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Solutions for Transients in Arbitrarily Branching Cables:
11. Voltage Clamp Theory

Guy Major, Jonathan D. Evans, and J. Julian B. Jack
University Laboratory of Physiology, Oxford, OX1 3PT, United Kingdom

ABSTRACT Analytical solutions are derived for arbitrarily branching passive neurone models with a soma and somatic shunt,
for synaptic inputs and somatic voltage commands, for both perfect and imperfect somatic voltage clamp. The solutions are
infinite exponential series. Perfect clamp decouples different dendritic trees at the soma: each exponential component exists
only in one tree; its time constant is independent of stimulating and recording position within the tree; its amplitude is the product
of a factor constant over that entire tree and factors dependent on stimulating and recording positions. Imperfect clamp to zero
is mathematically equivalent to voltage recording with a shunt. As the series resistance increases, different dendritic trees
become more strongly coupled. A number of interesting response symmetries are evident. The solutions reveal parameter
dependencies, including an insensitivity of the early parts of the responses to specific membrane resistivity and somatic shunt,
and an approximately linear dependence of the slower time constants on series resistance, for small series resistances. The
solutions are illustrated using a "cartoon" representation of a CAl pyramidal cell and a two-cylinder + soma model.

INTRODUCTION

In the previous accompanying paper (1), which will be re-
ferred to as "I" below, a separation of variables solution was
derived for voltage transients in a passive cable model of an
arbitrarily branching neurone with a soma and a somatic
shunt. The solution (I.56)1 is an infinite series of exponen-
tially decaying components, with time constants T, (I.24),
which hold over the entire cell, and depend on eigenvalues
axn which are the roots of a recursive transcendental equation
(I.22). The amplitude of each component, which was derived
using complex residues, is the product of three parts: E,
(1.34), which is a constant over the entire cell, depending on
electrical and morphological parameters, and p,en and qi,
(1.26), which are continuous functions depending on the in-
put and recording sites, respectively.
The methods of Rall (Ref. 2, section III), Rall and Segev

(3), Bluman and Tuckwell (4), Evans et al. (5), and Paper I
are extended below to derive analogous solutions for current
and voltage transients in an arbitrarily branching geometry
under voltage clamp at one point. The solutions are further
extended to cover imperfect voltage clamp. Implementations
are similar to those in the previous paper. Illustrative exam-
ples are given. Further, more practically oriented examples
are given in the third paper of this series (6) referred to as
"III" below. A number of important biological points are
made in Paper III concerning parameter dependencies, and
problems with voltage clamp.

Programs for waveform generation and fitting under volt-
age clamp have been written in ANSI-C, based on the so-

lutions below, and will be supplied on request, together with
further implementation details.

GLOSSARY AND CONVENTIONS
The conventions and symbols in Paper I, are adhered to
throughout (see Paper I, List of Symbols and Table 1. 1). Fre-
quently repeated additional symbols are listed in Table 1
below. Key equations appear in boxes. Y(j) is the stem seg-
ment of segment j and subtree(p) is the set consisting of
segment p and all its descendants. Earth, resting membrane
potential, and the reversal potential for shunts are all taken
to be zero.
As in the previous paper (1), the dendritic morphology

consists of uniform cylindrical segments, with every segment
labeled by an index j. As before, the branching pattern is
coded using set notation.

PERFECT VOLTAGE CLAMP

Definition of system

This is as in Paper I, Eqs. 1.3-1.7, except that the somatic
boundary condition is now

Vs = VCOM (t), (1)

where Vcom(t) is the command voltage as a function of time.
We consider the two following basic initial conditions:

(I) Unit charge synaptic impulse
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' Notation for equations used in this series of three accompanying papers
(1, 6). "I.56" refers to Eq. 56 of Paper I.

Vcom(t) = 0 and

Vj(Xj, Ze,O) = {(emgco) '(Xe Ze)
if j= e,

otherwise,

i.e. the command voltage is set to zero, and there is a unit
point charge into segment e.
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Voltage-clamped Branching Cable Solution

Additional symbols (to those in Paper I)
nth clamp current amplitude term [nA] from unit dendritic

charge, (Eq. 19)
nth clamp current amplitude term from unit voltage
command impulse, (Eq. 24)

nth voltage amplitude term from unit dendritic point
charge, (Eq. 16)

nth voltage amplitude term from unit voltage command
impulse, (Eq. 22)

constant in spatial part of separation of variables solution
[mV] (Eq. 4)

D when a = an
part of amplitude term, constant over input tree (zero if

this not source tree of an) [mV] (Eq. 14)
measured clamp current [nA]
actual synaptic current [nA]
series conductance (= I/Rser) [MQl]
soma membrane conductance ( = l/R,m) [Mfl]
gs + gser = gsm + gshunt + gser [nS]
ratio of soma membrane resistance to series resistance
(= Rsm/Rser)

input resistance measured at clamp point (Eqs. 1.78, 32)
input resistance measured at clamp point, including gser

