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Local Modes in a DNA Polymer with Hydrogen Bond Defect

V. K. Saxena and L. L. Van Zandt
Department of Physics, Purdue University, West Lafayette, Indiana 47907 USA

ABSTRACT Vibrations of a homopolymer DNA with localized hydrogen bond defects have been examined using the recently
developed decaying mode theory for long-chain polymers with local structural defects. For a poly(dA)-poly(dT) homopolymer
having perturbed hydrogen bonds in one base pair, a localized mode at 63.2 cm-' has been found. This mode has a very nearly
pure H-bond stretch or "breathing" character, although the backbones do not separate. This agrees in frequency with a similar
result found by other authors using a different approach. We search the full microwave frequency range for other local modes
for several models of weakened H bonds. Besides the local mode with breathing characteristics, local modes with other char-
acteristic motions were found, but only for asymmetrically perturbed bonds. We find in general that local modes are not very
robust, requiring quite specific, narrow ranges in parameter space. They are also not abundant, there being only three in our
most prolific model.

INTRODUCTION

Atomic and collective motions are fundamental in under-
standing the physical and biological behavior ofDNA poly-
mers. In a perfect infinite-chain polymer, due to the inherent
helical symmetry, these motions can be described and ana-
lyzed in terms of propagating normal vibrational phonon
modes of the system. The symmetry-based simplifications of
the dynamics are applicable only to homopolymers or co-
polymers with repeated subunit structures (Eyster and
Prohofsky, 1974; Saxena and Van Zandt, 1992). In real bio-
logical systems and most of the experimental samples nor-
mally used for spectroscopic studies one in general has DNA
polymers with a variety of structural variations and defects.
The helical symmetry of a homo- or co-polymer is broken by
the presence of such structural variations or defects. The
system can then support, along with the ordinary propagating
modes, localized vibrational modes with atomic or collective
motions confined to the defect and the neighboring region of
the polymer.

There has been interest in the localized motions of DNA
polymer for some time (Putnam et al., 1981). The problem
is of considerably greater computational difficulty than the
case of propagating modes. We have recently developed the
theory and computer codes for studying the dynamics of local
structural defects on otherwise perfect polymer chains. This
method exploits the existence of exponentially decaying
modes along the polymer chain on either side of the central
defect site (Saxena et al., 1991a). We shall refer to these as
the "one-sided" solutions. Application of appropriate bound-
ary conditions at interfaces between defect region and un-
perturbed chain leads to solutions for modes with localized
motions. Unlike the Green's function methods (Kim and
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Prohofsky, 1986), which use integrals covering the continu-
ous bands over the complete Brillouin Zone (containing vari-
ous singularities corresponding to in-band modes), this
method utilizes summations over a finite number of degrees
of freedom and may be computationally quite modest, de-
pending on the number of interactions across the defect-chain
interface. As a first simple application it was used to find
local modes on a semi-infinite polymer with a free end (Sax-
ena et al., 1991b). The mathematical and computational sim-
plicity of the method makes it useful for local-mode studies
for structural variations of any size or complexity.
The two strands of the double-helical DNA are held to-

gether in part by the hydrogen bonds across the base pair.
These hydrogen bonds play an important role in denaturation
of DNA, in turn related to its biological activity (Prabhu
et al., 1989). It has been shown that thermal fluctuations in
a DNA polymer can introduce localized variations in the
hydrogen bond force constants (Awati and Prohofsky, 1989).
This local alteration of hydrogen-bond strengths leads to a
localized structural defect and breaking of the helical sym-
metry. This creates a self-sustaining local vibrational mode
whose amplitude diminishes with distance from the defect.

