766 Biophysical Joumnal Volume 67 August 1994 766781

The Force Exerted by a Single Kinesin Molecule Against a Viscous Load

Alan J. Hunt,* Frederick Gittes,* and Jonathon Howard*
*Department of Physiology and Biophysics, and *Center for Bioengineering, University of Washington, Seattle, Washington 98195 USA

ABSTRACT Kinesin is a motor protein that uses the energy derived from the hydrolysis of ATP to power the transport of
organelles along microtubules. To probe the mechanism of this chemical-to-mechanical energy transduction reaction, the
movement of microtubules across glass surfaces coated with kinesin was perturbed by raising the viscosity of the buffer solution.
When the viscosity of the solution used in the low density motility assay was increased approximately 100-foid through addition
of polysaccharides and polypeptides, the longer microtubules, which experienced a larger drag force from the fiuid, moved more
slowly than the shorter ones. The speed of movement of a microtubule depended linearly on the drag force loading the motor.
At the lowest kinesin density, where ditution experiments indicated that the movement was caused by a single kinesin molecule,
extrapolation of the linear relationship yielded a maximum time-averaged drag force of 4.2 + 0.5 pN per motor (mean *+
experimental SE). The magnitude of the force argues against one type of “ratchet” model in which the motor is hypothesized
to rectify the diffusion of the microtubule; at high viscosity, diffusion is too slow to account for the observed speeds. On the other
hand, our data are consistent with models in which force is a consequence of strain developed in an elastic element within the
motor; these models include a different “ratchet™ model (of the type proposed by A. F. Huxley in 1957) as well as “power-stroke”

models.

INTRODUCTION

Cellular motility is mediated by motor proteins, such as myo-
sin, dynein, and kinesin, which are enzymes that convert the
chemical energy derived from the hydrolysis of the gamma
phosphate bond of ATP into mechanical work. Myosin
drives muscle contraction by tugging on actin filaments, dy-
nein propels the beating of sperm by shearing contiguous
microtubules, and kinesin transports organelles by carrying
them along microtubules.

The standard model for chemomechanical transduction
postulates a cyclic reaction between the motor and the fila-
ment (Huxley, 1969; Lymn and Taylor, 1971). After binding
to the filament, the motor is thought to undergo a structural
change, the power stroke, that produces an increment of
movement. The protein then releases the filament before re-
binding to a different site on the filament, thereby initiating
another cycle. Support for this model derives mainly from
biochemical studies performed in solution, which show that
the ATP hydrolysis reaction is a sequential one in which the
motor has high affinity for the nucleotide or for the filament,
but not for both. The motor must bind to the filament to
catalyze product release (for kinesin, see Hackney, 1988)
and, after product release, the motor must bind ATP to cata-
lyze filament release (for kinesin, see Brady, 1985; Vale
et al., 1985a).

This model has been difficult to test because the molecular
events underlying the motor reaction—the distance moved
per ATP hydrolyzed, the force generated by a single motor
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molecule, and the transition rates between the various me-
chanical and biochemical states—remain obscure. There are
two main reasons for this. First, the sheer number of motor
molecules in active cells like muscle fibers and sperm has
made it difficult to extrapolate the results of mechanical ex-
periments on whole cells down to the single molecule level.
Second, the interpretation of biochemical studies of the ATP
hydrolysis mechanism is restricted because in solution the
motors are unloaded, and, at least in muscle, load also has
a dramatic effect on the reaction (Fenn, 1924; Hill, 1938).
The development of in vitro motility assays, which permit the
study of metility by a small number of purified motor mol-
ecules (Sheetz and Spudich, 1983; Allen et al., 1985; Vale
et al., 1985b; Kron and Spudich, 1986), promises to circum-
vent these two problems.

We have chosen kinesin as a model motor for study be-
cause single molecules of kinesin are sufficient to generate
motility in vitro (Howard et al., 1989; Block et al., 1990).
Studying single motors is important because even in vitro,
motors acting on the same filament can interact (for myosin,
see Warshaw et al., 1990) and thereby obscure the underlying
events. Unlike myosin and flagellar dynein, which operate in
large arrays in vivo, kinesin operates alone or in small num-
bers to move vesicles along microtubules (Miller and Lasek,
1985). This property of kinesin has permitted the develop-
ment of assays in which the motility of a single kinesin mol-
ecule can be studied: microtubules glide across glass surfaces
that are very sparsely coated with kinesin, and the diffusive
rotatory motion superimposed on the microtubule’s directed
translation indicates that the microtubule is attached to the
surface at only a single point, the location of the motor
(Howard et al., 1989; Hunt and Howard, 1993a). Dilution
experiments indicate that the functional motor is a single
kinesin molecule (Howard et al., 1989; Block et al., 1990).

Several mechanical properties of kinesin have been de-
duced from in vitro motility assays. Kinesin moves toward
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the plus, or fast-growing, end of the polar microtubule fila-
ment (Vale et al., 1985a; Howard and Hyman, 1993). The
high torsional flexibility of kinesin allows kinesin, when
fixed to a glass surface, to move microtubules equally
quickly in any direction with the minus end always leading
(Hunt and Howard, 1993a). Microtubules are typically com-
posed of 13 parallel protofilaments in which the 8 nm long
tubulin dimers are arranged head-to-tail (Amos and Klug,
1974). Observations of the rotation of microtubules of vari-
ous protofilament number indicate that kinesin follows a path
parallel to the protofilaments with high fidelity (Ray et al.,
1993). Because there appears to be only one high affinity
kinesin binding site per dimer (Harrison et al., 1993; although
steric interference of neighboring kinesin molecules has not
been ruled out), kinesin’s step size, defined as the distance
between sites on the microtubule surface to which kinesin
consecutively binds, must be a multiple of 8 nm, the inter-
dimer distance. High sensitivity displacement measurements
show that under some circumstances kinesin dwells at 8-nm
intervals as it moves along the microtubule (Svoboda et al.,
1993), indicating that the step size is probably 8 nm. This step
size is consistent with the speed with which single kinesin
molecules can move microtubules (500-1000 nm-s™')
because, in solution, each of kinesin’s two motor domains
can hydrolyze ATP at a rate as high as 50-100 s™! (cycle
times of 10-20 ms) (Kuznetsov et al. (1989); but see, e.g.,
Gilbert and Johnson (1993), who measured a lower
ATPase of 10 s™1).

The pressing question is: How does the motor reach
the next binding site, a distance of 8 nm away in the direc-
tion of the plus end? Because this distance is smaller (only
just!) than the length of kinesin’s motor domain, ~10 nm
(Hirokawa et al., 1989; Scholey et al., 1989), it is conceivable
that the step is bridged by a large structural change within the
motor. Such a motion has been postulated for myosin (the
rotating cross-bridge model; Huxley, 1969) and is compat-
ible with the molecular structure of the myosin motor do-
main, which has a long a-helical segment that could act like
a lever to amplify the displacement associated with the open-
ing and closing of the ATP-binding cleft (Rayment et al.,
1993). Alternatively, instead of one large motion, the dis-
tance could be spanned by a diffusive process that is some-
how directed by the motor’s ATP-hydrolysis mechanism
(Huxley, 1957; Braxton, 1988; Braxton and Yount, 1989;
Vale and Oosawa, 1990; Pate and Cooke, 1991; Cordova
et al., 1992).

To answer this question, we have examined how exter-
nally imposed forces influence the motion. In this study, the
load on a single kinesin molecule has been increased by rais-
ing the viscosity of the solution through which the micro-
tubule is moved, and the effect on microtubule gliding speed
was measured (Fig. 1). Because the cell’s cytoplasm is
crowded with cytoskeletal filaments, the mobility of or-
ganelles is very low (Luby-Phelps et al., 1986), and so we
might expect that an organelle motor like kinesin is well

adapted for working against drag forces. Drag forces, in ad-
dition to being physiologically relevant, offer the unique ad-
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FIGURE 1 A single kinesin molecule attached to a casein-coated (globu-
lar objects) glass surface exerts force against a microtubule. The thick ar-
rows indicate the direction of the motor force (F,,) and the viscous drag force
(Fp). The thin arrow indicates the direction of microtubule movement at

speed v.

vantage that they are present only while the motor is moving:
thus, changing the viscosity permits us, with some selectiv-
ity, to perturb only the force-generating phase of the motor
reaction without influencing any stationary, or non-force-
generating phase. Another advantage of this approach is that
by increasing the viscosity, diffusion is slowed down, and we
can therefore test models in which diffusive motions play a

major role. A preliminary report on this work has appeared
(Hunt and Howard, 1993b).

MATERIALS AND METHODS

Motility assays

All observations were made in 75-um-deep perfusion chambers bounded at
the bottom by a glass microscope slide and on top by a coverglass (Howard
et al., 1989; Howard et al., 1993). The standard buffer solution contained
80 mM Pipes, 1 mM EGTA, and 2 mM MgCl, and was adjusted to pH 6.9
with KOH. All reagents were obtained from Sigma Chemical Co. (St. Louis,
MO). The glass surfaces were precoated by introducing 2.5 mg/ml casein
in standard buffer solution into the chamber. Bovine brain kinesin, an a8,
tetramer (Howard et al., 1993; Hunt and Howard, 1993a), was diluted into
standard buffer solution augmented with 250 pg/ml casein, and then in-
troduced at 7-70 ng/ml for nucleotide-free assays, and at 55-100,000 ng/ml
for motility assays. The density of kinesin was calculated assuming com-
plete adsorption of kinesin to the glass surfaces during the 5 min allowed
for adsorption. This overestimates, by at least a factor of 10, the density of
functional kinesin on the coverglass surface at which all of the fluorescence
microscopic observations were made; approximately 10-fold higher kinesin
concentrations were required to achieve the same rate of microtubule bind-
ing to motors on the coverglass surface as on the microscope slide surface
(Howard et al., 1993; Hunt and Howard, 1993a).