(Eq. 1.78)
series resistance, imperfect voltage clamp (= l/gser) [Mfl]
shunt resistance, = 1/gshunt [MQi]
soma membrane resistance (= l/gsm = Rm/as) [GUl]
stem segment of tree containing segment j
set of indices of segment p and all its descendants
10-90% rise time [ms]
20-80% rise time [ms]
time to peak [ms]
command voltage function [mV]
Cs/(g* Tm) [dimensionless]
continuity factor: Ks, = 1, Vste stems under perfect

voltage clamp (Eq. 1.28)
steady-state continuity factor = Rj with q = 1
steady-state branching factor (Eq. 30)
effective time constant, e.g., fitted tpeak + 0.7 to tpeak +
20 ms [ms]

Case 1: Solution for a unit charge synaptic
impulse

As in Paper I, we use the technique of separation of variables
to solve the problem (Eqs. 1.3-1.7, 2). In the following sec-

tions we present the main results only, with the reader being
referred to the previous paper for the details. The separable
solutions of Eq. 1.3 for voltage clamp can still be written as

Eq. 1. 13, where a2 is the separation constant. The spatial part
of the solution yj(Xj) can be written

yj(Xj) = DKj[cos a(Lj - Xj) + pjsin a(Lj -Xj)], (4)

where D, pj, and Kj are arbitrary constants.

Recursive transcendental equation for
eigenvalues

Application of the boundary conditions gives the same ex-

pressions (Eqs. 1.19 and 1.20) for the pj terms, as in Paper
I. Eq. 1.28 still holds for the Kj terms. Unlike in the previous
paper, we now have freedom in specifying K,t, since Eq. 4
satisfies Eq. 1 with Vco, = 0, and for definiteness we

prescribe

Kst= 1 for all stem segments st. (5)

At the soma, the condition (Eq. 1) combined with Eq. 2, gives

cot aLs, + list = 0, for all stem segments st. (6)

(11) Unit voltage command impulse

VCom(t) = 8(t) and Vj(Xj, Ze, 0) = 0 (3)

i.e. a unit command voltage impulse at the soma, with no

charge impulses into any segment.
Because the system is linear, the solution to an arbitrary

voltage command together with an arbitrary pattern of syn-

aptic input can be obtained from the responses to these two
cases, by convolution.

Nonsomatic point clamp

Although it is possible to solve the system when one or more

special branch points with soma-like lumped capacitances
and conductances are included away from the clamp point,
the increase in mathematical complexity argues for a dif-
ferent strategy. To achieve nonsomatic clamp, it is easy to
modify a given model, by placing a "soma" (with zero con-

ductance) at the clamp point, and by representing the real
soma as a short cylindrical segment with the correct surface
area, in the appropriate place. Stems, parents, and daughters
are reassigned with the new clamp point as the origin. The
equation system described above then adequately specifies
the model.

Eqs. 6 and 1.19, together with Eq. I.20, define a recursive
transcendental equation, which must be solved to obtain the
eigenvalues an, n = 0, 1, 2, 3, . . ., of the system, satisfying
the boundary conditions and other model parameters. The
indexing convention used in Paper I (1) is followed here: n
starts from 0. The intention is to make it clear that the slowest
time constant under voltage clamp is the limit of To from the
voltage recording solution as gshunt tends to infinity.2
A dendritic tree is taken to include one stem segment and

all its descendant segments. We note that the voltage clamp
decouples the different dendritic trees at the soma (e.g., Ref.
3). This is reflected in Eq. 6: each atn and the corresponding
Tn (except in the case of repeated roots), is generated by one
dendritic tree only, and the corresponding component of the
solution exists in that tree only (see below).

It is interesting to compare Eq. 6 to the corresponding
recursive transcendental Eq. 1.22 in the simple voltage re-
cording solution. We note that the roots of Eq. 6, when all
the stem segments are considered, are the singularities of Eq.

2 The same convention is followed in Refs. 7 and 8. By contrast, in Refs.
2, 3, and 9 the indexing starts from 1, to emphasize the distinction between
the slowest voltage clamp time constant and the membrane time constant
Tm = RmCm, which is the same as T0 only when gshunt = 0.

TABLE 1
Aq
An,

Aiv
n

Avq

Avv
n,

D

Dn
En,,

ilciamp(Z,t)
isyn
gser
gsm
o s

R

Rss
R*s

Rser
Rshunt
Rsm
-Y(i)
subtree(p)
tI090
t2080
tpeak
VcoM(t)
E*
kj

kj
Tei
Teff
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1.22. Thus the cell as a whole generates a voltage clamp
eigenvalue between every pair of current clamp eigenvalues.
The soma (if at the clamp point) has no effect on the perfect
voltage clamp eigenvalues.

For a stem segment which has no daughters, i.e., for which
g,, = 0, it can be seen that

cos aL,, = 0, (7)

(compare with Eq. 28 in Ref. 2). The roots are an = (2n +
I)7r/2L,,, n = 0, 1, 2, ....

