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The Movement of Spermatozoa with Helical Head:
Theoretical Analysis and Experimental Results

F. Andrietti and G. Bernardini
Dipartimento di Biologia, Universit& di Milano, Milano, Italy

ABSTRACT The present work is concerned with the study of the swimming of flagellated microscopic organisms with a helical
head and a helical pattern of flagellar beating, such as Xenopus sperms. The theoretical approach is similar to that taken by
Chang and Wu (1971) in the study of helical flagellar movement. The model used in the present study allows us to determine
the velocity of propulsion (U) and the frequency of rotation of the sperm head (fh) as a function of the frequency of the wave
of motion (ft) traveling along the tail. The results relative to the case of helical and planar flagellar waves are compared. Our
main finding is that the helical shape of the head seems to increase the efficiency of propulsion of the spermatozoon when
compared with the more commonly shaped spherical head. Experimentally measured values of fh versus U may be fitted by
a linear plot whose slope is much higher than that corresponding to the case of a planar flagellar beating. This fact is consistent
with an effectively three-dimensional (nonplanar) movement of the flagellar tail. However, the results do not fit those predicted
from a circular helix, suggesting that a different shape of the flagellar beating should be considered.

INTRODUCTION

Helical shape is a feature largely scattered among unrelated
microscopic organisms; fern spermatozoids, spirilla, some
Phytoflagellata, and Xenopus sperms are a few examples.
The analysis of their movement has been performed by
means of hydrodynamic (Lowndes, 1943; Brown, 1945;
Chwang et al., 1972) and mathematical models (Hollwill,
1966; Mysercough and Swan, 1989). One of the points
stressed by such studies concerns the contribution of the body
shape to the movement of the organisms. However, the works
mentioned were concerned either with the case of spirilla
(Chwang et al., 1972; Mysercough and Swan, 1989) or
Euglena (Holwill, 1966). A spirillar locomotory apparatus
consists of one or more bundles of flagella at the end of the
body, beating on a conical surface of revolution. Euglena is
not comparable with Xenopus sperms either in locomotory
apparatus or in body shape. Because both cases are different
from that presented by Xenopus sperms, this requires a quite
different analysis. In fact these organisms are very thin cells
with a corkscrew shape of the head and a helical, three-
dimensional flagellar beating. They move following a path
which is, at least approximately, straight.

The aim of the present work is to investigate the movement
of Xenopus spermatozoa by making use of a simple theory
and to relate the results of the theoretical study with the
experimental data obtained by the video recording of the
swimming of the sperms reported in a previous paper
(Bernardini et al., 1988), in which a description of the ex-
perimental method used in this study appears.

THEORY

Helical flagellar wave

We will consider the case of a sperm moving uniformly with
a translational movement U and rotating around its axis with
an angular velocity Qh. Dealing with helical structures, it is
suitable to use cylindrical coordinates. We will consider a

system of such coordinates, (r, 0, x), fixed to the sperm head,
with the origin in the point of attachment of the tail and the
x-axis coincident with that of the head and the tail, pointing
toward the end of the tail (Fig. 1).

In these coordinates the head is described as

r = hh O= -khx, (1)

where hh is the head radius, kh = 2ir/Sh is the head wave

number and ah its wave length.
In the same coordinate system the flagellar tail movement

is described as

r= ht

0 = kx + (flt - Qh)t = ktx + (ktc, - fh)t
(1')

where ht is the radial amplitude of the helical wave of the tail,
St its wave length, k, = 2'ni8, the tail wave number, fl, the
velocity of rotation of the flagellar tail with respect to a fixed
frame of reference, Qt - fh the apparent tail angular ve-
locity, and ct = Qit/kt the phase velocity of the wave ofmotion
traveling along the tail.
By applying the Gray and Hancock theory (1955) to the

case of helical structures we have for the tail (Chwang and
Wu, 1971)