In this report we take the local H-bond strength as a pa-
rameter. We present a calculation of the local mode due to
a weakened hydrogen bond defect as described above. We
have utilized our new method, analysis in terms of decaying
waves (Saxena et al., 1991b), to find the local-mode fre-
quencies and to examine the conditions for the existence of
local modes in the presence of such a defect. It is found that
the existence of a local mode is very sensitive to the values
of the weak hydrogen bond strengths. In the present discus-
sion we have restricted our calculations to a B-form poly-
(dA)-poly(dT), which has two hydrogen bonds in each
monomer.
We consider a polymer with the central unit cell (or mono-

mer) containing an adenine-thymine base pair and corre-
sponding sugar-phosphate backbones. It is assumed that the
two hydrogen bonds in this central monomer have strength
different from those of the rest of the chain.
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The model used for bonded and nonbonded interactions
has been discussed at length elsewhere (Saxena et al. 1989;
Saxena and Van Zandt, 1992). We use here the same model
as in the previous work. We would elaborate the main fea-
tures of the model and the interactions included in this cal-
culation. For the sake of completeness of presentation, we
will first discuss the theoretical model used for the normal
mode calculations of an infinite polymer chain, in absence
of any local defect. We will, then, describe the features
needed to be included in the theory to account for the pres-
ence of local structural defects.

Since 1971 (Small and Peticolas, 1971), the helical sym-
metry of the DNA homopolymer has been exploited for the
calculation of dynamical and other properties of the system.
The DNA and the associated, surrounding hydration sheath
can be viewed as a one-dimensional lattice with a unit cell
containing a complete monomer. The dynamics of a dis-
solved DNA polymer, along with the hydration sheath and
the counterions, can be described by a set of equations of
motion for the dynamical coordinates of the component at-
oms in a unit cell. Assuming partial site-binding condition for
the counterions (Saxena and Van Zandt, 1992) as a most
general case, we assign mass-weighted dynamical coordi-
natesHIO = x_MHI (a = x, y, z;l = 1, 2; and Mc is
the mass of a counterion; xcMc is the average coupled site
bound mass loading to the polymer) for the motion of the two
monovalent counterions within a unit cell. xC is a parameter
that defines the degree of site binding of the counterions.
(xC = 1 means the counterions are completely site bound,
whereas xC = 0 corresponds to a situation in which the coun-
terions are area bound when their charge and mass are as-
sumed to be uniformly distributed over the hydration sheath.)
HI' is the a component of the displacement vector H1 of
counterion 1. Then equations of motion of the system are
written as:

_o2qa = 2 D¢3 q + e'Ea- ioFi( -qj 8ip8,
i. ~~~~~~~~~~~(1)
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where w is the frequency of a mode of the system. qj (a(=
x, y, z)) are the components of the mass-weighted displace-
ment amplitude vector qi of atom i, defined by qi =

m1Sr1, with mass m1 and the corresponding coordinate r.,

water sheath, we represent its motion by a dynamical variable
s = \/a-s where s represents the displacement amplitude
of the near-water sheath containing the counterions. p =

po + 2(1 - x,)MJa is the linear mass density of the sheath
where po is the linear mass density of water sheath andM is
the counterion mass. a is the helix rise.
The first term on the right of Eq. 1 contains the contri-

butions to the dynamical matrix, within the harmonic ap-
proximation, from the bonded interactions (bond stretch,
angle bend, and torsion) between polymer atoms. This term
also contains contributions from the direct Coulomb and the
Van der Waals interactions between the pairs ofDNA atoms
within a unit cell, and contributions from the Van der Waals
interactions between pairs of DNA atoms within the central
monomer and the nearest-neighbor monomers on either side.
A dielectric constant of 2.00 was used for direct Coulomb
interactions within a monomer, and the partial atomic
charges were taken from the calculations of Miller (1979).
Collection of all these forces is contained in the force-
constant matrix D,.
The third term on the right of Eq. 1 incorporates the damp-