Time constants

As in Paper I, for each eigenvalue a,n, there is a time constant

T, defined by Eq. 1.24. For a single cylinder model, the time
constant ratios are

either, or both could be the somatic clamp point s). We find
that we can write the coefficients Dn as

(13)

where

To 4L' + (2n + I) 7T2 (8)
Tn 4L2+ iT

This constraint can prove useful when fitting exponentials to
experimentally recorded voltage clamp responses.

Continuous spatial eigenfunctions

For each eigenvalue a,n, we may define an associated eigen-
function tpjn(Xj). Writing Eq. 4 as

yj(Xj) Dn 'Pjn(Xj) (9)

withKj,, and pU,n the values of Kj and Uj at a = a,n, we have,
as in Paper I,

with the revised iterative definition Eqs. 5 and I.28 for Kj,,.
Using the transcendental equation (Eq. 6), the expression

in Eq. 10 can be simplified for stem segments st, to the form

sin anX
stn(Xst) = sin a * (11)

Amplitudes

By linear superposition of the solutions of the form (Eq.
1. 13), using Eqs. 1.24 and 9, the general solution to the cell's
voltage response can again be written as

Vr(Xr, Ze, t) = z Dn rn(Xr)e " (12)
n=O

As explained in Paper I, the an values in general lead to
nonorthogonal eigenfunctions. In Appendix 1, we give an

outline of the derivation of the amplitude terms using com-

plex analysis. Let 9(j) be the stem segment ofj. The stim-
ulation segment is e, and the recording segment is r (neither,

i.e. the summation is only over segments in the subtree with
stem st, from which the eigenvalue an was generated, and
En is zero if the stimulation and recording segments are not
both in that subtree. This is equivalent to saying that the
clamp decouples the different dendritic trees at the soma

(e.g., Ref. 3). The clamp point is taken to belong to all sub-
trees: i.e., if the input is into the clamp point, e is set to st,
and if recording is from the clamp point, r is set to st.
The amplitude terms can also be derived from Eq. I.34.

Let st be the stem segment of the source tree of a particular
an,. Let gs -° , E -O 0, and multiply the denominator by

(cos a,Ls, + p,t sin anLs,)2, which tends to zero (compare
with Eq. 6). The terms including gs, and all terms from sub-
trees other than the one with stem st, tend to zero. We are left
with the expression in Eq. 14 if we redefine Ks, to be 1.
Now multiply both qfe,n and 1Prn in Eq. 1.33 by (cos aCnLs, +
,ust sin anLst): the spatial eigenfunctions tend to zero if they
are not in the source tree for that an. If they are in the correct
source tree, they become identical to the spatial eigenfunc-
tions defined above, with Kst = 1. A separate program has
been written for the perfect voltage clamp solution, although
the voltage recording solution does indeed generate the same
time constants, amplitudes, and waveforms when gshunt iS
extremely large, e.g., of the order 105-109 nS (but not so large
that lack of numerical precision becomes a problem).

Let the cell's voltage response take the form

Vr(Xr, Ze, t) Vr(Xr, Ze t) = z A nqe-
n=O

(15)

with superscript vq indicating voltage recording away from
the clamp point, for a unit point charge input (q). The sub-
subscripts e and r are the input (excited) and recording seg-

ment as usual. Thus the amplitude terms of the transient
components, by comparison with Eq. 12 and using Eq. 13,
can be written as

Anq = En_(,)Oen(Ze)'Jm(Xr) (16)

Note that, within the source tree of a, the amplitude term

is the product of three factors: E,,e which is a constant over

2

T z j2n2(I + Aj
jEsubtree(st)

= (~~~~~cotans + lILstf (14)
|En,, 4 if and (14)

IY(e) = 5>'(r) = st

0 otherwise,
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Voltage-clamped Branching Cable Solution

the whole source tree (zero if excitation and recording sites
are not both within that tree), tlen(Ze) which depends on the
excitation site, and qi,(Xr) which depends on the recording
site. As with the voltage recording solution in Paper I, in-
terchanging stimulation and recording sites does not alter the
voltage transients.

Clamp current

Let the clamp current iclanp be
00

iclamp(Ze, t) - z Anqe n, (17)
n=O

with superscript iq indicating current (i) recording at the
clamp point at the origin of segment st, for a unit point charge
input (q) into segment e.

Then, since the clamp current must equal the axial current
to prevent voltage changes at the soma,

= -g, (/av(e)aX(e)) XI (e) =0 (18)

we have from Eqs. 11, 15, and 16:

-n ngoog, (e)En, (jPken (Ze)/sin anh/(e). (19)

Repeated eigenvalues

In cases where both the stimulation and recording sites are
at the clamp point, and for some reason of symmetry two or
more different subtrees produce the same eigenvalue, the
clamp currents from the individual subtrees are still inde-
pendent and still add linearly.