Ft,n= Ct,n(ktCt- Qh)ht - Uktht] dx
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(3)

and

dFt s = CI,J(k,C, - flh)ktht' + U] dx (4)

where Ft,n Ft,s Ct,n9 Ct are the tail normal (n) and tangential
(s) forces and coefficients of resistance, respectively.
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FIGURE 1 Schematic diagram of a sperma-
tozoon with a helical head and a helical flagellar
tail. For explanation of symbols and values of
parameters see Table 1. /
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(3')

By analogy, we obtain for the head

dFh,n = Ch,n-fQhhh -Ukhhh]dx

and

dFh,S = Ch,j Q-fhkhhh + U]dX

with an obvious meaning of symbols.
The propulsive force dFt,, originated by an element ds of

the tail in the direction of the x-axis is given by Chwang and
Wu (1971) as

dFx = (dFt,nsin ,t - dFt,sCOs t) (5)

where At is the angle between the tail and the x-axis given
by

Taking into account the relationships

COS pt = (1 + K2)-1/2, sin t = Kt(l + Kt2)1

where K, = htlc,, we find by Eqs. 3, 4, 5, 7, 8,
rnt8

Ft,X = J dFt,x dxx

(4')

(10)

= Ct,sn 8[(kct- )h K42 - U(2K12 + 1)](1 + Kt2)1t2

rnt 8

Mtx= dM4 dx

= Ct,snt8tht[UKt + fhht(2 + Ktt) - K1(2 + Ktt)ct]

tan = (2r1cT/)h, = ktht, (6)

whereas the force in the e direction is given by

dFx = -(dFt,ncos P3t + dFt,ssin 1t)

which, in turn, gives a moment of force about the x-axis

dMt,X = htdFt, = -ht(dFtncos igt + dFtssin Pt) (7)

The total propulsive force and torque is given by integra-
tion of Eqs. S and 7 between x = 0 and x = ntst, where nt
is the number of flagellar wavelengths.

According to Gray and Hancock (1955), the force coef-
ficients are given by

C;n = 2Ci,s i = t, h

Ci's = 2i,m/[ln(28j/bj) - 0.5]

(8)

(9)

(11)X(1+K2)-12

By similar reasoning we find

rnh ah
Fh,x =J dh, d

(10')

Ch,Snhh [-fhhhKh -U(2Kh2 1)](1 Kh2) 1/2rnh ah
Mhx= dMh,x dx

Kh2)](1+K2
(11')

= ChS nhkhh[UKh + f4hh (2 + Kb2)] (1 + Kh2)112

with obvious meaning of symbols not yet defined. Observe
that Fh,x and Mh,x have the meaning of head viscous drag and
torque, because of the head translational and rotational
movement, respectively.
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Swimming of Sperm with Helical Head

Finally, we have to consider that, as long as the sperm body
rotates around the x-axis with the angular velocity fh, every
cross-section of the helical head also rotates around the
tangent of its central curve (i.e., a line passing through the
center of each cross-section), giving rise to an additional
viscous torque Lh. The same is true for the tail, which gives
rise to an additional viscous torque L, (see Chwang and Wu
(1971) and their Fig. 2). These additional torques are small
compared with Mh,x and Mt, x and they are given here only for
sake of completeness. The x-component dLtx of the infini-
tesimal torque of a cylindrical tail element of radius b, is
given by Chwang and Wu (1971) and Lamb (1932).

dLt X = 4'ujbt 2fl Cos ftdx

where ,u is the viscosity coefficient, so that

4 x f dLt x = 4,r(3bt2hnt8tCOS At (12)

Analogously we find

4h X = 4'nUbh2fhnh6hcos 3h (12')

The balance of total forces and moments in the x-direction
requires

Ftx + Fh,x = 0 (13)

Mtx + Mh,X + Lx+Lhx = 0 (14)

By Eqs. 13, 14, 10-12, and 10'-12' we obtain

A1,5 U + Al1,2(h = Ctsnt8tKt2Ct(l + Kt2) 112
(15)