ing forces at the polymer-solvent interface, with a similar
term in Eq. 3, the equation of motion for the water sheath.
Eq. 3 also contains the term -iw '- for damping at the sheath-
bulk water interface. The first term on the right side of Eq. 3
represents the elastic contribution to the sheath motion. vW, is
the sound wave speed in bulk water, and q the wave vector
for propagation of the disturbance along the DNA-solvent
system. Ti =\ aap/mj. Kronecker deltas 8, and 86z restrict
the damping forces at the DNA-sheath interface to the cou-
pling of the z component of the motion of phosphorus atoms
on the two backbones with longitudinal motion of the sheath.
The damping parameter j', for the sheath-bulk water cou-
pling, is derived from the viscosity of bulk water (Dorfman
and Van Zandt, 1984).
The last terms on the right of Eqs. 1 and 2 describe the

motion of the counterions. The last term in Eq. 1 contains the
elements FOO of the force constant matrix of direct interac--
tions between counterions and DNA polymer. A similar,
equal and opposite term appears in Eq. 2 for the motion of
atoms in the DNA monomer. These are action/reaction pairs.
We have introduced a damping term, second term in Eq. 3,
between the z-motion of the counterions and the motion
of the water sheath. The constant F in this term couples
the z-motion of the counterions with the water. An elemen-
tary calculation based on the DC conductivity of ionic so-
lutions shows that F is so large that they move together al-
most perfectly as if the counterions were glued to the water.
1c = ap/Mc.
The last term in Eq. 2 is the force contribution arising from

counterion-counterion interaction. As the two counterions,
on opposite sides of the monomer, are far apart, this term
involves relatively smaller contributions.
The nonbonded, long-range interactions between distant

parts of the polymer and corresponding counterions on dis-
tant monomers are accounted for in terms of the effective
electric field E (Saxena et al., 1989; Saxena and Van Zandt,
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1990) with components E0 acting on the partial atomic
charges on the polymer atoms and the counterion charges
within the sheath. In Eqs. 1 and 2 the local field terms contain
the scaled charges ei = ejiI/m where e; is the partial charge
onDNA atom i within a monomer. e' = ec/X/i-ic is the scaled
charge on a counterion. A= A/ where- = -iei-
2xceC is the total average charge, of the area-bound part of the
counterions, within the water sheath. As before, we have
assumed complete charge neutrality within the molecule-
sheath system. Poisson-Boltzmann theory indicates that this
assumption is correct to about 95%.
The local field E is determined from the geometry of the

system as solutions of Maxwell's equations and satisfy ap-
propriate boundary conditions at the DNA-sheath and
sheath-bulk water interfaces. The radial and longitudinal
electric fields Er and Ez turn out to be given by Bessel func-
tions. In the case of dissolved DNA polymer considered here
the appropriate Bessel functions are Hankel functions of the
first kind. The radial and longitudinal fields have the form:

Ej(q, r) = E1(q)H'(Kr) (4)
and

Ez(q, r) = EO(q)H'(Kr) (5)

whereH are the Hankel functions. K iS given in terms ofwave
vector q and frequency w of an excitation along the polymer
chain, the dielectric constant Eout and DC electrical conduc-
tivity or of the hydration sheath as

K = {-q2 + Eo0tIoW02 + iO,ILoL0}112. (6)

where ,uo is the constant of magnetostatics. The amplitudes
E1 and Eo are determined by the boundary condition at
the interface between hydration sheath and the bulk water
at r = r1 where r1 is the radius of the hydration sheath taken
to be 13.1 A. (This corresponds to bare DNA surrounded by
a one-molecule-thick layer of water). These boundary con-
ditions (for details see Saxena et al., 1989) give expressions
for the E field amplitudes in terms of the local polarization
density vector P. Finally, the longitudinal and radial com-
ponents of the fields are given by:

1 1
Ez(q, w) = Z

P (7)
Ein P(K,W) -1

and
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where Ein is the dielectric constant in the sheath region. Pz and
P, are the longitudinal and radial components of the local
polarization density vector P, which is given in terms of local

atomic displacements as

= 2rr ea[ eri + xcec HI -£sX1. (10)

The effect of the surrounding polarizable aqueous medium
is accounted for by means of a frequency-dependent dielec-
tric constant and elastic properties known from the speed of
sound in water (Saxena and Van Zandt, 1990). The
frequency-dependent dielectric function of the medium
Eoutco is given by Pethig (1979):