Singularity coincidences

As in the previous paper, there is the possibility of singularity
clashes whenever two different subtrees or segments within
a particular dendritic tree produce singularities at the same
value of an. The problem is dealt with in exactly the same
way as in the previous paper, except that there is no parallel
in the voltage clamp case to the n-cylinder special amplitude
terms (Eqs. I.112 and I.113).

Case II: Solution for a unit voltage command
impulse

Amplitudes

The details of the solution of Eqs. 1.3-1.7, 1, and 3 follow
closely the unit charge input case already considered. The
separable solutions are still of the form of Eq. 1. 13 with the
spatial solution of the form ofEq. 4. The boundary conditions
still allow us to define the recursive transcendental equation
given by Eqs. 6, I.19, and I.20, and the recursive continuity
factors (Eq. I.28). Thus we have the same eigenvalues as in
the unit charge impulse case, and hence the same time con-
stants (Eq. 1.24). The associated eigenfunctions are again
defined by Eq. 10, with the simplification (Eq. 11) for stem

segments st. However, the amplitudes are different. Using
Laplace transforms (see Appendix 1, Case II), the coeffi-
cients Dn can be shown to be

(20)

Thus, writing the transient voltage response of the cell as
follows,

Vr(Xr, Ze, t) -Vr(XrI Ze, t) = z Anve (21)
n=O

where the superscript vv indicates voltage recording away
from the clamp point for a unit voltage command impulse,
the amplitudes are given by

Avv = ag (flEf t'Irn(Xr)sinLa(r)K (22)

Clamp current

Using the relation (Eq. 18) and the expression (Eq. 21), we
have

(23)iclam,np(t) = 0 A -tIT,
n=O

where superscript iv indicates current recording (i) for a unit
voltage command impulse, and where

An = -(go, a,,)2E, sin anL,,. (24)

The coefficients En, are defined in Eq. 14. We remark that
the clamp point is taken to be the origin of segment st, the
stem of the source tree of an.

Symmetries between cases I and 11

We note that the expressions (Eqs. 22 and 24) for Case II, the
response to a somatic voltage command impulse, are the
same as the corresponding terms for Case I, the unit charge
impulse into a dendrite, with tIen(Ze) replaced by

ar L ,) (compare Eq. 13 with Eq. 20).
Comparing Eqs. 19 and 22 reveals that the voltage re-

sponse of Case II is simply the negative of the clamp current
of Case I, with the stimulating and recording positions re-
versed. This relationship could be usefully exploited in com-
partmental model simulations. Where the clamp currents in
response to the same input current at a number of different
sites are required, instead of simulating each case individ-
ually, the input waveform can be applied to the soma as a
voltage command, and the voltage responses at all of the sites
of interest can be monitored simultaneously in one run. The
desired clamp currents are then simply the voltage responses
inverted.

Parameter dependence (perfect clamp)

As in Paper I, the important equations determining the so-
lution can be rearranged to show more clearly the depen-
dencies on the "raw" electrical parameters Cm, Rm, and Ri.
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As before, Eq. 1. 19, for the ,bj factors can be re-written as
Eq. 1.39. Equation 14 becomes

2

m. I ajKjn(l+#J
Esubtree(st)

qC,
jE

N.0

rcot anLs, + Rsm = 0,

if and

LY5(e) = 57(r) = st J

(25)

otherwise,

where aj = -Tlj dj is the surface area of segment j. In the case

of the n-cylinder model (5), this simplifies to E,n, = 2/cst,
where cst is the capacitance of the segment for which
cos anLs, = 0. The solution is the linear sum of the com-

ponent single cylinder solutions.
As in Paper I (the Parameter Dependence section), the an

values will be independent of Cm and proportional to R1/2.
The dependencies of the time constants on Cm and Rm are

also the same as those described in Paper I. The Pjn, Kjn, and
qfjn(Xj) terms are independent of Cm, Rm, and Ri (see below
for the last of these). The En, ters are independent ofRm and
Ri (again, see below for the latter) and are inversely pro-
portional to Cm.
The transcendental equation (Eq. 6) for the eigenvalues an

must continue to hold as Ri changes. This is certainly the case

if the values of anL and, therefore, all the Pt,n and Kjn terms
are conserved, which requires a,n = 9nR- 1/2, for a new van-

able T = aR 1/2 (see Paper I). The qljn(X1) terms will therefore
be independent of Ri. The time constants are given by Tn =
Tm/( + q 2/R1) and thus the faster ones (i.e. q large) are

proportional to Ri. It can be seen from Eq. 25 that all the

Ens terms will therefore be independent of R,; they are de-
termined only by Cm and the geometry. The faster time con-

stants are proportional to RiCm and are independent of Rm.
The slower time constants depend on all three parameters.
We note again that g5. = ('ir/2)(RmRj) - /2d3'2. The synaptic

input voltage response amplitude terms A q in Eq. 16 will
show the same dependencies as the Ens terms. The clamp
current amplitude terms Anq in Eq. 19 contain an additional
factor of the form angOg and so are independent of Rm and
inversely proportional to Ri, as are the voltage command
voltage response amplitude terms A'" in Eq. 22. The voltage
command clamp current amplitude terms A" in Eq. 24 con-

tain the factor (ang,s )2 and so are independent of Rm and
inversely proportional to R .