A2,1U + A2,2Qh = Ct,sntt + K2)h1t2 Kt(2 + 1t2)ct

where

AC,1= C,ntt6(2Kt2 + 1) (1 + K 2)-1/2

+ Ch,nh8h(2Kh2 + 1) (1 + Kh2)-1/2

Ais = Ctsnt8thtKt(1 + Kt2) 112 + Ch,snh&hhhKh(l + Kh2)1/2

A2,1 = Ctsnt8thtKt(1 + Kt2)-112 + Ch,snh8hhhKh(l + Kt2)-1/2

A2,2 = Ct,snt8tht2[2 + 1t2 + C (h (1 + Kt2)-1/2
LCh,Snh[2 + Kh +Ct,s ht,J

+ Ch,sn,hhhhL2 + Kh2 Chj(s 2+hKh2

Resolution of Eq. 15 allows determinatii
values lh and U.
A different expression for the force coef

by Lighthill (1975, p. 52) is the following
on Eqs. 8 and 9.

81Tg
Ci,n ln(0.0324 i2/bi2) + 1

Ci,S ln(0.032482/bi2)-1

The use of force coefficients given by Eqs. 8'-9' gives rise
to formulae not reported here, which are only slightly more
complicated than the previous ones.

Planar flagellar wave

In the case of a planar wave the flagellar movement does not
induce a torque. However, if the head has a helical shape, an
indirect torque is produced given by Eq. 11' or, more gen-
erally, leaving coefficients Ch,., and Ch,S free to assume in-
dependent values

Mh,X= nh hh 2(1 + Kh2)-1/2

X [(Ch,n - Ch,S)khU + (Ch,n + Ch,sKh2)fh]
(16)

Because of the rotation induced by the head, the tail
will rotate around the x-axis with the angular velocity fl
=- h' producing a viscous torque M' . The rotation of
the tail generates a force perpendicular to each tail ele-
ment ds given by

dFt,n = Cts,n Vt,0dS (17)

where Vt,,, the velocity of rotation of each element ds, is
given by y,f yt(x) = htsin[k,(x + ctt)] is the form of the
wave generated by the tail conforming to a sine curve, and

ds = [1 + (dytIdx)2]112dx
From Eqs. 17 and 18 we have

(18)

m = fdM't dx = T&Ytctnvt41+ (dx)21l2

= Ctnht2fl sin[k(x + ctt)]t

X (1 + h2k2Cos2[lk(x + ctt)])1' dX

The above integral is in general time-dependent, because
nt is a non-integer number. However, if we average the dif-
ferent values of the moment during a given period of time,
phase differences will cancel and the resulting average value
of the moment (M'tx) will be given by

rS
(M',x) = ntCt, ht2f J sin2ktx[1 + ht2kt2Cos2(ktx)]112 dcx

xuhprp n,jvv thL1 iCnatlLrlaLlu atL = n anA ie;i1iWllMlC llUW t11U Hilotgral is calculinc UL'11-U anu is mnue-
on of the unknown pendent of time.

The evaluation of the above integral cannot be given in
ficients developed closed form, but it may be expressed by means of elliptic
;, which improves integrals. However, an approximate value may be obtained

taking into account that cos2ktx = 1/2[1 + cos(4'r/5)x]. The
second term in the brackets may be ignored in a first ap-

i= , h (8') proximation, given that its contribution to the integral will be
less than the first term. Substituting cos2krx 1/2in the square
root of the integral, find

i= t,h (9') (Mrx) -(nt2)Ct,nh fl8t[l + K12/2]1/2 (19)
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A second viscous torque to be taken into account is again
that generated by the rotation of each tail and head cross-
sections around the tangent of its central curve, given by Eqs.
12 (when cosp,B = 0) and 12', respectively.
The balance of all moments requires

Mh,X + (Mtf,x) + Lt,x + Lh,x = 0 (20)

