Modifica-
tions ofthe amino-terminus appear to only nmoestly alter the
global electstatic potentials. This argues againt a simple
elecstatic epanation r the failure of the tanamidated
and pro-enzymes to hydrolyze organized ate aggre-
gates effidently (Jain et al., 1986).
The electrstatic potentials of the third category of en-

zymes grossly resemble those of the second category, but the
maximum development of the positive potential shifts to en-
velop the proposed interfacial adsorption surface (Fig. 5).
The three enzymes in this group, the D49 monomer from A.
p. piscivorus venom, the human nonpancreatic secretory
sPIA2 (synovial fluid), and the porcine pancreatic enzyme,
preserve a striking molecular asymmetry despite the pre-
dominance of positive electrical potential. In the case of the
synovial sPLA2, demonstration of this asymmetry requires
the electrostatic maps to be displayed at very high contour
levels (14 kT). The influence of the binding of the essential
cofactor calcium ion on global charge distnbutions is par-
ticularly evident in the case of the porine sPLA2. The por-
cine enzyme has been shown by crystallography and by so-

hltion kinetics to bind two calcium ions per molecule. One
ofthese ionspta as the essential cofator in catalysis,
the second alcium ion appears to be citical for the binding
ofthe enzyme to aggregated substrate at alkalinepH (van den
Bergh, 1989). From Fig. 5, e andfit is obvious that calcium
ion markedly enhance the porcine enzyme's positive elec-
t atic potentials.A simila effect ofthe bining ofcalcium
ion would be expected on the electrostatic potential distri-
butions of other sPLA2, especiay for those enzymes with
acidic isoelectric points (e.g., C. atrox).

In general, the electrostatic potentials calalated for these
sPLA2 show clear molecular sidedness with the maximum
positive potential adjacent to or incorporating the face of the
protein that contains the opening to the hydrophobic channel.
These results correlate well with biochemical and genetic
evidence for a specific surface on the enzyme that interacts
with lipid aggregates (e.g., vesicles, monolayers, and mem-
branes) (Jain and Vaz, 1987; Jain et aL., 1986; Mao et al.,
1986; Pieterson et al., 1974). The efficiency of this surface
in promoting binding of the enzyme to the lipid-water in-
terface is critically dependent on its charge composition
(Ghomashchi et al., 1991; Berg et al., 1991; Jain et al., 1991;
Ramirez and Jain, 1991; Thuren et al., 1987; de Haas et al.,
1987, Volwerk et al., 1986). Spectroscopic experiments with
the porcine pancreatic sPIA2 have directly correlated the
degree of interfacial adsorption with the mole fraction of the
anionic component in the lipid aggregate. Highly anionic
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(5a) A. pb pwcoruJs u49 monomer srLA
90 degroe -0.5 lT - 0 calcium ions.

(Sc) Hman nopancreaic (syovial) sPLA2
0 degrees - 4.0 kT- 2 calcium ions.

) A. p. p&scwrius Lvy monomer srL.
90 degree. - 0.5 kT - 1 calcium ion.

(5d) Human non-pancreatic (synovial) sPLA2
90 degrees - 14.0 kT -2 calcium ions.