Both fluorescently labeled (Hyman et al., 1991) and -unlabeled micro-
tubules were polymerized from phosphocellulose-purified bovine brain tu-
bulin (Howard et al., 1989; Howard et al., 1993) and diluted 100- to 1000-
fold to ~0.1 mg/ml in standard buffer solution or visc-mix solution (see
below) augmented with 10 pM taxol (Drug Synthesis and Chemistry
Branch, National Cancer Institute, Bethesda, MD) to prevent depolymer-
ization. In some cases, the microtubules were triturated to lengths of 1-5 um
by passing the solution through a 30-gauge needle before introduction into
the perfusion chamber. After introduction of the microtubules, the ends of
the perfusion chambers were sealed with grease to prevent fluid flow caused
by evaporation.

Temperature was regulated to between 28 and 33°C using either a
temperature-regulated blow dryer to heat the general vicinity of the per-
fusion chamber and microscope or by circulation of heated water through
a copper coil wrapped around the microscope objective. The temperature of
some perfusion chambers was measured using 50-pum-diameter T-type ther-
mocouple wire (Physitemp Instruments Inc., Clifton, NJ). We estimated that
illumination by the 100-W mercury arc lamp raised the temperature in the
observation field by less than 1°C.
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Digitization of bead and microtubule coordinates
Images were acquired with a silicon-intensified-target camera (Hamamatsu
C2400-8, Bartels and Stout, Bellevue) and recorded with a 1/2-inch video
cassetite recorder (Panasonic AG-7350, Proline, Secattle, WA). Video prints
of taped images were made using a Sony UP 5000 video printer. The po-
(M. Walsh Electronics, San Dimas, CA) and software generously provided
by Dr. S. Block (Rowland Institute, Cambridge, MA; described in Sheetz
et al., 1986). Some digitized images were corrected for field distortions in
the camera. Typically, the bead and microtubule coordinates were digitized
every 3-30 frames (100-1000 ms).

Measurement of microtubule speed

At low viscosity and low kinesin density, the microtubules pivot about the
point at which the kinesin molecule is located (Howard et al., 1989). To
determine the speed, the distance between the leading end of the microtubule
and the fixed point around which it swiveled was measured. The speed (and
associated SE) was computed by linear regression from the plot of these
distances versus time.

In all other cases, the speed was measured over times when the trajectory
of the microtubule was linear: that is, the microtubule did not swivel. A line
was fit through the trajectory (in the x-y plane) of the leading end of the
microtsbule. The distance moved along the trajectory was calculated from
the projection of the x-y position onto this linear trajectory. The mean and
SE of the speed was then computed from the plot of distance versus time.

Searching for an appropriate viscous solution

When searching for a viscous solution to impose a hydrodynamic drag on
the moving microtubules, we ran into two problems: either the solution was
hydrodynamically non-ideal (as described below) or it interfered with the
motility assays. Solutions of methyl cellulose (Sigma M-0512, 0.3-0.8%,
n = ~20-120 mN-s-m 2 at a shear rate s = 45 s™'; Uyeda et al, 1990;
percentages are weight per volume) or high-molecular-weight dextran
(Sigma D-5501, molecular weight = 540 MDa, 4%, ) = 216 mN-s-m 2
at s = 46 s ") suffered from the former problem; the amplitude of the
Brownian motion of actin filaments or microtubules in these solutions is
much greater in the longitudinal direction, parallel to the filaments’ long
axes, than in the lateral or perpendicular direction. For a microtubule in a
Newtonian fluid, the coefficient of loagitudinal diffusion is just under twice
that of lateral diffusion in unbounded fluid, and approaches a ratio of two
exactly as the microtubule approaches a planc surface (see Appendix A).
The quite different behavior of microtubules in the high molecular weight
dextran solution is consistent with the idea that the highly elongated solute
polymers form a gel whose pore size is greater than the diameter of the
cylindrical microtubule; although diffusion paraliel to the microtubule’s axis
through the pores is still possible, diffusion in the perpendicular direction
is almost completely suppressed. Such gel-like solutions are not suitable for
viscous force measurements.

In light of the above results, it was essential to find a globular, rather than
clongated, polymer whose size was less than the diameter of the microtu-
bule. The problem with such agents is that because of their more spherical
shape, very highly concentrated solutions are required to increase the vis-
cosity significantly (Van Hold, 1985). We tried many viscous agents; all of
them ecither inhibited motility or bundled microtubules, often at relatively
low viscosity. These effects are likely to be chemical in origin, rather than
viscous, because different agents produced quite different effects: for ex-
ampie, BSA (20% w/v) cansed microtubule bundling, whereas Ficoll-400
(24% w/v) inhibited motility. Such effects are not surprising when one
considers the high concentrations that are necessary to increase the viscosity
to 100 times that of water.

The realization that the inhibition was likely to be chemical permitted a
solution to the impasse. The trick was to construct a composite liquid, which
we called visc-mix, made of a combination of viscous agents such that the
concentration of cach was insufficient to block motility. This combination
iting the motility.
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Preparation of visc-mix

Visc-mix consists of 14.5% w/v trypsin inhibitor (Type II-S: Soybean), 15%
dextran (average molecule mass 67 kDa), and 7.5% Ficoll-400 (molecule
mass 400 kDa) in standard buffer solution. Before being added to visc-mix,
the trypsin inhibitor was dialyzed 4 times for at least 6 h each; otherwise,
it would depolymerize microtubules: the first three dialyses were against the
standard buffer supplemented with 20% Ficoll-400, and the final one was
against standard buffer supplemented with 30% Ficoll-400 to increase
the protein concentration, which was monitored by absorbance at 280 nm
(A = 0.92 cm™'-(mg/ml)~'). Visc-mix was diluted with standard buffer
to obtain the desired percent visc-mix concentration.

Macroscopic viscosity of the visc-mix solution
The viscosity of several different concentrations of visc-mix was measured
with a cone-plate viscometer (Brookfield model DV-I+, spindle CP-40 or
CP-51) as a function of the shear rate, s (Fig. 2 A). The solution is non-
Newtonian: it is least viscous at the highest shear rates, and the viscosity
increases as the shear rate is reduced. The apparent divergence of the vis-
cosity at very low shear rates is explained by the existence of a small but
nonzero yield stress o, (Fig. 2 C); at this stress value, there is no flow,
meaning that the viscosity is infinite for s = 0: unstressed visc-mix is a solid.

A finite yield stress is known to occur in, for example, concentrated
suspensions. There exist a number of empirical forms for this behavior
(Skelland, 1967); these, however, do not agree with our data. Instead, our
data are fit very well by the following relation between the viscosity (1) and
the shear stress (o = 7s),

o/oy, =1+ an/(n — n),
n=mx S=0,

a, 7, and o, are constants. These equations predict a linear relation between
o = 75 and 1/( — 1), with an intercept at o = 0, the yicld stress. Such
behavior is apparent in Fig. 2 C, where o = s is plotted against 1/(n —
) for a range of concentrations of visc-mix. The ns-intercept of each line
represents an apparent yield stress on the order of 1 Pa or less—a very
small value—which increases with concentration. Separate values of 17,
were chosen for linearity at each concentration, which does not affect the
ns-intercept.

Our viscosity data can also be fit somewhat less well by a divergent
power law

o> 0y;

o = 0,.

n="1-[1+(so/5)*"}

This model, not shown in Fig. 2 C, would give non-straight curves running
reasonably close to the data points, but curving sharply down to the origin
to the left of the data. Power-law behavior with a similar exponent occurs
in some entangled polymer solutions; in these cases, onc should sec the
power law break down for small enough s, and the viscosity approach a finite
value at s = 0, which we do not observe. Nevertheless, the power law is
consistent with the data over our range of measurement, and for analytical
convenience we use it in our calculation of the non-Newtonian drag force
(see Appendix B).

Interestingly, the deviation of visc-mix from Newtonian behavior is pri-
marily a property of the mixture, rather than the components. Individually,
the Ficoll-400 and dextran-67 solutions arc Newtonian over the range of
shear rates examined. But the combination of the two displays most of the
non-Newtonian behavior of visc-mix: the solute molecules must interact.
The trypsin inhibitor is also somewhat non-Newtonian.

Measuring the concentration of visc-mix
solutions

The stickiness of the viscous solutions made them difficult to handle even
when positive displacement pipettes were used. The main problem was that
the viscosity, the most important property in this study, depended critically
on the concentration (Fig. 2, A and B); thus, small pipetting errors occurring
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during dilution could cause large changes in the viscosity. Therefore, we
used careful measurements of the dependence of viscosity on the concen-
tration of the visc-mix solution (Fig. 2, A and B) to coastruct a calibration
curve that was used to determine the concentration of a final visc-mix so-
lution from its viscosity.

The steep dependence of viscosity on concentration could lead to a simi-
lar problem in the motility experiments; if mixing in the perfusion chambers
is incomplete, then we would overestimate the viscosity of the solution
through which kinesin moves the microtubules. To minimize this problem,
we always perfused with more than 2 times the volume of the perfusion
chamber (volume ~ 6.75 ul). To determine the amount of mixing that
occurred during this perfusion, a solution containing fluorescent beads was
introduced into a perfusion chamber before it was perfused with 80% visc-
mix. By comparing the number of beads in the chamber before and after the
addition of visc-mix, we estimated that the visc-mix solution was diluted by
<1.5% during perfusion into the flow cell, so that the decrease in viscosity
was <5%.