It should be noted that, as in Paper I, the amplitude term
parameter dependencies are for the impulse responses only:
upon convolving the responses with various input functions
(see next section) additional factors are introduced into the
amplitude expressions, further complicating the picture.
However, for fast inputs the dependencies shown by the im-
pulse responses will still apply approximately.
As before, because neither fast amplitudes nor time con-

stants are altered by changes in Rm, the fast amplitudes of the
responses to arbitrary inputs are also independent ofRm. This
result deserves to be emphasized: increasing Rm experimen-

tally, for example by using channel blockers, will have only
a limited effect on the subsynaptic voltage swing and the
clamp current (10), predominantly at later times when the
waveform has largely decayed away (for an example, see
Paper III (6), Fig. 9).

Responses to arbitrary inputs
Case 1: Synaptic inputs

The results in the section Responses to Other Inputs in the
previous paper may be used for the voltage clamp case. The
corresponding expressions for voltage clamp are obtained by
replacing the amplitude terms A,, in Eqs. I.46,1.48, I.50 and
I.52 with Aq or A'q as appropriate, to obtain the voltage
transients and the clamp currents respectively, for the various
example input functions.
The lumped and steady-state terms for voltages are as

described in Appendices 2 and 3 of the previous paper, with
As = 0 (see also for definitions of some of the following
terms). The lumped amplitude terms for clamp currents are
given by the following.

90_g der (26)

Therefore, instead of Gr(Xr, Ze, p) in the relevant expression
for Her (defined in Paper I, Appendix 2), substitute

-9g, (e)qy(e) .(e) = -Re[cosh q(Le- Ze)

+ lAeSinh q(Le- Ze)] (27)
(differentiating Eq. I.68 with c = Y(e), bearing in mind that
As = 0 in this case, since VCOM = 0). As before, if Tsy < Tm,
i.e. q = iw, use the substitutions (I.88) and Eqs. I.96-4.102,
as detailed in Paper I, Appendix 2, with A' = 0. Note that in
these cases the Kst term is defined by Eq. 1.30, with w instead
of an and dropping subscript n. Again, for the steady-state,
q = 1.

Case 11: Voltage commands
(i) Voltage step Integrating the impulse response Eq. 21

with respect to time, the voltage response to a command step
Vstep imposed at t = Oat the clamp point is

00

Vr(Xr, t) = r(Xr)- Vstep - (28)
n=O

where

vr(Xr) = Vstep r[cosh(Lr- Xr) + irsinh(Lr- Xr)], (29)
where Kij = Kj with q = 1 (Eq. 1.66) and where , the steady-
state branching factor of segmentj, is defined recursively by

~isp =gx) 2 g (1 + ,icothLd)
dEdtrsp ct Ld + ILd)
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Voltage-clamped Branching Cable Solution

(cf. Eq. 1.64 with q = 1). For single cylinders, Eq. 28 can be
reduced to Eq. 5 in Ref. 3. Equations 29 and 30 are equivalent
to Rall's branching steady-state solution (11); using Vinstead
of G, the steady-state differential equations are Eq. 1.58, with
p = 0 and right hand side always zero, Eq. I.59, Eq. 1.60, and
Vs = Vstep.

Since A' oc (RiCm)-1, and the fast T,, values are propor-
tional to RiCm, the fast transient amplitudes of the step re-
sponse voltage in Eq. 28 will be independent of all raw elec-
trical parameters and will depend only on the morphology.
The slow transient amplitudes will be independent of Cm.

Similarly, integrating Eq. 23 with respect to time, the
clamp current is

iclamp(t) = Vstep/Rss- z VstepTnA've -tITn (31)
n=O

where Rss is the input resistance measured at the clamp point
(the soma). This is given in Ref. 11 or by As in Eq. 1.78, with
q = 1 and the numerator set to 1:

(1 + ,I cothL,) -Ss {gs tEsemsg5t (coth L5, + ASt) f

(32)

Note that the transient amplitude terms all have the same sign
as Vstep, since the A'v terms, given by Eq. 24, are negative.
In the case of a single cylinder + soma model, Eq. 31 can
be simplified to

1clamp (t)
oc

2a 2 g -tI
(sepgs + gjanh L + a

n tITn
In + a e)L (33)

where the an values are odd integer multiples of ar/2L. This
solution is consistent with Eq. 8 in Ref. 3 and Eq. 12 in Ref.
9. For a single cylinder model, the amplitude ratios are

An _ (2n + 1)2(4L2 + Tr) (34)
AO 4L2 + (2n + 1)2 (34)

This additional constraint may be useful when performing
exponential fitting to experimentally recorded clamp cur-
rents.