In a planar flagellar beating the presence of an additional
torque perpendicular to the plane of the flagellar movement
should be considered. In the simplified model of Gray and
Hancock (1955) that we are following here, this additional
component is disregarded. It has been taken into account,
instead, in more elaborate treatments such as that given by
Higdon (1979). Because of this additional moment, the tra-
jectory of the organism during one cycle of flagellar beating
is represented by a yawing motion rather than by a straight
line. However, for any symmetrical wave of flagellar beating
such as that considered here, the organism has no net rotation
over a whole cycle of flagellar beating, and the trajectory is
symmetrical with respect to the direction of movement.
Moreover, it has been shown (Higdon, 1979) that, at least in
the case of organisms with a spherical head, when the ratio
between the radius of the head and the length of the flagellar
tail is higher than 20, the use of the force coefficients of Gray
and Hancock (1955) gives results accurate to within 10%. In
our case we are dealing with helical heads. However, the ratio
between the flagellar length and the "equivalent" spherical
head radius (see Table 1) is higher than 20. Moreover, the
yawing motion should be less in the case of a more elongated
helical head than in that of a spherical one. For all these
reasons we will disregard the torque perpendicular to the
plane of the flagellar beating, because this error is certainly
not greater than and is probably even less than those inherent
to any model based on the resistive-force theory.

By substituting Eqs. 16, 19, 12, and 12' in Eq. 20, we
may easily derive the following linear relationship be-
tween U and fQ

fl _ (Ch,s - Ch,nf)nh6hKhhh
U {I} (21)

where

{ } = Ct (nt/2)5t[l + (Kt2/2)]112(1 + Kh2)1/2
+ nh6h[4TiLbh + hh2(Ch,n + ChSKh2)]

+ 4,uib12n6t1(1 + Kh2)1/2
To evaluate fl and U, the balance of the propulsive forces

and resistances is also required. From Gray and Hancock
(1955) we find that the total propulsive force along the x-axis
is given by

ItSlt[ A2 1

ct(Ct,n- Ct,s) [(1 + A2)/2J dX

u(ufL A2)1/2 dx=]=I UL

where A = dyt/dx = Ktcos[k,(x + ctt)]. The integrals I and
L, when averaged with respect to time, may be calculated as

(= nt (Ct,n- Cts) (1 + Kt2Cos2ktx,12]

J= Ct,s + Ct,n Kt2cOs2kdx() (1 + Kt2cos2kx)1 2

(22)

(23)

TABLE 1 Meaning of symbols and values of experimental data

Wi
Fj,.; Fis~; Fj,.; Fi,9
MC,.
Ci,.; Ci,t
Pi
kik
Ki
Li,.

I, (flagellar length)
at (flagellar wavelength)
n, (number of wavelengths along the flagellum)
ht (wave amplitude of the flagellar wave central curve)

b, (flagellar cross-sectional radius)
'h (helical head length)
6h (helical head wavelength)
nh (number of wavelengths along the helica head)
hh (wave amplitude of the helical head central curve)
bh (helical head cross-sectional radius)
fh (frequency of gyration of the helical head)
f (frequency of flagellar movement)
f (apparent frequency of gyration of the tail)
a (radius of the equivalent spherical head)

* Bernardini et al. (1988); all other data are from unpublished results.

= index related to the flagellar tail (t) or the sperm head (h)
= angular velocity
= normal, tangential, x-directed and 0 directed forces
= torque component in the x-direction
= normal and tangential force coefficients
= angle between helical tail or head and x-direction
= wave number = 2ir/S
= h.k.
= torque induced by the rotation of each cross section of tail

or head sections around its central curve
= 40 ,um*
= 19.2 ,Am
= 1.22
= (lt - nt2)"'2/2-rnt = 4.3 ,Am, for helical waves
= (,/w/<)[Rt/(nt,8t - 1)1/2 = 3.6 ,Am, for planar waves
= 0.1 ,um
=22 ,m*
= 9.2 ,um
= 1.5*
= (l- nh 8^)'/21mb = 1.82 ,um
= 0.4 ,um*
= 0.5 Hz
= 1.0 Hz
= 0.5 Hz
= [¾3/4bh2lih]3 = 1.38 ,im
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Swimming of Sperm with Helical Head