Microscopic viscosity of visc-mix
The diameters of trypsin inhibitor and Ficoll 400 are 3.5 and 16 nm, re-

spectively (Sweet et al., 1974; Hou et al., 1990). Assuming that the diameter
of dextran varies with the cube root of the molecular weight, we estimate

10.00

20.00 30.00
1 -1

(n-m,)"" (mN's

40.00

mz)

50.00

the diameter of dextran-67 to be 6.4 nm from the 4.3 nm hydrodynamic
diameter of 20-kDa dextran (Luby-Phelps et al., 1986). Because the sizes
of these solute molecules are not that much smaller than the ~30-nm di-
ameter of the microtubules (Beese et al_, 1987), we did not know whether
the macroscopic viscosity, measured with the cone-and-plate viscometer,
applied to the microtubules. In particular, it was essential to confirm that the
visc-mix was not behaving as a porous gel like the methyl-cellulose and high
molecular weight dextran solutions. As described below, we measured the
“microscopic”viscosity of visc-mix by analyzing the Brownian motion of
beads and microtubules in it; the Brownian motion was in good agreement
with the macroscopic viscosity, and no indications of gel-like behavior were
observed.

The microscopic viscosity of the visc-mix solution was measured in
several ways. First, the lateral diffusion coefficients of 280 nm diameter
fluorescent latex microspheres (Mol. Probes. L-5242) were measured far
from the surfaces of the perfusion chamber (>13 pum). The diameters were
checked by electron microscopy and by measuring the lateral diffusion co-
efficient in a glycerol solution of known viscosity (Table 1). Because glyc-
erol solutions are Newtonian and glycerol molecules are very small, the
viscosity of glycerol solutions should be well defined both macroscopically
and at the microscopic dimensions of microtubules and small beads. The
diffusion coefficients D were measured using

D = (Ar)/4Ar = (A2 + Ay?)4Ar, )
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TABLE 1 Microscopic viscosities of visc-mix and glycerol solutions

Diameter Viscosity* Stokes diameter
Particle (nm) Solution (mN-s'm™") D /D piicna (om)
Bead 280 Glycerol 83 0.96 + 0.07 *20
Bead 280 78% Visc-mix 75 090 + 0.05 309 = 17
MT (cm)? 30 60% Glycerol 13 095 + 0.04
MT (cm) 30 76% Visc-mix 71 0.64 = 0.03
MT ()} 30 60% Glycerol 13 0.79 + 0.13
MT (r) 30 76% Visc-mix 71 064 + 0.11
MT (tether)' 30 Water 0.851 =1 by definition
MT (tether) 30 45% Visc-mix 126 093 = 020
* Viscosity at high shear limit ().
* Center of mass.
$
* Rotatory in the tether assay.

where (Ax, Ay) is the movement in the plane of focus over a time Az
Equation 1 was averaged over all successive Az-intervals in a data set, and
this was repeated using different values of Az (Ar = mz_,m = 1,2, 4,8, 16,
and 32 with ¢, the sampling interval). The diffusion cocfficient calculated
in this way was independent of At, consistent with the motion being diffusive
rather than steady (produced, for exampie, by fluid flow). The measurement
error was negligible; no additional variance attributable to error in mea-
suring the position of the sphere was seen even at the shortest times. The
weighted average diffusion coefficient was computed and compared with
the theoretical diffusion coefficient for a sphere of radius r predicted by
Stokes’ Law:

D .. = kT/671Y,

where k& is the Boltzmann constant and T is the absolute temperature.

The diffusion coefficients of the 280-nm beads in visc-mix were con-
sistent with the macroscopic viscosity of visc-mix. In 78% visc-mix, the
predicted from 7, the high shear viscosity, was 0.90 = 0.05 (Table 1).
Because the average speed of a diffesing bead is very large, the fluid shear
around the bead will also be large, and so we expect the high shear viscosity
7, to be the appropriate measure. This was indeed the case.

Similar experiments were performed using microtubules. In this case, the
rotational (D)) and center of mass (D_) diffusion coeficients were com-
pared with the theoretical values given by the Einstein relation

D = kI,

where I' was predicted from 7, (Appendix A). The diffusion cocfficients
were determined from the digitized coordinates of the ends of microtubules
projected onto the plane of focus. These microtubules were diffusing ap-
proximately 15 pum from the glass surface and were of length L < 5 pum.
D__, was calculated using Eq. 1, where Ax and Ay are the change in the
displacement of the projection of the center of mass of a microtubule cal-
culated as the midpoint between the digitized coordinates of the ends. D, was
calculated using D, = (Aa?)/4At, where (Ac?) is the mean-squared change
in the microtubule’s three-dimensional angle Aa measured over time Az. For
each Az, Aa was calculated from digitized coordinates of the microtubule
ends according to
Aa’® = A@* + Ad? sin¥(6)

(correct to second order in the angles), where A¢ is the change in the angle
of the microtubule projected on the x-y plane (the plane of focus) and A8
is the change in its angle 0 with the z axis. (6) is the average of 0 over Ar.
0 was calculated as 0 = arcsin(L /L), where L, is the projected length
of the microtubule onto the x-y plane and L is its actual length, measured
as the largest observed value of L. All microtubules were observed for
at least 2 min. Observations were restricted to valnes of 0 such that there
was a less than 5% chance (as predicted from the theoretical diffusion co-
cfficient) of ambiguity cansed by crossing 6 = 0° or 90°. As a check of this
diffusion was also measured in a glycerol solution (Table 1).

As seen in Table 1, the ratio of the measured diffasion coefficients in
visc-mix to those predicted by theory (using 7, for the viscosity) was 0.64
+ 0.03 for a microtubule’s center of mass and 0.64 *+ 0.11 for microtubule
rotation. The similarity of these values indicates that visc-mix slows dif-
fusion equally in the directions perpendicular and parallel to a microtubule’s
axis; visc-mix does not display gel-like behavior. We do not understand why
these ratios were less than one, as was also found for rotatory diffusion of
microtubules in 60% glycerol. A possible explanation for the low ratios is
that the small intrinsic curvature of our microtubules (Gittes et al., 1993)
gave rise to larger effective hydrodynamic diameters.

Measurement of the viscous drag coefficients for
a microtubule tethered to a surface by kinesin:
calibration of the viscous force

The parallel drag coefficient, C, necessary for the calculation of the drag
force (Eq. 2), was estimated by first measuring the perpendicular drag co-
cfficient C, in visc-mix, and then using the relation C; = C /2. This relation,
which is discussed in Appendix A for cylinders close to a plane surface, does
not hold for solutions containing highly clongated polymers such as methyl
cellulose; but as described above, no such gel-like behavior was observed
for visc-mix, and so the relation should be valid for our analysis.

C, was estimated by measuring the rotatory diffusion of microtubules
tethered to the casein-coated surface by single kinesin molecules (Fig. 3 A,
Hunt and Howard, 1993a). The rotatory diffusion coefficient was measured
by D, = (A¢)2A1, where (A?) is the mean-squared angle fluctuation over
time intervals Az. From the slope of the relationship between the reciprocal

A
“» 200
o
b~ 's 150 -
o]
£ 100 -
2
1} a 50 4
~ o0
L2 - 0 5101520
3 3 3
L +1L (um™)

FIGURE 3 (A) Drawing of the positions, at two times, of a microtubule
tethered to the surface by a single kinesin molecule and undergoing dif-
fusion. Lengths and angles used in the text are defined. (B) The rotational
diffusion coefficient in 45% visc-mix (1, = 12.6 mN-s-m2) is inversely
proportional to the sum of the third powers of the microtubule lengths,
L3 + L3 defined in A.
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of D, and the cube of the microtubule length (Fig. 3 B), we deduced C, via

kT 1 5 5

D_,=§C*"(L'+L2)

(Appendix A) where L, and L, are the microtubule lengths defined in Fig.
3 A. In standard buffer solution (n = 0.851 mN-s-m™2), C, was 11.0 + 1.2
in the absence of ATP and 14.0 * 1.3 in its presence. These values cor-
respond to nominal distances of 25.7 + 2.6 and 21.5 * 1.3 nm from the glass
to a microtubule’s axis, or 10.7 * 2.6 and 6.5 = 1.3 nm from the glass to
a microtubule’s surface (Hunt and Howard, 1993a). These distances are only
approximate because the glass and microtubule do not have the ideal smooth
surfaces assumed for the model solved in Appendix A. In practice, the
surfaces are bumpy: the advantage of this calibration procedure is that we
obtain a direct measure of the drag coefficient without having to assume
either the distance between the microtubule and the glass surfaces or the
details of the textures of the surfaces. In 45% visc-mix (1, = 12.6
mN-s-m ) and in the absence of ATP, C, was 11.8 + 2.2, not significantly
different from that measured in standard buffer. This is consistent with the
suppositions that the distance between the microtubule’s axis and the surface
is not changed by visc-mix, and that the microscopic viscosity of visc-mix
is well predicted by its macroscopic viscosity. Because C, = 14.0 = 1.3
when measured in the presence of ATP, we used C; = 7.0 * 0.7 in Eq. 2

for estimating the drag force through the viscous medium.