Since A'v oc (R2Cm) ', the fast current amplitudes, fol-
lowing a voltage step, are inversely proportional to Ri, and
are independent of all the other raw electrical parameters
(Eq. 31). All the amplitudes are independent of Cm. In direct
fits to the step voltage charging current, therefore, the fast
amplitudes will constrain Ri, the fast Tn values will then con-
strain Cm, and the slow amplitudes and time constants will
constrain Rm.

(ii) Arbitrary voltage commands The impulse response
(Eq. 21) can be convolved numerically with any arbitrary
voltage command waveform (e.g., an action potential wave-
form measured experimentally), to obtain the model's re-
sponse to such a stimulus. The impulse response can also be

the previous paper, using the same working, to obtain anal-
ogous responses (including the lumped terms), replacing
An with A" for the voltage responses away from the clamp
point, and with A" for the clamp currents (as with the two
examples above). Q, the total input charge, in the other cases
is replaced by the time integral of the command voltage (the
total "volts-seconds" injected). In the lumped terms for the
voltages, Gj is redefined to be the response to a voltage im-
pulse and Gj is given by Eq. 1.67, with As = 1. When q is
imaginary, as is discussed in Appendix 2 of the previous
paper, Eq. 1.94 should be used. In the lumped terms for the
clamp currents, apply Eq. 26 to Eq. 1.67 and sum over all the
stem segments, then include the appropriate terms for the
soma conductance and capacitance in the Laplace domain
(left-hand side of Eq. 1.61), to replace Gr(Xr Ze, p) in Hs,
with

gsl + e(q -1)]

+ q z go,Rst[sinh qLst + ,Astcosh qLs,]. (35)
stEstems

This complex input admittance is identical to the denomi-
nator of Eq. 1.78. When q is imaginary, replace this with
the denominator of Eq. 1.95. Notice the steady-state re-
sponses above are the special case of these lumped terms with
q = 1.

IMPERFECT VOLTAGE CLAMP

Comparison to voltage recording with a shunt

It is common in experiments for there to be a series resistance
Rser (conductance 9ser) between the clamp amplifier and the
recording site in the cell. The voltage at the recording site
does not perfectly track the voltage command, and the clamp
current is distorted. Voltage responses recorded in the pres-
ence of a shunt can be thought of as being imperfectly
voltage-clamped to the reversal potential of the shunt. The
voltage deflection at the recording site is identical to the
voltage escape there when clamping to the same reversal
potential via a series conductance equal to the shunt con-
ductance.
Any response can be separated into a transient and a

steady-state component. For a step or impulse command at
t = 0, the transient component of the voltage at the amplifier
end of the series resistance is always zero at times t > 0. The
conventions adopted here are that earth, resting membrane
potential, and shunt reversal potential are all taken to be zero.
In other words, from the point of view of the transient part
of the response, the series conductance is formally equivalent
to a shunt to earth. We remark that for the steady-state com-
ponent, the reversal potential of this extra shunt is the steady-
state command voltage.

Mathematically, the model equations now change slightly.
A series conductance gser between the clamp amplifier and
soma is equivalent to introducing an extra shunt conductance
in parallel to the total soma conductance (which already
includes any electrode-induced shunt). Thus we redefine
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the somatic conductance to include the series conductance as
follows,

=s gs + gser = gsm + gshunt + gser' (36)

and the somatic shunt parameter now becomes

e* = c5l(g*S*). (37)

The mathematical equations describing this model are now
given by Eqs. 1.3-1.7, together with the new somatic bound-
ary condition,

gserVcom(t) = 9 * Vs + E*Tm d

-l as,(x,) , (38)
stEstems Xst

(compare with Eq. 1.8). The transcendental equation for the
eigenvalues a, is the same as Eq. 1.22 with E* and g* sub-
stituted for E and gs, respectively. As before, the time con-
stants are given by Eq. 1.24.
As in the perfect voltage clamp case, we consider the fol-

lowing two cases, which can be added linearly:

Case 1: Synaptic inputs

In this case, Vcom(t) = 0 and the series conductance is also
equivalent to a shunt to earth for the steady state part of the
solution. This system is identical to simple voltage recording
with an extra shunt conductance in parallel to the total
"soma"9 conductance (already including any electrode-
induced shunt). The responses to synaptic inputs in this case,
are obtained from the solutions in Paper I simply by replacing
gs and E with g* and E*, respectively.
The clamp current is then given by

values in Eq. I.24 being the roots of Eq. I.22 with g* and E*
replacing gs and E. We obtain Dn = g.erEns and amplitude
terms

(41)

again using the definitions in Paper I with g* and E*. Note
that, as with perfect clamp, the reciprocity relation
A q = -A' holds, i.e., the dendritic voltage response to a
somatic voltage command is the negative of the somatic
clamp current in response to a current input of the same
time-course and magnitude at the same dendritic site (with
appropriate units).
From Eq. 39, the clamp current when t> 0 is given by Eq.