The balance of forces in the x-direction requires (I) -
U(L) + Fh,X = 0. When FhX is given by Eq. 10' generalized
to the case when Ch,fl and Ch,s are independent values, we
obtain from the balance equation

[(ChfKh2 + Ch,S) (1 + Kh2) 1f2nh8h + (L)]U (25)

+ [Khhh (1 + Kh2)Y2nh8h](Ch,n - Ch,s)f= (

where (1) and (L) are given by Eqs. 22 and 23, respectively.
Eqs. 25 and 21 allow determination of the unknown vari-

ables U and Q. The evaluation of integrals from Eqs. 22 and
23 may be given in terms of elliptic integrals. However, an
approximate value of these integrals may be obtained as seen
above. Ifwe substitute cos2ktx 1/2in the denominator of the
integrals from Eqs. 22 and 23, in a first approximation they
reduce to

(1) Ctnt-t(Ct-Ct,s)(Kt2/2)[1 + (Kt2/2)]-1/2 (26)

(L) ntIt[Ct,s + Ct,n (Kt2/2)]11 + (Kt2/2)]i12 (27)

RESULTS

As a result implicit in the use of resistive force theory, both
Qh and U depend linearly on the frequency ft of rotation of
the flagellum about the x-axis. This is also shown by the fact
that the parameter ct is present only in the right side of Eq. 15,
andf = ctkt/2-7r. Given thatft = ft/21r, also the "apparent"
angular velocity (Q of rotation of the tail, fl = -Qh =

2mf, - 2Tfh, depends linearly onft. The ratios fQ/Qh, Q/Qt
fQ/U and f1t/U, instead, are independent from ft.

In Fig. 2 (solid line, left axis) is plotted the value of
f/fh = Q/Qh versus different values of the flagellar length lt,
when the flagellar beating is as depicted in Fig. 1, i.e., shaped
in the form of a circular helix reversed with respect to that
represented by the helical head. The values of the other geo-
metrical parameters, corresponding to the flagellar tail and
head of Xenopus spermatozoon, are given in Table 1. Co-

Pm
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f/fh 1.5 ht
2
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0.51

25 * 30 35 40 pm
it

FIGURE 2 f/fh versus It plots (solid line, left ordinate axis) and h, versus
1, plot (dashed line, right ordinate axis). The * indicates the flagellar length
giving the samne value off/fh found experimentally (see Table 1). Helical
flagellar pattern as in Fig. 1, Gray and Hancock (1955) force coefficients.
See text for further explanations.

efficients 8 and 9 from Gray and Hancock (1955) have been
used. We see that at the experimental measured value of the
flagellum, -40 ,um (Table 1), the "apparent" angular ve-
locity of the tail is -20% of "h. From measures based on
photographs taken from video recordings of Xenopus sper-
matozoa, the two velocities showed, on the contrary, similar
values (Table 1). According to Fig. 2, this result may be
obtained with a reduced tail length of about 28 ,um (* in Fig.
2, solid line). A possible reason for the discrepancy between
the observed and calculated tail length will be discussed fur-
ther on. Observe that at the reduced tail length the radial
amplitude of a helical wave calculated according to the for-
mula given in Table 1, still maintaining the same value of St
and nt, is reduced from more than 4 ,um to -2 ,um (dashed
line, right axis).

Fig. 2 also allows us to determine Qt/Qh = Q/Qh + 1,
or flt/fl; in this way the frequency ft of rotation of the
flagellum around its x-axis, a quantity indirectly observ-
able, may at least in principle be estimated (see Discus-
sion section).