FIGURE 5 Electrostatic poteni c lated from the coordites of aystline p A2: catgy IL Fgmes depict the e cral po
of one or both stadard orientation (0f)90). An electrsatic potential of 1 kT/e (where k is the Boltzmann constant and T is the Kelvin temperat) is
equal to 25 mV at 300 Kelvin. The contour levels of the maps were chosen to provide the maximal pictorial informaton possble about the respective
elctostatic potential magnit and orientaions, A contour level of 1 kT means that an atom ofone unit of positive charge, sittig at a point on the contour
grid, woukd have an interaion ergy of +1 kT(o ately +0.6 kCal/mole at 300 Kelvin) with the elctostatic potential at that point No ection
was made for the over-estimation of electrostatic charge potentials by the linear Poisson-Boltzmann equation for c and d. Blue is used to indicate
positive potentials, and red is used to indicate negative potentials. a. A. p. piscivorus sPLA2 (49 monomer): 90 degrees-0.5 kT- calcium ions.
b. A. p. piscivorus sPLA2 (1)49 monomer): 90 degrees-0.5 kT-1 calcium ion. c. Human nonpancreatic (synovial) sPLAj- 0 degrees-4.0 kT-2
calcium ions. d. Human nonpancreatic (synovial) sPLA2: 90 degrees-14.0 kT-2 calcium ions. e. Porcine pancreatic sPLA2: 90 degrees-1.0kT-0
calcium ions. f. Porcine pancreatic sPLA.: 90 degrees-1.0 kT-2 calcium ions.
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(5e) Porcine pancreatic PLA2 (5f) Porcine panceatic sPIA2
90 degrees - 1.0 kTO0 calcium ions. 90 degrees - 1.0 kT - 2 calcium ions.

FIGURE 5-continued

mixed vesicles permit the efficient catalysis of substrate with
little discrimination among phospholipid headgroups. The
high efficiency of this "scooting mode" form of catalysis
results, at least in part, from the persistence of the enzyme
at the interface (Kd < 10-3 M).

Mutational and chemical modification studies with the bo-
vine pancreatic sPIA2 suggested that the interfacial binding
domain was a discrete protein face whose center lay at the
opening to the hydrophobic channel (Fig. 2). Substitution of
positively charged residues (e.g., arginine) for uncharged
residues contnbuting to this surface (e.g., Asn-6) resulted in
a two- to threefold higher value of Kc, on substrate aggre-
gates (de Haas et al., 1987). Removal of sources of positive
charge in this region either by specific mutations or by
chemical modification of the protein lead to dramatic re-
ductions in K.. Spectroscopic studies have correlated
adsorption of the enzyme to the interface with the des-
olvation of uncharged residues forming the opening to the
hydrophobic channel (Jain and Maliwal, 1993). The re-
cently completed crystal structures of three sPILA2
transition-state analog complexes (Naja naja atra, White
et al., 1991; bee-venom, Scott et al., 1991b; and human
nonpancreatic, Scott et al., 1992) and a substrate-based
inhibitor complex (bovine pancreatic, Thunnissen et al.,
1990) also clearly implicate this surface of the protein in
interfacial adsorption.

Although the results descnibed here are compatible with
delocalized molecular electrostatics playing a key role in the
orientation and persistence of sPIA2 at water-lipid inter-
faces, there is also evidence for a strong hydrophobic effect
(Tomasselli et al., 1989; Van der Weile et al., 1988; Cho
et al., 1988; Drainas and Lawrence, 1978). Lugtigheid et al.
(1993) observed a 60-fold increase in the apparent K. of the
porcine sPLA2 for micellar substrate after acylation of

Lys-56. Specific acylation of the bee-venom sPLA2 im-
proved the enzyme's K>, by up to two orders of magnitude
(Drainas and Lawrence, 1978). Presumably, the covalent at-
tachment ofhydrophobic groups activates sPIA2 in a manner
analogous to the addition of positive charge to the interfacial
binding surface; i.e., increasing the affinity and persistence
of the enzyme at the interface.

Clearly, the degree to which electstatic forces affect in-
terfacial catalysis can only be approximated by the tech-
niques used here. Although an adquate dscription can be
made of the enzyme's electrstatic field potentials, descrb-
ing the environment at the surface of the bilayer in similar
terms is at best difficult (Cevc, 1990). The 10 crystalline
enzymes used in this study reveal a common, electrostati-
cally favorable surface for potential interaction with sub-
strate aggregates. Small variations in the location of this sur-
face, such as seen in the Category II enzymes, suggest some
flexibility in the initial adsorption that is presumably either
optimized for catalysis by other forces or is inconsequential.
Additional mutational and chemical modification studies
should prove helpful in determining the precise boundaries
and chemistry of the interfacial adsorption surface.
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