EDC - E (
E.., (0) =-1 + *wT + E., (11)

where E]c and E. are the zero-frequency static dielectric con-
stant and infinite-frequency dielectric constant of the aque-
ous medium, respectively. Ts is the dielectric relaxation time
of the solvent medium, 7.9 x 10-12 from the most recent
value reported from microwave absorption measurements
(Garner et al., 1989). This gives the range of most rapid
variation of Eot -50-100 cm-'. Again, these matters have
been described earlier (Saxena et al., 1989; Van Zandt and
Saxena, 1989; Saxena et al., 1991a).
The frequency dependence of the local field terms and the

damping terms renders the set ofEqs. 1-3 nonlinear in o2 and
makes them difficult to solve by direct diagonalization. We
have calculated the spectrum of B-form homopolymer poly-
(dA)-poly(dT) DNA within this model using an iterative pro-
cedure to get self-consistent eigenmode frequencies and cor-
responding eigenvectors for each of the modes separately.
From the spectroscopic point of view (i.r. absorption) one
needs to calculate the normal mode spectrum only at the zone
center 0 = 0° and at 0 = 360 where 0 = qa is the phase angle.
For the frequency-independent parts of the force constant
matrix DO, the damping coefficients, the sound speed for
bulk water, and the values of a and r1 in the effective field
terms we used the same set of values as in our earlier cal-
culation (Saxena and Van Zandt, 1990). Brillouin scattering
studies ofDNA and its hydration shell (Tao et al., 1988) show
that the dielectric relaxation time within the first hydration
shell is 4.0 X 10-l s. In accord with this in Eqs. 7-9 we have
used a value of 2.0OE for Ein the dielectric permittivity of the
cylindrical region containing the DNA helix and the primary
hydration sheath. In Eq. 11 for EDC we have used a value of
68.0OE corresponding to water with a counterion concentra-
tion of about 15%. E., was taken to be 1.77Eo from the optical
index of refraction.

Since we are mainly interested in the situation of a dis-
solved DNA polymer where the counterions mainly behave
as area bound (for a detailed discussion refer to our earlier
work on counterion effects, Saxena and Van Zandt, 1992),
in the present calculation we would be considering the case
XC = 0 corresponding to a uniform charge and mass loading
of the hydration sheath (Manning, 1979).

With the above considerations, for a perfect chain ho-
mopolymer the dynamics can be described by equations of
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motion written in matrix notation as follows (Saxena et al.,
1991):

[A + exp(iO)B + exp(-iO)BT - w2l]q = 0, (12)

where A is the N X N matrix of Hooke's law force constants
within a unit cell as described above. (N is the total number
of degrees of freedom in a monomer.) Matrices B and BT
represent the force constant contributions from the connec-
tions of the unit cell to the neighboring cell on both sides. It
is assumed that dynamical connections across the cell bound-
aries are of no longer range than one monomer spacing
(which means that the contributions to B are mainly from the
bonded interactions between pairs of atoms across the bound-
ary between neighboring monomers.)
Our ability to include this important part of the dynamics

is a distinct advantage of our treatment as compared with
earlier calculations. The dynamical problem can be solved by
direct diagonalization to obtain the mode frequencies and the
corresponding eigenvectors, which can be expressed as:

q(m) = q(O)exp(iOm). (13)
o is a relative phase angle, and m is an integer cell index.
These modes represent propagating harmonic waves on the
infinite polymer.
The wave solutions given by Eq. 13 assume periodic

boundary conditions appropriate to the translational sym-
metry. One can also construct other solutions satisfying dif-
ferent boundary conditions such as waves with finite am-
plitude at m = 0 and vanishing amplitude as m -> 00, written
as

q(m) = q(0)exp{(iO- A)m}, (14)
which decays to the right.