RESULTS

Kinesin-driven movement through high

viscosity solutions

To determine how load influences the kinesin motor, we
observed microtubules moving across kinesin-coated glass
surfaces through buffer solutions of various viscosities (Fig.
1). The underlying idea is that as the viscosity is increased,
the drag force exerted on the microtubule by the solution will
approach the maximum force that the motor protein can ex-
ert, and so the speed of movement will decrease. The higher
the viscosity and/or the longer the microtubule, the greater
the drag force and, thus, the smaller the speed of movement.
In this way, the relationship between the speed of movement
and the drag force can be measured and, by extrapolating to
infinite viscosity or infinite microtubule length, the maxi-
mum motor force can be estimated.

Low viscosity solutions (1 < 1.0 mN-s-m?) impose vir-
tually no load on kinesin because the longer microtubules
move at the same speed as the shorter ones (Fig. 4). This is
true regardless of whether the surface is coated with kinesin
at high density, in which case we expect that the motion is
caused by several kinesin molecules or, at low density, in
which case, based on several lines of evidence, the movement
is likely caused by single kinesin molecules (see Introduc-
tion). For the longest microtubule moving in the low density
assay, the time-averaged drag force is 0.18 pN (Eq. 2); be-
cause this microtubule is but little slowed compared with
shorter ones, it follows that the single motor force must be
much greater than 0.2 pN, and that the viscosity of the so-
lution must be raised at least 10- to 100-fold to significantly
load a single kinesin motor.

Therefore, we sought and found a high viscosity solution
with which we could increase the viscosity of the solution up
to 100-fold without poisoning the motor. The solution, which
we called visc-mix, was composed of the polysaccharides
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FIGURE 4 In standard buffer ( = 0.8 mN-s-m~?) the speed at which
kinesin translates microtubules is independent of the microtubule length. In
this figure and Fig. 6 A, high kinesin density corresponds to a surface density
of ~6000 kinesin molecules/pm’. Low kinesin density corresponds to 17
kinesin molecules/pum’ for microtubules ranging from ~0 to 10 pm in
length, and 3.4 molecules/um’ for microtubules longer than ~10 um. These
surface densities assume complete adsorption of kinesin from the solutions.
Not all of the kinesin might be functional.

Ficoll and dextran, and the protein trypsin inhibitor, dis-
solved in standard buffer solution. When the high density
assay was repeated in the presence of 77% visc-mix, suffi-
cient to increase the viscosity about 100-fold (1, = 73
mN-s-m %), microtubules moved smoothly (Fig. 5A) as they
did in low-viscosity buffers, and at speeds that were only
somewhat less than the speeds in standard buffer (0.50
pm-s~! in visc-mix (Fig. 6 A) compared with 0.75 um-s™!
in standard buffer (Fig. 4)). This shows that the motor re-
action was not inhibited by these solutes. At high kinesin
density and high viscosity, the speed of movement was in-
dependent of microtubule length (Fig. 6 A). This is not sur-
prising because we expect that the number of motors acting
on a microtubule and the viscous drag force should both
increase in proportion to a microtubule’s length; thus, the
longer microtubules will have more motors to overcome the
larger drag force.

When the density of kinesin was reduced, microtubule
gliding was still observed in high viscosity medium (Fig. 5,
B and C). At the lowest densities, where we expect that the
motility is driven by single kinesin molecules, microtubules
moved continuously through visc-mix for a number of mi-
crons before stopping (2.0 + 1.0 pum, mean * SD, n = 6).
This behavior is similar to that seen in low viscosity solutions
(distance traveled of 3.6 * 2.7 um, n = 6). The effect of the
high viscosity medium was to reduce the speed of movement
of microtubules (Fig. 5, B and C), consistent with the pos-
sibility that the drag force was significantly loading the mo-
tors. This interpretation was strengthened by the finding that
at kinesin densities less than 10 um™2, at which we expect
that the movement is caused by single kinesin molecules, the
longer microtubules moved more slowly than the shorter
ones (Fig. 6 B). Provided that the microtubules are indeed
being moved by single kinesin molecules, and that the slow-
ing is caused by a viscous rather than chemical effect, we can
use the speed and length to calculate the drag force and
thereby estimate the single-motor force.



FIGURE 5 (top) Position versus time traces of micro-
tubules moving through visc-mix at high (A), medium
(B), and low (C) kinesin density. (bottom) Speed versus
time traces at high (A ), medium (B), and low (C) kinesin
density constructed from the corresponding data in the
upper panels. The speeds were calculated by linear re-
gression fits to the data in a sliding rectangular window
moved along the data shown in the upper panels. The
solid line corresponds a 17 data point window, whereas
the dashed line corresponds to a 65-point window.
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FIGURE 6 (A) Athigh kinesin density, when the vis-
cosity was raised to approximately 100 times that of
water (70% W/ visc-mix, 1, = 59 mN-s-m~?) the
speed of translation remained independent of microtu-
bule length. (B) At low kinesin deasity and the same
viscosity as in A, the speed decreased with increasing
microtubule length.
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The decrease in microtubule speed is caused by
viscous drag rather than a chemical effect

There are several reasons to believe that the slowing of the
kinesin-driven movement is caused by the viscous drag on
the microtubule rather than a chemical effect on the motor.
Among the potential chemical effects are the following: it
might take longer for ATP to diffuse to the motor’s ATP-
binding site; one of the physicochemical properties of the
solution, such as its ionic strength or osmolality, might be
different; or there could be some specific chemical effect of
the solutes on the hydrolysis reaction. The most compelling
argument against all of these potential effects is that an effect
on the motor cannot explain why, at low kinesin densities,
the longer microtubules were slowed down to a greater
extent (Fig. 6 B).

We did several control experiments to rule out specific
chemical effects of visc-mix on the motility. First, the slow-
ing was not caused by insufficient ATP because a 10-fold
increase in the Mg-ATP concentration had no effect on the
speed of microtubule translation in 70% visc-mix; at high
kinesin density, the average speed was 0.49 *+ 0.02 um-s™!
in 1 mM Mg-ATP, and 0.45 * 0.02 pm-s™! in 10 mM Mg-
ATP. This is consistent with biochemical studies that show
that the binding of ATP is not diffusion-limited: the second-
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order on-rate constant of 2.5 uM~*-s ™! (Hackney et al., 1989)
is perhaps 100-fold smaller than the diffusion limit and likely
arises from a slow isomerization step that follows the initial
diffusion-limited encounter (Hackney et al., 1989). Thus,
even a 100-fold decrease in the mobility of ATP is not ex-
pected to have a dramatic effect on the on-rate.

Second, the decreased speed of microtubule translation
through visc-mix was not caused by the increased osmolality
of visc-mix compared with the standard buffer solution: mi-
crotubule translation was not significantly changed when the
osmolality of the standard assay buffer (188 mOsm) was
raised as high as 650 mOsm, well above the osmolality of
even 90% visc-mix (426 * 8 mOsm), by the addition of
dextrose.

Third, it is also unlikely that the ionic strength of visc-mix
caused microtubules to slow. The conductivity of visc-mix
diluted to 10% with distilled water was 1275 * 1 uS/cm,
little different from the conductivity of a 10% solution of
standard buffer (1286 * 1 uS/cm). This implies that the
concentration of free salts in visc-mix is at most a few percent
different from that in standard buffer. The associated change
in jonic strength is not likely to affect the speed because
decreasing or increasing the ionic strength of standard buffer
by 20% by dilution with water or by addition of KCl caused



Hunt et al.

little change in speed (speed = 0.71 * .01 um-s ™" in standard
buffer, 0.73 * 0.02 pm-s™' in 80% standard buffer, 20%
water, 0.66 * 0.01 in standard buffer plus 50 mM KCI).

Finally, we performed a direct experiment to test whether
the slowing at high kinesin density was caused by the vis-
cosity of visc-mix or to the chemical composition of visc-
mix. The speed of movement of microtubules in the high
density assay in 93% visc-mix (1, = 209 mN-s-m?) was
0.21 pum-s~', only about 20% of that in standard buffer so-
lution (Fig. 7). The viscosity was then decreased by enzy-
matically cleaving the dextran in the mixture with dextra-
nase. This decreased the viscosity of visc-mix by more than
10-fold (1, = 15.2 mN-s-m~?) in a way that minimized other
changes in the chemical environment. The speed of micro-
tubule translation through dextranase-treated visc-mix in-
creased more than fourfold to 0.87 um-s ™!, close to the trans-
lation speed in the absence of visc-mix (Fig. 7). This suggests
that even the visc-mix-induced slowing at high kinesin den-
sity is caused by an effect of the increased viscosity on
the motor rather than a chemical effect of the solutes on the
motor.

The force-velocity curve

Because kinesin always generates a force parallel to the mi-
crotubule’s protofilament axis (Hunt and Howard, 1993a;
Ray et al., 1993), which very nearly parallels the long axis
of the microtubule, the drag force can be calculated from

(F‘hg) =T'(v) = Cm L{v), )

where 7) is the viscosity, L is the microtubule’s length, (v) is
the average speed of translation, and Cj is the dimensionless
drag coefficient (drag per unit length per unit viscosity) for
motion parallel to the microtubule’s axis. Because C, de-
pends on the unknown height of the microtubule above the
kinesin-coated surface (Appendix A), we measured this drag
coefficient to be 7.0 = 0.7 from analysis of the rotational
diffusion in visc-mix of microtubules tethered to the surface
by a single kinesin molecules (see Materials and Methods).
This served as an almost direct calibration of the viscous
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FIGURE 7 The speed of microtubule translation through visc-mix in-
creased after the viscosity of visc-mix was lowered by dextranase. Closed
squares are the translation speed in 93% visc-mix (1, = 209 mN-s-m2),
open circles are in 93% dextranase-treated visc-mix (1, = 15.2 mN-s-m™2),
and closed circles are in standard buffer (0% visc-mix, 7, = 0.8 mN-s-m™2).
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force. The viscosity of the visc-mix solution was measured
using a cone-and-plate viscometer and, because the fluid was
non-Newtonian (Fig. 2), the drag force was computed nu-
merically (Appendix B).