In Fig. 3, A and B is plotted the ratiofh/U versus different
values of It, in the case of a helical (A) and a planar (B)
flagellar wave. The values of the other geometrical param-
eters are those of Table 1. Curves (GH) are calculated using
Gray and Hancock (1955) coefficients 8 and 9. The other
curves are calculated according to different force coeffi-
cients. In curves Li and L2 the coefficients Ct,n and Ct,S have
been determined according to Lighthill's (1975) equations
(Eqs. 8', 9'), which give a ratio C1,Xt,n = 0.66. However,
both Gray and Hancock's (1955) and Lighthill's (1975) for-
mulae hold only when kihi << 1. This may be true for the
flagellar tail, not for the helical head with the parameter val-
ues given in Table 1. For arbitrary values of khhh, Ch,S/Ch,n
may have a value somewhat higher than 0.5 (Brokaw, 1970).
For this reason we have used values that are both larger than
0.66, i.e., -ChS/Chn = 0.7 (Li) and ChS/Chfn = 0.8 (L2). These
values, even if arbitrary, may give an idea of the effect of
increasing the ratio of the force coefficients. For the GH
curve of Fig. 3 A, we see that for the measured tail length of
40 ,u the value offh/U is about 0.4 gm- , against the value
of 0.21 pum-1 observed experimentally. However, for the
abovementioned value of It = 28 ,um (*) the theoretical value
decreases to 0.267 ,um/s, not too far from the experimental
data. In the case of curves Li and L2 of Fig. 3 A, the fit to
the experimental values is still worse.

In Fig. 4 is a plot of fhIU versus It when the direction of
rotation of the flagellum around the x-axis is inverted with
respect to the situation illustrated in Fig. 1, i.e., when the
flagellum has the same sense of rotation of the head. Observe
the great increase ofthe ratiofh/Uwith respect to the previous
case represented in Fig. 3 A (curve GH).

In Fig. 5 different linear plots of fh versus U are shown,
corresponding to a tail length of40 ,tm, calculated in the case
of helical (hw, hw') and planar (pw) flagellar waves, com-
pared with the curve fitted to the experimental data taken
from Fig. 6 of Bernardini et al. (1988). The ratio of the force
coefficients has been determined according to the Gray and
Hancock (1955) theory for hw and pw, and with an increased
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FIGURE 4 fh/U versus It plot for spermatozoa with an inverted helical
pattern of the flagellar beating. Gray and Hancock (1955) force coefficients.
Geometrical parameter values as in Fig. 2.

s-i

8

6

4

40 pm
It

FIGURE 3 fhlU versus l, plots for spermatozoa with helical head and
helical flagellar wave (A) and planar flagellar wave (B). GH, Gray and
Hancock (1955) force coefficients; *, flagellar length giving a fhU value
close to that found experimentally. Lighthill (1975) force coefficients for the
flagellar tail (Li, L2): Ch,S/Ch,n = 0.7 (Li), Ch,S/Chn = 0.8 (L2). Helical
pattern of flagellar beating in (A) as in Fig. 1. Other explanations in the text.

value of the force coefficient ratios, as in L2 of Fig. 3, for
hw'. This same increased ratio for the case of a planar flagel-
lar wave gives rise to a curve below pw, not represented
in the figure.

In Fig. 6 different plots off /U versus lt are shown. A first
one (hh), corresponding to a sperm with a helical flagellar
beating and a helical head, is calculated according to Eq. 15.
Observe that the curve reaches a minimum at about 33 gm.
Ifwe assume that the value off, is proportional to the energy

required to move the flagellum, this flagellar length should
be that which requires a minimum power for propelling the
spermatozoon. A second plot (hs), for the case of a sper-

matozoon with a spherical head with the same volume of the
helical one, is calculated according to Eq. 35 of Chwang and
Wu (1971).
The reason for the increase in the propulsion efficiency of

spermatozoa with helical heads, with respect to those pro-

vided with spherical ones, should be related to the fact that
the first kind of heads not only exert a resistive effect against

2

0 10 20 30 40 50

U .- 1

FIGURE 5 fh versus U plots for spermatozoa with It = 40 ,um: hw, hw',
helical flagellar wave; pw, planar flagellar wave; ec, curve fitted to ex-

perimental data (0). The force coefficients are calculated according to
Gray and Hancock (1955) for hw, pw; as in L2 of Fig. 3 for hw'. The
values of the geometrical parameters of the flagellar tail and head are those
of Table 1.