For a polymer with a symmetry-breaking defect such as
weak hydrogen bonds in a monomer, there will be solutions
with amplitudes exponentially decaying along the chain to
either side of the defect. The most general solution for the
unperturbed regions to the right of the defect can be ex-
pressed as a sum of solutions such as those of Eq. 14,

Q(m) = 2 b,q%(0)exp{(i0 - A)m}, (15)
A

where the AA describe the amplitude decay of component
waves. The allowed values for OA and AA can be found by
solving an algebraic problem as described in our earlier work
(Saxena et al., 1991). The number of allowed solutions for
these quantities strictly depends on the number of bonds
across the cell boundaries connecting the defect cell to the
semi-infinite chains on either side. This number turns out to
be very small as compared with the number of degrees of
freedom N in a monomer on a perfect polymer. For a ho-
mopolymer of adenine-thymine base pairs the total number
of degrees of freedom (including that for the surrounding
water sheath) is 124. It turns out that the number of per-
missible solutions for AA is 14 for each half of the chain.

One can also set down the equations of motion for the
central defect cell in a similar way including all the effects,
which can be written as:

[Ao - co2I]QO + BjQ(1) + B-1Q(-1) = 0, (16)
where Ao is the force constant matrix for the defect cell, and
Q0 is the vector representing the amplitudes of atomic mo-
tions within the defect. B1 and B-1 are the matrices for the
interaction of the defect atoms with the right and left halves
of the chain, respectively. The effects of symmetry-breaking
interactions at the defect-polymer interface are thus formu-
lated in terms of boundary conditions such that the net forces
on both sides are balanced, the simultaneous solutions ofEqs.
13 and 15. This leads to a set of conditions to be satisfied by
the solutions given by Eq. 14 and the solutions of the equa-
tion of motion for the defect cell. One of the important fea-
tures of this method is that the size of the final problem, i.e.,
the size of the boundary condition equation, is very small,
equal to the number of allowed AA irrespective of the size
either of the defect or the unit cell in the original perfect
polymer chain. Thus, once the one-sided solutions of the
unperturbed polymer have been found, various defects of
arbitrary size and configuration can be easily studied. The
boundary conditions are checked by scanning a wide range
of frequencies co of interest. When a frequency is found for
which the set of boundary conditions is exactly satisfied, a
solution exists having non-zero vibrations in the defect por-
tion and decaying amplitudes in the perfect chain halves to
either side. This, of course, corresponds to a local mode of
the system.
The procedure described above was used to find the lo-

calized vibrational modes on a poly(dA)-poly(dT) polymer
having a single monomer with weakened hydrogen bonds.
Various combinations ofweak hydrogen bond strengths were
examined.

This polymer has two hydrogen bonds N(1)-H-N(3)
and N(6)-H-0(4). The equilibrium length of the N-O
bond in a perfect infinite chain polymer is longer than that
of the N-N bond. As a consequence of this the N-O bond
is weaker than the other one. The force constants, which are
the second derivatives of the potential energy, for these
bonds can be calculated from the famous Lippincott-
Schroeder model (Schroeder and Lippincott, 1957; Schroll
et al., 1991). As the bonds are stretched due to increased bond
length, they become weaker and their force constants are
reduced. In poly(dA)-poly(dT) as the lengths of the bonds
increase, the stronger (in the perfect chain) N-N bond
weakens faster than the weak N-O bond. At some point
both N-O and N-N bonds may have almost equal lengths.
In that case the strengths and the corresponding force con-
stants for both bonds will be approximately equal, since they
lie in the same part of the potential energy curves. This,
therefore, leads to a variety of possibilities for the weakening
of the hydrogen bonds.
We performed calculations to examine the possibility of

local modes for different combinations of weak hydrogen
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FIGURE 1 Stereo-paired views of a monomer of poly(dA)-poly(dT)
DNA polymer with perturbed hydrogen bonds. Numbers 1-41 represent the
positions of the atoms of the defect cell with displacements corresponding
to the localized mode at 63.2 cm-'. Numbers 42-82 show the equilibrium
positions of the same atoms. The helix axis (the z axis) is perpendicular to
the plane of the figure and the two hydrogen bonds are almost parallel to
the y axis. This view clearly shows the stretched hydrogen bonds.A different
view, along the z axis, does not show substantial motion of the atoms.