For each microtubule in Fig. 6 B, the drag force was com-
puted from its length and speed. The resulting “force-
velocity” curve, in which the speed of a microtubule was
plotted against the drag force acting on it, shows that the
greater the drag force on the microtubule, the slower the
speed (Fig. 8). Within the uncertainty of the data, the speed
depended linearly on the viscous force. Kinesin was able to
translate microtubules against viscous loads greater than 3.5
PN and, by linear extrapolation, we estimate that the viscous
drag force approaches 4.2 + 0.5 pN as the speed of move-
ment decreases to zero.

Limiting dilution

One of the goals of this study was to measure the force gen-
erated by a single kinesin molecule. The kinesin density used
for the force-velocity curve was low (1-100 pm~?), and we
tentatively conclude that the forces correspond to single mo-
tors. Indeed, had these low densities been used in the low
viscosity assay, we would have seen the pivoting behavior
characteristic of movement by single kinesin molecules
(Howard et al., 1989; Hunt and Howard, 1993a). However,
for the longer microtubules at high viscosity, the diffusive
pivoting of a microtubule about the point where the single
kinesin motor is located is too slow to be detected reliably.
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FIGURE 8 The relation between the viscous force and the speed of
kinesin-driven microtubule translation at low kinesin density. The line is an
unweighted least-squares fit to the data, and the extrapolated maximum
single motor force is indicated by the arrow. The uncertainty in the linear
extrapolation was 0.2 pN, which when combined with the uncertainty of 0.4
arising from the error in C}, gives a total error of 0.5. The intercept with the
ordinate was fixed to be the same as in Fig. 6 B. The data point indicated
by the closed circle was assumed to represent movement driven by more than
one kinesin molecule and was not used in the least-squares fit. The surface
density of kinesin was at or below 100/um’ in the assays used to construct
this figure. Inset figure shows the force-velocity relation recalculated ac-
cording to different speed profiles: the triangles correspond to a constant
speed (Fig. 10 A), whereas the squares correspond to the exponential profile
of Fig. 10 C (see Discussion).
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Because this most important criterion for single-motor mo-
tility was not available in the high viscosity assay, we ob-
tained additional, independent evidence that the motion was
caused by single kinesin molecules.

The first strong indication that the motion at low kinesin
density and high viscosity was caused by single molecules
came from the smoothness of the motion at the lowest kinesin
densities (Fig. 5 C). As the kinesin density was reduced from
high to intermediate, the speed of microtubule movement
became more variable as it became slower (Fig. 5, A and B).
This variability in speed at intermediate kinesin densities is
consistent with a variability in the number of motors moving
the microtubule: if the average number of motors moving a
microtubule were only two or three, then we would expect
that as the microtubule moved across the surface the number
of motors would vary, sometimes decreasing and sometimes
increasing. If the drag force is significant compared with the
single-motor force, we might then expect the speed to de-
crease and increase as the number of motors cooperating in
the movement decreased and increased. On the other hand,
if the motion were caused by a single motor, then we would
expect a smooth, stereotyped motion. The increase in vari-
ability of the speed from high to intermediate kinesin density
(Fig. 5 B), followed by the decrease in variability at the
lowest kinesin densities (Fig. 5 C), is consistent with the
motion being caused by a handful of motors and one motor,
respectively. Unfortunately, our velocity resolution was not
good enough to unequivocally detect quantized speeds at
intermediate densities, although in all six experiments in
which we analyzed the speed in greater detail we detected a
significant increase in variability of speed at intermediate
densities compared with high and low densities.

To obtain further evidence that at low kinesin density mi-
crotubules were indeed translated by single kinesin mol-
ecules, we estimated the force necessary to stop movement
as a function of the kinesin density (Fig. 9). As the kinesin
density was decreased below 1000 um 2, the force also de-
creased. But when the kinesin density was decreased below
100 wm™2, no further decrease in force was apparent. This
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FIGURE 9 The extrapolated maximum force (determined as shown in
Fig. 8) decreased to a minimum value of 4-5 pN as the kinesin density was
decreased below 100/um>. The point indicated by the arrow was calculated
using the data shown in Fig. 6 B.
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asymptotic behavior indicates that a minimum force level has
been encountered; therefore, we interpret this force, approxi-
mately 4-5 pN, as the single-motor force.

DISCUSSION
The force exerted by a single kinesin molecule

The movement of microtubules across glass surfaces
sparsely coated with kinesin was perturbed by raising the
viscosity of the solutions. In high viscosity solutions, the
longer microtubules moved more slowly than the shorter
ones, indicating that the decrease in the speed of movement
was caused by the viscous drag force acting on the micro-
tubule, rather than by a chemical effect of the solution on the
motor. The speed of movement of a microtubule depended
linearly on the drag force acting on the motor (Fig. 8). At the
lowest kinesin density, where dilution experiments indicated
that the movement was caused by single kinesin molecules
(Fig. 9), extrapolation of the linear relationship yielded a
maximum time-averaged drag force of 4.2 = 0.5 pN per
motor (mean * experimental SE). We believe that this force
corresponds to the largest steady-state (or isotonic) force that
a single kinesin molecule can exert against a viscous load.

One possible reservation is that because the kinesin mol-
ecules adsorbed to the surfaces with random orientations, this
force might be an underestimate because of non-optimally
oriented kinesin molecules. However, the extreme torsional
flexibility of kinesin (Hunt and Howard, 1993a) makes it
unlikely that the motor’s force depends strongly on the mo-
tor’s orientation. Nevertheless, it is still possible that the
deviations of the points from the regression line in force-
velocity data (Fig. 8) are caused by heterogeneity of kinesin
molecules; if this is the case, the strongest motors might
produce forces up to 6 pN. Another issue is that the majority
of the microtubules used in these experiments had 14 pro-
tofilaments and are expected to rotate (Ray et al., 1993). But
the rotation is so slow that the force required to overcome the
rotational drag (Appendix A) is only about 4% of that re-
quired to overcome the translational drag; therefore, we have
ignored the rotatory component.

A second, perhaps more serious concern is the uncertainty
in the estimation of the viscous force acting on a microtubule.
Because the diameters of the solute molecules (3.5, 6.4, and
16 nm) were not small in comparison with the diameter of
the microtubules (~30 nm), we could not assume that the
macroscopic viscosity of the solution, as measured with a
cone-and-plate viscometer, was applicable for calculating
the drag force acting on the microtubule. Therefore, we
measured the “microscopic” viscosity by measuring the
Brownian motion of microtubules in the visc-mix solution
and found good agreement with the macroscopic viscosity
(Table 1). In particular, we found no evidence that visc-mix
displayed gel-like behavior. Another potential source of un-
certainty in the drag force was the “wall effect” caused by
the proximity of the microtubules to the kinesin-coated sur-
face. To circumvent this problem, we directly measured the
drag coefficient from the diffusion of microtubules tethered
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at the same distance from the surface by kinesin molecules.
This drag coefficient, which most closely approximated the
drag coefficient experienced in the motility assay, was then
used to calculate the drag force.

A final uncertainty in the estimation of the viscous force
arises from the non-Newtonian behavior of the visc-mix
fluid. Unlike a Newtonian fluid, for which the drag force
depends linearly on the microtubule velocity (Eq. 2), the drag
force in the non-Newtonian visc-mix depends nonlinearly on
the velocity (Eq. B4). This introduces an added complication:
the calculated drag force depends on the profile of the in-
stantaneous velocity, and so the drag force depends on the
particular model used to analyze the data. For example, if the
microtubule speed varied during each hydrolysis cycle,
sometimes being greater than the average speed and some-
times less, then the average drag force would be slightly
smaller than if the motor had moved the microtubule at a
steady speed. This model dependence is small, especially
when the drag force is high, and we estimate that the maxi-
mum force is in the range 4.0-5.2 pN (Appendix D).

Comparison with other work

Several other laboratories have made force measurements on
small numbers of motor proteins in vitro, although in no case
has strong evidence been presented that the responses are
caused by single molecules. Several devices have been used:
force fibers (Ishijima et al., 1994), optical traps (Block et al.,
1990; Finer et al., 1994; Kuo and Sheetz, 1993; Svoboda
et al., 1993), and flexible filaments (Gittes et al., 1994) place
elastic loads on the motor; the centrifugal microscope im-
poses an inertial load (Oiwa et al., 1990; Hall et al., 1993);
and our technique creates a viscous load. Because the force
exerted by a motor protein can depend on the nature of the
load, it is interesting to compare our results with those ob-
tained using different techniques.