the fluid but also a propulsive one, owing to the rotation
induced by the helical movement of the flagellum, caused by
the head spinning in the fluid. In fact the experimental curve

(ec) of Fig. 5 matches very closely that of an "ideal" screw,
with the same pitch of the spermatozoon head, advancing in
the medium without slipping. In fact, this coincidence is only
casual, and the experimental curve should be the result of a

compromise between the situation of a spermatozoon with
helical flagellar waves (hw in Fig. 5), which spins much more
rapidly than the ideal screw, and that of a spermatozoon with
a planar flagellar wave (pw in Fig. 5), which spins much more
slowly.

In Fig. 6 are also shownf/U versus It plots in the case of
planar waves. One of them corresponds to a spermatozoon
with a helical head (ph), and is calculated according to Eqs.

pmr

1.2

0.8
fh /u

0.4

0
2!

pm1l
X 10 2

2.0

1.5

fh /U
1.0

0.5

25

40 Pm

LI

30

E | 5
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pm1i
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2.0

ft/U151h.

1.0

0.5
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~~~~hh
Ps

25 30 35 40 pm
it

FIGURE 6 f,/Uversus 1, plots for spermatozoa with: helical flagellar wave
and helical head (hh, hi), helical flagellar wave and spherical head (hs),
planar flagellar wave and helical head (ph), and planar flagellar wave and
spherical head (ps). Helical pattern of the flagellar beating: hh, hs, ph, ps,

as in Fig. 1; hi, reversed. Gray and Hancock (1955) force coefficients. The
values of the geometrical parameters of the flagellar tail and head are those
of Table 1.

21 and 25, making allowance for Eqs. 26 and 27. A second
plot (ps), concerning a spermatozoon with a spherical head
with the same volume of the helical one, has been calculated
according to approximate formulas given previously by Gray
and Hancock (1955). For planar waves the propulsion effi-
ciency of the tail does not reach any maximum in the range

of flagellar length considered, because it increases mono-

tonically with It. Contrary to what has been observed in the
case of helical flagellar waves, in the case of planar waves

the spermatozoa with helical heads are shown to be far less
efficient than those provided with spherical ones. This is
because, in such a situation, owing to the low speed of ro-

tation, the contribution of a helical head shape to the ad-
vancing of the organism is very low and it is not able to
counterbalance its increased resistance to the propulsive
force.
A last plot of Fig. 6 (hi) represents the case when the

direction of rotation of the flagellar beating is reversed as in
Fig. 4.

DISCUSSION

A rigorous analysis of the kinematics of Xenopus sperms'
motion should probably reveal that they move following a

helical path, like many other similar organisms. Their tra-
jectory should be characterized by their own pitch, radius,
and angular frequency and analyzed according to these pa-

rameters (see, e.g., Crenshaw (1989)). In fact, in a first ap-

proximation the trajectories followed by Xenopus sperms ap-

pear to be quite straight, and the present analysis will account
only for the two more important parameters that characterize
the sperms' movement, i.e., their translational and rotational
velocities (U and flh, respectively).
By inspection of photographs taken from video recordings

tude of the flagellum lateral displacement seems to decrease
or to increase slightly during rotation. This is not what we
would expect for a planar sinusoidal or circular helical flagel-
lar beating. However, it could be consistent with a flattened
helical pattern with an elliptical or oval y-z projection. Ob-
serve that to have a circular helix with a reduced value of ht,
by still maintaining the same value of at and nt, we have to
reduce the value of It as is shown in Fig. 2 (dashed line, right
axis). On the other hand, video recording or direct obser-
vation may not discriminate unequivocally between a planar
or a three-dimensional flagellar beating. In fact, because of
the rotation of the whole sperm induced by the head, even
a planar wave should "look" three-dimensionally shaped. An
indirect evidence of an effective three-dimensional flagellar
beating (Bernardini et al., 1988) should be confirmed on the
basis of the present theoretical analysis.