bond force constants. For the case when both hydrogen bond
force constants were reduced to half their normal perfect
chain strength we found a local mode at 63.2 cm-'. This
agrees with Awati and Prohofsky's (1989) calculation for the
same mode. This combination of force constants for the weak
bonds can be considered as an average stretching of the bonds
such that they still have different lengths. A detailed analysis
of the eigenvector for the defect cell for this mode shows that
it has a strong hydrogen-bond breathing character. Interest-
ingly, however, the phosphate groups maintain the same
separation, so this motion is not merely a simple "breathing".
In Fig. 1 we display side-by-side stereo-paired images of the
equilibrium positions of base pair atoms and the positions of
the same atoms under the displacements corresponding to the
said eigenvector. Examinations and comparison of the two
situations displayed clearly show the character of the motions
of the atoms corresponding to this particular mode. The total
hydrogen-bond stretch amplitudes were found to diminish as
expected to either side of the central cell. This mode was
found to be a purely local mode; its frequency lies in the
forbidden band gap of the spectrum of the infinite-chain per-
fect polymer and is found to emerge from the band edge at
63.5 cm-'. Over the full microwave range (<200 cm-') no
other local mode was found to exist for this set of weak bond
strengths.

Very useful and instructive information about the local-
ized excitations is the distance over which they extend. As
is clear from the theory, each local mode combines a small
number (14) of different basis modes, each with character-
istic decaylengths, each ofwhich contributes to the localized

motionwith a certa~~in mltd eemne rmtebud

ary conditions. Analyzing the numerical data for the local
mode at 63.2 cm-', we find that there are 12 contributions
from the decaying waves whose amplitude drops very fast,
to about 1/3 the maximum amplitude, within only two nearest
neighbors on either side of the defect. In addition there are
contributions from two longer-range waves but with rela-
tively smaller amplitudes, which decay within 100 cells on
both sides. Overall the net effect is given by the linear com-
bination given by Eq. 15. For this particular mode it is found
that the shorter-range contributions are relatively very
strong, and the vibration amplitude essentially vanishes
within a few cells to either side of the defect cell.

The presence of this mode strongly depends on the choice
of the strengths of the weak bonds. When only one bond,
particularly the weaker N-O bond, is weakened and the
other bond is kept with normal infinite chain strength, the
local mode at 63.2 cm-' is not found. An extreme case is
when one bond, the weak N-O bond, is completely broken
and the other bond is left unperturbed. In this case no local
mode with hydrogen-bond breathing character was found.
However, another local mode was found at 72.4 cm-' with
strong propeller twist motion in the central defect cell, again
diminishing on either side of the defect cell. Repeated cal-
culations for a variety of weak bond strengths showed that
the strong hydrogen-bond stretch local mode exists only
when both hydrogen bonds are weakened simultaneously.

TIhe hydrogen-bond stretch local mode found at 63.2 cm-'
agrees with similar local modes found by Awati and Pro-
hofsky (1989) in the frequency range of 63.9 to 66.7 cm-'
for a B-form poly(dA)-poly(dT) DNA. However, there are
certain differences in the hydrogen-bond strengths used by
these authors and those used by us. Another item agreement
between our calculations and those of Awati and Prohofsky
(1989) is the nonexistence of any other local mode for the
particular combination of the weak bond strengths. However,
these authors have not explored other different possibilities
for weak hydrogen bonds as we have described above. From
our analysis one of the most important facts we find is that
for the existence of large-amplitude hydrogen-bond stretch
local mode there is some minimum size of perturbations re-
quired. The existence of any local mode is extremely sen-
sitive to the way the hydrogen bonds are weakened.

This work was performed under the Office of Naval Research, Contract
N00014-91-S-1703.
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