Our single-motor force measurement lies within the range
of forces reported to be exerted by kinesin against an optical
trap; Svoboda et al. (1993) report a “nominal” (F)___ =5 pN,
whereas Kuo and Sheetz report (F)_,, = 1.95 * 0.4 pN. Our
result might be consistent with the former measurement. One
possible reason why the Kuo and Sheetz force is lower than
our force or the force of Svoboda et al. is that they used either
GTP or a low concentration of ATP, whereas the other two
studies used ATP at high concentration. Alternatively, the
discrepancy might result from unbounded errors in the cali-
bration of the optical tweezers: in both studies, the trap was
used on motors very close (within a wavelength) of a high-
refractive-index surface, but calibrated some distance from
the surface. This leads to uncertainty of unknown magnitude
(Howard, 1993).

Our results are not compatible with the value of 0.12 *+
0.03 pN that Hall et al. (1993) measured as the inertial force
necessary to stall a single kinesin molecule in a centrifuge
microscope. We have two reasons to believe that something
other than the inertial force stopped the motors: first, in the
absence of the inertial force the drag force is larger than 0.12
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pN; and second, the stalling was independent of the direction
of the inertial force. In any case, as pointed out by Hunt and
Howard (1993a), the torsional flexibility of kinesin precludes
using this centrifuge microscope assay to measure the single-
motor force of a plus-end-directed motor like kinesin.

Our single-motor force is consistent with preliminary
force measurements made in our laboratory using an assay
in which kinesin molecules adsorbed to the surface exert
forces against and buckle microtubules bound to the surface
at their minus end (Gittes et al., 1994). The motor force can
be calculated from the length of the segment of microtubule
that buckles and the known flexural rigidity or bending stiff-
ness of the microtubules (Gittes et al., 1993).

The time-averaged force exerted by kinesin against a vis-
cous load (4-5 pN at ~30°C) is of the same order of mag-
nitude as the time-averaged force exerted by myosin mol-
ecules in a skeletal muscle fiber (2.8 pN per myosin at 4°C,
Lombardi et al., 1992; 3.2 pN per myosin at 0°C, Bagshaw,
1993). Transient forces exerted by myosin in vitro of ~5 pN
(Ishijima et al., 1994) and 1-7 pN (Finer et al., 1994) have
been recorded: if each myosin head is generating force for
a large fraction of its cycle time (Ishijima et al., 1994), then
myosin’s time-averaged force is similar to that of kinesin; but
if the fraction is small (Finer et al., 1994), then the time-
averaged force is smaller than that of kinesin.

» 6

'We now consider some detailed models that specify how the
motor actually gets to its next binding site, a distance d away,
and show how the particular features of a viscous load should
affect them. These models predict the maximum force and
velocity in terms of molecular parameters, and we ask
whether these predictions are consistent with our measure-
ments. We consider four specific models, two “ratchet” mod-
els in which directed motion arises from the rectification of
diffusion of either the microtubule or the motor, and two
“power stroke” models in which the motor is assumed to
contain an elastic element that suddenly shortens and be-
comes strained. Only the ratchet model that relies on mi-
crotubule diffusion can be ruled out by our data. The
other ratchet model (similar to the Huxley, 1957 model) and
the power-stroke models cannot be excluded by the present
results.

To discuss the force-velocity relation for a viscous load,
we assume for simplicity that the solution is Newtonian. The
consequences of the non-Newtonian nature of visc-mix are
considered in Appendix D. First, we note that in our assay
the only force loading the motor is the viscous force

F e (©) = Fag () = To(0); ®)

there is no external elastic load on the motor in our assay,
and we can ignore any inertial reaction forces because the
Reynolds number is very low (R = pLun ~ 1075, for
p~10°kg'm 3 L ~ 10 pum, n ~ 1 mN-s-m 2, and average
speeds v ~ 1 um-s™?).
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Ratchet models

o A filament-diffusion model. This model assumes that it
is by diffusion of the filament that the motor gets to the next
binding site. This is the “ ratchet diffusion” model first for-
mulated for actin and myosin by Braxton (1988) and Braxton
and Yount (1989): to get directed movement, one thinks
of the motor molecule as an intelligent, or “cool” pawl
(Feynman et al., 1964) that permits the filament (the ratchet)
to move only in the preferred direction. Braxton postulated
that the directed motion was caused by cooperative interac-
tions between different motors moving the one filament.
Subsequently, Vale and Oosawa (1990) postulated that the
directed motion was caused by temperature differences be-
tween the motor and the filament: they called this the “ther-
mal ratchet” model. As pointed out by Leibler and Huse
(1993), this heat-engine idea of Vale and Oosawa (1990)
cannot work because the diffusion of heat is so rapid over the
dimensions of a protein that the postulated thermal gradients
would dissipate within picoseconds, a timescale much faster
than the microsecond to millisecond timescales of the tran-
sitions between the different chemical states of the motor.
The filament-diffusion model is not well defined in molecu-
lar detail: for example, how ATP hydrolysis is coupled to the
motion is not specified. Nevertheless, the model is appealing
because it takes only a very short time for a filament to
diffuse a distance equal to the size of a protein subunit: the
time that it takes a moderately long microtubule (say 10 pm,
Fig. 4) to diffuse 8 nm in a low viscosity medium is only 0.5
ms (CnlLd*/2kT), which is very short compared with the
cycle time (~10 ms, the inverse of the rate of ATP hydroly-
sis). Thus, in low viscosity solutions, the speed of the motor-
driven motion is compatible with an underlying diffusive
process (Braxton, 1988; Braxton and Yount, 1989). How-
ever, as the viscosity is increased the diffusional time will
increase, and we expect the speed of movement to decrease.
In this way, the model can be tested.

In Appendix C, we derive an expression for the speed as
a function of drag force: the maximum force is 2k7/d, where
d is the step size. Substituting d = 8 nm (see Introduction)
yields (F)_,, = 1 pN, which is much smaller than the meas-
ured value (Fig. 8). Indeed, even if we use the infinite-shear
viscosity of visc-mix to calculate the drag force, the data of
Fig. 8 are compatible with (F)_,. = 1.8 pN. Thus, if the step
size is 8 nm, we can rule out this “ ratchet” model because
it predicts that the speed in high viscosity solutions would be
significantly smaller than we observed. This conclusion is
supported by the observations that kinesin can buckle mi-
crotubules (Gittes et al., 1993, 1994) that are clamped and,
therefore, unable to undergo such diffusive fluctuations,
and by the finding of Svoboda et al. (1993) that the average
time that kinesin spends detached from the filament is
<72 ps. This time is too short for a 10-pm-long microtubule
to diffuse through 8 nm, and even too short to diffuse
through 4 nm.
® A motor-diffusion model. Rather than assuming that the
binding site on the microtubule diffuses to the motor, in this
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model we assume that the motor diffuses to the next binding
site. Specifically, we assume that the motor contains an elas-
tic element that undergoes thermal fluctuations: when the
spring has become extended through a distance d, the motor
binds to the next site on the microtubule whereupon the mi-
crotubule starts moving through the fluid to relieve the strain.
In this case, the motor is the ratchet and the microtubule
(presumably in combination with the motor) is the pawl. This
idea originates from Huxley (1957) and was reconsidered by
Vale and Oosawa (1990) and Cordova et al. (1992) in terms
of a “thermal ratchet” model. We tested the motor-diffusion
model by raising the viscosity and, therefore, presumably
slowing down the underlying diffusive processes.

In Appendix C, we derive a theoretical force-velocity
curve for this model. Our treatment differs significantly from
the details of the Huxley (1957) paper: we compute the dif-
fusional time required for thermal motions to stretch the
spring within the motor through a distance d (this time is
analogous to 1/f of the original Huxley, 1957 model), as well
as the time after binding for the microtubule-motor complex
to relax in the viscous solution to the unstrained position,
whereupon it releases (analogous to 1/g). These times place
bounds on the motor speed. With a step size of 8 nm, a spring
constant of 1 mN/m gives a maximum force of 4 pN, con-
sistent with our force-velocity curve. The motor-diffusion
time in 70% visc-mix is about 5-10 ms, consistent with the
slight decrease in the speed of short microtubules in the low-
kinesin-density assay (Fig. 6 B), and of all microtubules
moved in the high-kinesin-density assay (Fig. 6 A, where we
expect the number of motors is high enough to overcome the
drag force on the microtubule). In 90% visc-mix, the diffu-
sional time is expected to be about 30 ms: this is consistent
with the slow movement of the microtubules shown in Fig.
7 in the high-kinesin-density assay. We predict that in low
viscosity solutions the diffusional time would only be about
0.1 ms. Thus, the motor-diffusion model is consistent not only
with data obtained at low kinesin density and high viscosity,
but it also explains simply the viscosity dependence seen in
the high-kinesin-density assays. The important point is that
even in high viscosity solutions, thermal fluctuations of the
motor are sufficiently rapid for the motor to pick up the
required strain in a time consistent ith the measured speeds.
An earlier attempt by Eisenberg and Hill (1978) to rule out
the Huxley (1957) model made the argument that the pre-
dicted motions were too slow; however, these authors used
an unrealistic value for the thermodynamic efficiency of
muscle (83%), and if a more well accepted value of 50% is
used, their argument breaks down.