In general the rapid sperm motion prevents accurate and
quick measurements of (apparent) flagellar beat frequencyf.
However, when a lower mobility in a high-osmolarity me-
dium is induced (Bernardini et al., 1988), more reliable mea-
surements may be performed. From a series of video re-
cordings in such a situation we have observed that the
spermatozoon head shows a yawing motion. A similar os-
cillation has been observed in other cases in flagellate or-
ganisms (Holwill, 1965), and it could originate from a trans-
versal component because of asymmetries arising in the
course of the flagellar beating. We have already said that
such a yawing should be expected for a planar flagellar beat-
ing. In the three-dimensional case, the transversal component
should be less relevant, at least in the case of a circular helical
pattern of flagellar beating. It could be quite relevant, instead,
for a flattened or elliptical helix. In our case of induced slow
mobility, pitches showed a frequency of about 1 Hz, corre-
lated to a value of both f and fh of about 0.5 Hz. In this
condition the theory predicts f, = f + fh = 1 Hz. This fact
seems to indicate what we would expect, i.e., that the head
pitching is correlated to the frequency of rotation of the fla-
gellum around the x-axis. Because the evaluation of the yaw-
ing frequency is much easier to perform than the direct meas-
ure of the flagellar beating frequency, it may give a more
reliable method to determinef.

Microphotographs seem to show a direction of rotation of
the flagellum contrary to that observed in the head. This is
also what we would expect on a theoretical ground, to in-
crease the efficiency of the propulsion (Fig. 6, compare
curves hi and hh) and by comparing Figs. 3 A, and 4 and the
experimental curve (ec) of Fig. 5.

Experimental measured values offh versus U are fitted by
a linear plot that is intermediate to those relative to helical
and planar flagellar waves (Fig. 5), but nowhere close to
either of them. The difference between theoretical and ex-
perimental curves may not be attributed to the use of non-
suitable force coefficients, because according to other co-
efficient ratios thefh/U slope is still higher in case of helical
flagellar beating (compare GH, Li, and L2 of Fig. 3 A, and
hw and hw' of Fig. 5) and still smaller for planar flagellar
beating (compare GH, Li, and L2 of Fig. 3 B). The result of
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of Xenopus spermatozoa we have observed that the ampli-
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the present analysis is consistent with the fact that the flagel-
lar beating of Xenopus spermatozoa is effectively three-
dimensional and nonplanar. However, it is not consistent
with the assumption of a circular helical wave. Given that this
difference should not depend on the use of nonsuitable force
coefficient ratios, it could be attributed to a different geom-
etry of the (three-dimensional) flagellar shape. We suggest
here, as a possibility that we hope to explore in a future work,
a shape conforming to a flattened helix, with an elliptical y-z
projection.
A last point to stress is that, in the case of a (circular)

helical flagellar beating, the helical shape of the head seems
to increase considerably the velocity of propulsion of the
spermatozoon, with respect to the energy expenditure, com-
pared with the more common spherical shape, as we see in
Fig. 6 (curves hs and hh). On the contrary, in the case of
planar flagellar waves, a helical head decreases, instead of
increases, movement efficiency (Fig. 6, curves ps and ph).
Regarding helical and planar flagellar waves, the first ones
seem to be far less efficient than the second ones, in the case
of spherical heads (Fig. 6, curves hs and ps). This result is
the opposite of that shown by Chwang andWu (1971) in their
Fig. 10. However, the conditions are not comparable, be-
cause the parameter values of Table 1 are very different from
those giving optimal results for helical waves. Instead, in the
case of helical heads, there is no definite advantage, in terms
of efficiency, in having planar or helical flagellar waves (Fig.
6, curves hh and ph); for higher values of tail length there is
a greater efficiency with a planar wave, for smaller values,
on the contrary, with a helical one. This result does not

change, at least qualitatively, when using different force co-
efficients (plots not presented here).
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