23 with

AnV = - gserEn (42)

Steps and other voltage commands

Since Dn values for the response to a unit voltage impulse
are given by greEn, and in Paper I the Dn values in response
to a unit current impulse (point charge) were given by
En,qi,e(Ze), the voltage response to any other voltage com-
mand function is simply gser times the solution for the equiv-
alent current injection function in Paper I, with tqen(Ze) = 1
(since the input is into the soma) and Vcom(t) replacing the
input current i(t).

For example, the voltage response to a voltage command
step at t = 0 of magnitude Vstep can be obtained in this way
from Eq. 1.46, substituting Vstep for iin. Alternatively, Eq. 21
can be integrated with respect to time. The solution is

(43)Vr(Xr, t) = 1r(Xr) - 2 VstepgserTnEntr(Xr)e T

n=O

The steady-state term is given by
iclamp = - gser VS ) (39)

where V, is the voltage at the cell end of the series resistance
(soma). It follows that

A-= -gserEnPe (Ze ) (40)

where En is given in Eq. 1.34, using g* and E*. The K5, of all
the stem segments st are as in Eq. 1.30. In other words, when
"synaptic" currents are recorded with a steady zero command
potential, the series conductance is added to the somatic
shunt and the clamp current is an attenuated, upside-down
version of the postsynaptic potential recorded at the soma.

Case II: Voltage commands

Voltage command impulse response

It can be shown (see Appendix 2) that in response to a
unit voltage impulse command Vcom(t) = S(t), the cell's re-
sponse under imperfect clamp is given by Eq. 21, the an

vr(Xr) = vskr[cosh(Lr- Xr) + ILrsinh(Lr- Xr)]. (44)

This can be obtained from Eq. 1.110 or by noting that
the series resistance and cell input resistance act as a
voltage divider, so the steady state voltage at the soma vi is
given by

l(R R ~ ~
sR s

Vs= VstepRsslXRser Rss) = VstepgseR*SS'

where R*s is the combined input resistance of the cell in
parallel with gser, given by substituting g* for gs in Eq. 32.

In all cases the clamp currents are given by

iclamp(t) = gser[Vcom(t) -Vs(t)] (46)

where v5(t) is the soma voltage. In particular, the clamp
current for a step command is

(t) = gser(Vs_ep- ) + E VstepgserTnEne-
n=O

(47)

The steady-state current can be simplified to Vstep/(Rser +
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R,,), which can also be obtained more directly by noting that
Rser and the cell's input resistance Rss are in series. The fast
current amplitudes are proportional to Ri, independent ofRm
and Cm, and are proportional to g2 . The slow amplitudes are
independent of Cm. Because En is never negative (see Paper
I, Parameter Dependence section), all the amplitude terms
have the same sign as Vstep, an important constraint when
fitting multiple exponentials to model or experimental clamp
currents.

For a single cylinder + soma model, Eq. 47 simplifies to

1clamp (t) = VstepRser+ (gs +g.,tanhL)'
00 ~~~2Vstepg2 e - tIT,

+=O (1 + a 2)[g*(2E* + O*n) + g.L sec2aL]' (48)

where

O* =[I - E*(1 + a 2)]/a2 (49)

This is the exact solution corresponding to the approximate
form derived by Jackson (9).

Limiting behavior as gsr X

No-shunt voltage recording and perfect voltage clamp are the
two extremes of imperfect clamp. As gser -* 0, the solution
tends to the no-shunt voltage recording case (see Paper I). As
gser-- oo, the transcendental equation (Eq. I.22), with g*and
E*, tends to the perfect voltage clamp transcendental equa-
tion (Eq. 6), since for Eq. I.22 to balance in this limit, we must
necessarily have one of the denominator terms on its right
hand side as zero.
As mentioned above, careful consideration of the limiting

behavior of the K and other terms in Eqs. 1.33 and I.34 as
g * -* oo and E* -k 0, shows that the amplitude expressions
tend to those of the voltage clamp case, including the prop-
erty that they are zero if the recording and stimulating seg-
ments are not in the same dendritic tree.

Parameter dependence of imperfect clamp
impulse response

General

The dependencies of the imperfect voltage clamp solution
time constants and voltage response amplitudes in Case I
(synaptic inputs) are necessarily the same as those of the
solution in Paper I for voltage recording with a somatic shunt,
given their mathematical equivalence. The Case I clamp cur-

rent fast amplitude terms are proportional to g.rC 1 as are

those of the Case II (voltage commands) voltage responses.

Case II clamp current fast amplitudes are proportional to
g2C 1. All slow amplitudes are proportional to Cm l and
change with Ri, gser, and gshunt. As in Paper I, all amplitudes
are independent of Rm. As before, the a,, values will be pro-

portional to R 12, and all the faster time constants will be
independent of Rm.

Large soma, thin dendrites case

Following the discussion of the transcendental equation in
Ref. 9, we consider the roots of the transcendental equation
(Eq. I.41) when Rser is very small, i.e., when gser iS very large.
For the rest of the discussion on parameter dependence we
shall assume gser, the conductance between cell and ampli-
fier, is synonymous with gshunt, and that there is no additional
shunt to true earth.