Power-stroke models

Our data are also consistent with power-stroke models. These
models assume that the motor contains an elastic element (of
stiffness x) which, while attached to the microtubule, sud-
denly shortens through a distance & (not necessarily equal to
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the step size d) and becomes strained. Directed motion re-
sults when this strain is relieved as the motor relaxes. The
primary difference between the power-stroke models and the
motor-diffusion model is that strain is developed after bind-
ing in the former models rather than before binding as in the
latter model. We consider two different examples of power-
stroke models and show that both predict linear force-
velocity curves with maximum forces consistent with our
data; although neither explain why the maximum speed in the
high-kinesin-density assay is decreased at high viscosity.
® Leibler and Huse model. Our results are consistent with
a model solved by Leibler and Huse (1991, 1993). A crucial
feature of this model is that the time spent in the force-
generating, “strongly-bound” state does not increase with
increasing load: the decreased speed at high load is not
caused by a slowing of the hydrolysis cycle but, instead, is
caused by a decrease in the distance moved while the motor
is in its force-generating state. The model predicts (via their
Eq. A32) a linear velocity-drag force relation with (F),, =
Kb/t k, and (v),,, = &/t_. If k,5, the rate of leaving the strongly
bound state, is rate-limiting for kinesin, as Leibler and Huse
argue, then ¢z, = 1/k,; and values for (F)_, and (v)_, con-
sistent with our data are obtained with k = 0.5 mN-m™}, §
= 8 nm, and 7. = 14 ms (this is not a unique solution because
6 need not equal d). Even though the Leibler and Huse model
makes the unrealistic assumption that there is a continuum
of binding sites along the surface of the microtubule, it seems
reasonable that the model could be extended to incorporate
discrete binding sites: a spring constant of 0.5 mN/m means
that only 1 kT of thermal energy is required to stretch
the motor through 4 nm, the minimum distance to the
nearest binding site (in one direction or the other) if the step
size is 8 nm.

® Escapement model. Our results are also consistent with
a model in which the time spent in the force-generating state
depends on load. Specifically, we assume that the motor must
move the microtubule through a distance equal to the step
size (d) before leaving the force-generating state: completion
of the biochemical reaction requires completion of the me-
chanical motion, analogous to the escapement mechanism of
a clock (Huxley, 1981). This gives rise to the so-called Fenn
effect (Bagshaw, 1993): the smaller the load, the greater the
speed, and the greater the hydrolysis rate. This model is also
solved in Appendix C: our measured maximum force of 4 pN
is consistent with the model with xk = 1 mN-m~!, d = 8 nm,
and 6 = 10 nm (again these are not unique solutions because
8 could be larger and « smaller).

Efficiency of the motor

The work done per power stroke is on the order of (F)__ . d
(Appendix C), or 32 X 107! J for the escapement model.
Given that the free energy associated with ATP hydrolysis
under cellular conditions is about 80 X 102! J, our results
indicate that the efficiency of the kinesin motor is about 40%,
assuming that only one molecule of ATP is required for each

Force Exerted by a Single Kinesin Motor 777

step. The efficiency for the Leibler and Huse model is less
than that of the escapement model.

Functional implications

The ability of kinesin to generate high force, perhaps even
higher than that produced by myosin in muscle, is likely to
be an adaptation for the intracellular transport of vesicles.
The cytoplasm is so crowded by protein filaments that the
mobility of organelles is greatly impeded. Using fluorescent
tracer molecules of various sizes, Luby-Phelps et al. (1986)
have estimated that the pores between the structural barriers
in the cytoplasm are about 50 nm wide. Therefore, to drag
larger-diameter vesicles through this matrix, it is necessary
that kinesin generate sufficient force to push these structural
barriers out of the way. Because organelles are moved by a
relatively small number of motors (Miller and Lasek, 1985),
it makes sense that each motor can generate a large force.
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APPENDIX A. DRAG FORCES ON A CYLINDER
(NEWTONIAN CASE)

Cylinder near a wall

Here we collect some exact drag coefficients of relevance to in vitro motility
assays. Although these expressions are simple, they do not seem be generally
known in the biophysical literature; approximations to them (e.g., Brennen
and Winet, 1977) have been in wide use.

In a motility assay, a microtubule can be modeled as a long cylinder
(length L) whose axis is parallel to a wall and at a height A above it. The
fluid motion can be treated as creeping flow (i.e., vanishing Reynolds num-
ber). Because the cylinder is very close to the wall compared with its length
(L/h > 1), the drag per unit length is essentially the same as if the cylinder
had infinite length. We pause to elaborate on this assertion.

For the motion of an infinite cylinder, the viscous drag arises almost
entirely from shear dissipation taking place in the immediate vicinity of the
cylinder; primarily between the cylinder and the wall (see Fig. 10). The
viscous dissipation per volume falls off quickly, as the inverse fourth power,
far from the cylinder-wall gap. In our case, this gap is about 10 nm (Hunt
and Howard, 1993a). The localized dissipation implies that the total drag on
a microtubule thousands of nanometers long, close to a wall, is essentially
the same per unit length as if the length were infinite. Near the ends (tens
of nanometers away), the drag per length might be less, but the length itself
is unknown to this accuracy.

We risk belaboring this point because the situation is quite different when
no wall is present. In such a case, the velocity profile near the microtubule
falls off only logarithmically, and the drag per length of an infinite cylinder
is undefinable (see Section 2).

The drag coefficients c;, ¢ |, and c, denote the drag force per unit velocity
per unit length of an infinite cylinder near a surface. They apply to creeping
flow (i.e., vanishingly low Reynolds number), either steady or unsteady.
(A2), (A3), and (A4) were originally derived by Jeffrey and Onishi (1981),
and independently by F. Gittes. The cylinder radius is r, the height of the
cylinder axis above the surface is A, and the dynamical viscosity of the fluid
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FIGURE 10 Lines of constant dissipation per unit volume caused by an
infinite cylinder of unit radius (r = 1) moving parallel to its axis at a height
2r above a surface. The maximum dissipation is at the bottom of the cylinder.
Relative to this maximum, contours are drawn at dissipation values of 0.9,
0.8, ...,0.1, and they show that dissipation is highly localized in the fluid.

is 7). In the text, we use a capital Cp, C, and C, to denote the dimensionless
values (drag per unit length per unit viscosity) obtained by dividing ¢, ¢,
and c, by the viscosity 7.

For motion parallel to the cylinder axis,

¢ = 2am/cosh™'(k/r) = 2amyn{(h/r) + [(hr) — 17} (A1)

This expression is obtained in Appendix B: it is valid at any Reynolds

number if the flow is steady. It does not seem to appear explicitly in the
literature.

For motion perpendicular to the cylinder axis and parallel to the wall,

¢, = 4myoosh™\(h/r) = 2¢;. (A2)

For vertical motion, meaning perpendicular to both the cylinder axis and the
wall,

&=Uc,'-¢7} (a3)

where ¢, is given by (A2) and c, is the rotational drag coefficient, defined
as follows: for rotation of the cylinder about its axis with angular velocity
w the drag torque per unit length is c,wr’, with coefficient

¢, = 4wl — (/h7T. (A4)

To complete the set of drag coefficients, we note that from ¢; one can
directly estimate the drag torque T of a long but finite cylinder (L/A > 1),
rotating about a vertical axis located at a distance L, from one end and L,
from the other, with L, + L, = L. For an angular velocity e,

T=c,@l}+L)B3. (a5)

Unlike the preceding results, however, this corresponds to no exact fluid
solution.

Cylinder in an unbounded fiuid

When no wall is present, we have pointed out that the drag per length of
an infinite cylinder is undefinable (the “Stokes paradox™; see Happel and
Brenner, 1965). As a consequence, a finite cylinder in solution must be
treated as a finite three-dimensional object, with some overall drag coef-
ficient (longitudinal, transverse or rotational). For creeping Newtonian flow,
it is strictly speaking inappropriate to define a drag per unit length for a
cylinder in an unbounded fluid.

We use a I to denote total drag coefficients for a particle, in contrast to
the per-length drag coefficients given above. For a cylinder of length L in
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an unbounded fluid, with length-to-diameter ratio p = L/2r,

_ 2wl
_ 4wl
rJ. - lﬂp + 71’ (A7)
il
r= Inp+y, (48)

Iy and T', are the total translational drag coefficients of the cylinder for
motion along and perpendicular to the cylinder axis, respectively. For a
rotation with angular velocity @ about an axis perpendicular to the cylinder
axis, the drag torque is I',w.
maﬂ-wrreaimwrmwwandy,mnotmmhn,infaa,
depend on the axial ratio p = L/2r. Various approximations for these terms
are available. We used formulae from Broersma (1981, their Table I; note
o = In(2p), and our symbol y is In(2)—y in his notation; see also his earlier
calculations (Broersma, 1960a, b)). For p = =, these give limiting values
% = —0.114, y, = 0.886, and vy, = —0.447. A different calculation was
carried out by Tirado and Garcia de la Torre (1979; Table L, and 1980; Table
IL, where v, is denoted by 8, ) whose numerical results differ from and might
be more accurate than the formulae of Broersma. For p = o, they find similar
limiting values: y = —0.20, vy, = 0.84, and v, = —0.662. Other relevant
references can be found in Tirado and Garcia de la Torre (1979, 1980).

APPENDIX B. NON-NEWTONIAN DRAG FORCE

'We turn specifically to the calculation of drag force on a microtubule moving
parallel to its own axis near a surface. To find this force, one solves for the
pattern of fluid flow assuming an infinite cylinder. Doing this for a New-
tonian fluid, we will obtain the formula (A1) of Appendix A. However, the
fluid used in our experiment is non-Newtonian; the viscosity as measured
in a viscometer depends strongly upon shear rate in the low-shear regime.
Therefore, we will generalize the calculation to a non-Newtonian fluid flow.
Fortunately, for longitudinal motion one has simple shear flow, i.e., one
can write the velocity as «(x, y), where the xy-plane is perpendicular to the
cylinder. One can show (Astarita and Marrucci, 1974) that such flow can
be described as a “generalized Newtonian fluid.” As a consequence, if we
write the stress tensor as a vector o in the xy-plane, it is proportional to the
gradient s of the velocity u,
o =Ty,
This is just as for a Newtonian fluid, except that the generalized viscosity
7 depends on the shear rate s = Is|,
7= ().
The shear-dependent 7)(s) measured in a viscometer directly applies to the

drag flow of the microtubule moving near the wall. The fluid equation to
be solved for steady flow is V - o = 0, that is,

s=Vu

V - (1(s)Vv) = 0,

This equation is to be solved in the (x, y)-plane perpendicular to the cylinder,
for the velocity u(x, y) in the direction parallel to the cylinder. The boundary
conditions are that v = 0 on the wall, y = 0, and v = V on the cylinder,
2+ (y—hp=r.

We first note that in the Newtonian case, where 7 is independent of s,
(B1) simply becomes Laplace’s equation, V2 = 0. The solution with correct
boundary conditions is easily found by superposition of images,

ux, y) = (V2Xv, —v_)/cosh~Y(h/r), (B2)
v, = In[x? + (y = [A* — F]?)] (Newtonian case).

Integrating the shear stress 0 = 1ndudy over the wall at y = 0, one
obtains the drag coefficient ¢; given by (A1) of Appendix A. The
rate of dissipation of energy per volume shown in Fig. 1 A is given
by nl(dwax)* + (3v/ay)’].

s=1Vul. (B1)
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Turning to the non-Newtonian solution, we must solve equation (B1) for
a shear-dependent 7(s). As discussed in the text (see Materials and Meth-
ods), the viscosity ) rises to infinity at low shear, and can be fit either by
a model with a small yield stress or by a coastant plus an inverse power of
s; both include the divergeace at s = 0. However, the two solutions will only
differ far from the cylinder where o = o; the yicld-stress model will have
v become zero at this point. Becanse the yield-stress boundary condition is
awkward, we use the power-law form for our drag calculation:

7s) = me(1 + (sp/5)*™); (B3)

typical values are 7, = 80 mN-s-m™' and s, = 20 s™'. Although 1(s)
becomes infinite at small s, the actual drag force per area F = sv(s) does
£20 to zero as the shear s goes to zero.

Equation (B1) is a nonlincar partial differential equation. It was solved
numerically by conformally mapping the entire (x, y)-plane external to the
wall and cylinder to a rectangle, using bipolar cylinder coordinates (Morse
and Feshbach, 1953). The derivatives of v and 7 were approximated on a
rectangular grid in these coordinates, and a relaxation procedure converged
to the solution »(x, y) with increasing grid density. The result, for m = 0.75
in (B3), and with a cylinder axis-height-to-radius ratio of A/r = 1.43, was
a drag force on the cylinder per umit length of

RY) = V1 + (V/V)*7), B4

Co = 2umy V/cosh™'(h/r),

Vo = sor A(Visor).
The dimensionless function A(x) is a2 weak function of x, as seen from its
calculated values in Table 2. For V >» s, the first term in (B4) dominates,
giving a Newtonian drag using ¢;, with the high-shear-rate viscosity 7, as
in (A1) of Appendix A. For lower velocities, the power-law term in (B4)
cannot be neglected.

APPENDIX C. MODELS FOR FORCE
GENERATION

Filament-diffusion model

To derive a force-velocity curve, we make the assumption that the motor
releases the filament at onc binding site, and whea the microtubule diffuses
so that the next binding site (a distance d away in the direction of translation)
lines up with the motor, the motor rebinds and completes the hydrolysis
cycle. To obtain directed movement, we assume that the motor somehow
acts as a reflecting boundary (a pawl) to prevent filament movement in the
wrong direction. This assumption maximizes the speed for this class of
models. The solution for the mean time, £, to first capture is well known
(Berg, 1983):

£ I
2D~ uT’
where the second equality includes the relation D = kT/T (see Materials and
Methods). If the total duration of the hydrolysis cycle (1.) were simply equal

TABLE 2 Caiculated values of A = V/srvs. x = Vs, for
hir=143

x A(x)

0 1.29
0.01 132
0.1 141

1 1.63
10 203
100 273
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to £, then the average speed of microtubule movement

() =dit,

would diverge at low drag (I'—0). This is not consistent with our data (Figs.
6 B and 8). Therefore, we further assume that the hydrolysis cycle includes
a stationary phase, of duration ¢, during which no movement occurs and
which is therefore independent of viscosity and I'. Thus,

L=ty + 1t
Combining the above equations yields
1 ¢ ¢ TId

® 4 a uwr
In terms of the drag force (F,,,) = I'(v) (sec Eq. 3), this becomes upon
timinating I"

Fug) O
Flax (U
where
2T d
Flaw=—74 ad (Y= P

(F) oy is the extrapolation of the time-averaged force to zero speed (T — =,
(v) — 0), and (v)__, is the speed of translation at zero load (T — 0).

A motor-diffusion model

The average time, 1, for a spring of stiffness x to become stretched a
distance equal to the step size d as a result of thermal fluctuations is

_ I, [2=kr xd?

=5 w“"(ﬁ)
(Kramers, 1940, considering a profile like that of his Fig. 2 but with an
abrupt decrease to the right of point C) where I, in our case is the damping
coefficient of the kinesin head (Ty = 6z7 = 6 X 10 N-ssm ™ for r =
5 nm). Afier the motor binds with this strain, the microtubule will move;
the average time, ¢, for the motor-microtubule complex to relax back to the
unstrained state is approximately

-£[5)-

(for d > (kT/x)"?, derived from Wang and Uhlenbeck, 1945; Eq. 82) where
vy = 0577 is Euler’s constant. As above, we divide the cycle time into the
Various componests:
=ttt
where again £, corresponds to a stationary phase as discassed above. When
analyzing the speeds of microtubules of various lengths, we again obtain a
linear force-velocity curve with
2xd

: Pam= .

Lty In(2ud?/kT) + y

Note that because #; is proportional to viscosity, (v),_,, decreases with vis-
cosity independent of microtubule length.

Ve =

Escapement model

To solve this model, note that the moving phase of the cycle is completed
only when the microtubule moves through the distance d to the next binding
site; its duration, therefore, is

L= T/)3/3 ~d), (5>d).
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If there exists a stationary phase of duration £, then we can write
L=ttt
Once again, we derive a linear force-velocity curve, where the maximum
force is now
_ xd
=[5/ -d]

If & >> d, then the force and the velocity are constant during the moving part
of the cycle, and the maximum force is x3.

For the escapement model, the work done during the moving part of the
cycle is

2

W = k(5 — d) = (F)od - B(d/5),

where B(d/d) is a dimensionless function; B = 1, B(0) = 1, B’(0) = 0, and
B = 1 unless d/ approaches one. For example, if d = 8 nm and 8 = 10
nm, then B = 1.21. For a maximum force of 4.2 pN, and a step size of 8
nm, we obtain a mechanical work =34 X 10~ J, corresponding to about
8kT. The free energy available from ATP hydrolysis is ~84 X 1072 J
(calculated AG = AG° + RT I[ADP][PJ]ATP]) from where R is the
universal gas constant, and other values were obtained from Daniels and
Alberty (1975) and Bagshaw (1993) for pH = 7.1, pMg = 33, T = 37°C,
[ADP] = 0.02 mM, [P] = 2 mM, and [ATP] = 4 mM).

APPENDIX D. ERRORS ARISING FROM THE
NON-NEWTONIAN BEHAVIOR OF VISC-MIX

As mentioned earlier, the non-Newtonian behavior of visc-mix causes the
time-averaged drag force to depend on the profile of the instantaneous speed
during the cycle time. Thus, the force-velocity curve deduced from our
experiments is model-dependent. The force-velocity curve shown in Fig. 8
was derived assuming that the microtubule moves at constant velocity dur-
ing the moving phase of the cycle (z_), and is stationary during ¢, (Fig. 11
B). Had we assumed instead that the microtubule moved at a constant speed
throughout the cycle (Fig. 11 A), the right-hand curve in Fig. 8 (inset) would
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0 |
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0.2
0.1
0.1
0.05
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Speed (um/s)

—
[é,]
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o
Oﬁ 9

0.05 0.1
Time (s)

o

FIGURE 11 Three different speed profiles used to calculate the drag
forces shown in Fig. 8. (A) The speed is constant throughout the hydrolysis
cycle. (B) The speed is constant during the moving phase and zero during
a stationary phase. (C) The speed relaxes during the moving phase as would
be expected for a power-stroke model in which movement relieves the ten-
sion in an elastic element.
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be obtained; the force-velocity curve is still linear, and the maximum force
would be slightly higher at 5.2 pN. On the other hand, had we assumed a
power-stroke model with d = 8 nm and 8 = 8.6 nm, in which the speed
varied substantially during the cycle (Fig. 11 C), the left-hand curve in Fig.
8 inset would be obtained; the force-velocity curve is still linear and the
maximum force would be slightly lower at 4.1 pN. This force is a lower
bound because smaller values for 8 would cause the work to exceed the free
energy of hydrolysis. The average force is also relatively insensitive to the
step size &; (F),,, = 43 pNford = 4 nm and 6 = 5 om, and (F)_, = 4.0
pN ford = 16 nm and 6 = 17 nm. These results show that the time-averaged
force necessary to propel a microtubule at an observed average speed is
relatively insensitive to the exact relation between force and time during a
cross bridge cycle. Our estimate for the maximum single-motor force lies
between 4.0 and 5.2 pN.
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