(i) Small roots: when gse, > a2/Rsm. i.e., a2 < R =
RIm/Rse,, the roots occur near the locations of the positive
singularities on the right-hand side (compare with Eq. 6).
Thus, as noted previously (9), the smaller an values and the
slower time constants and amplitudes are approximately the
same as with perfect clamp.

(ii) Intermediate root(s): when a2 R, the roots occur near
the zeroes of the right-most term in Eq. 1.41, and Tm
Tm/R = RserCs.

(iii) Large roots: when a!2 > R each a, occurs near a
negative singularity on the right-hand side of Eq. 1.41, i.e.,
near an- I of the perfect voltage clamp case.
As noted for the single cylinder case in Ref. 9, these ap-

proximations are best when the sum of the stem segment px
values (= g=/gsm values, here) is small (i.e., when the den-
drites are thin compared with the soma diameter and when

Rm/Ri is small, see Paper III, Eq. 2). Anatomical and
electrophysiological data suggest, however, that this is un-
likely for many pyramidal neurones (see Paper III (6), Ex-
ample 1), and the parameter estimation methods outlined in
Ref. 9 may break down in practice for such cells. In such
cases there is a large number of intermediate roots which are
not close to either the singularities or the zeroes of the right-
most term in Eq. 1.41.

In examples where the approximations hold, all but the
intermediate an values are roughly proportional to R"1/2 and
the faster time constants are approximately proportional to
RiCm. All but the intermediate amplitude terms are indepen-
dent of Ri (as in the perfect clamp case). In cases where the
approximations break down, the amplitude terms display no
simple dependence on Ri.

Time constants and Rser

As in Paper I, Example 2, the "effective" time constants Teff
of clamp current waveforms are very sensitive to the fit in-
terval chosen, and may be very different from the true 0 of
the model, being either slower or faster. Teff can be defined
to be the time constant of the optimal single exponential fit
over a standard interval relative to the peak time tpea,, e.g.,
tpeak + 0.7 to tpeak + 20 ms (12). Depending on the signal-
to-noise ratio, a more universal measure might be T7525, the
effective time constant over an interval from t75 to t25, where
tab is the time following the peak at which the response has
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fallen to ab% of its peak value. Because 0.25/0.75 Ile,
T7525 should be given, approximately, by t7525 -t25t75,
providing the decay is roughly single exponential.

Compartmental model simulations of realistic mossy fiber
inputs into CA3 pyramidal cells revealed that Teff, using the
convention in Ref. 12, increased from its perfect clamp value
approximately linearly with Rser, the series resistance, for
Rser less than 20 Mfl (12, 13). Similar effects are demon-
strated in Paper III (6) for a single cylinder + soma model,
and the CAl pyramidal cell. To explore the factors under-
lying this interesting relationship, we derive the dependence
of T and subsequent time constants on RShunt (or Rser), when
RShunt is small. For illustrative purposes, we consider the
one-cylinder case. The transcendental equation (Eq. 1.4 1) for
the one-cylinder case, may be written as

g, a tan(aL) = (R
ser

- gsm a2) (50)

where gsm is the soma membrane conductance. In the limit
Rser -> 0, the first root ao --r w/2L, and thus for Rser small,
we may write

7T Tr
a 2L- 8 with 0<< . (51)

2L ~~~2L'

Substituting this expression for ao into the transcendental
equation (Eq. 50), noting that tan((Qr/2) - 0) = cot 0 and
rearranging, gives

g(2 - ) LRser sm 2 - )l tan(6L). (52)

Expanding for small 6, we obtain

XT L
90 2L = g1 +

2L Rser

2\

7r
6- + 0(62),

4L

where 0(62) means terms of the order of 62. This gives the
approximation,

Rser 9~sm
2L2 +Rser 7L7 4L_

which, for Rser small, may be further expanded to give

2L2 ser

Now To is given by

m

1 +

I A better approximation would be the effective time constant between t73
and t27, T7327 t7327 - t27 -t73).

which, on using Eq. 51 and expanding again for small 8,
gives

To =
TM

2 +
TM

2 2 + 0(8).
1 + 4172 L (I ±4L2)

(56)

Thus, substituting Eq. 54 into Eq. 56 gives the linear ap-
proximation

Tm
T0 2±

17
1+4L2

Tmgo 7 R
2L (2 2 ser -

2L3 I + 4Li
(57)

To make explicit the dependence on the "raw" morphological
and electrical parameters (see Paper I), this can be written

Z_1 6Ril'R,,C,_Cm
106Rl2 + lT2Rmd+
= TC + ORser,

817T3ld3CmRn R

(16R 12 + 'T2Rmd) 2 ser

(58)

where the intercept T"' is the slowest time constant with per-
fect voltage clamp, and g3o is the slope. An example is shown
in Paper III, Fig. 4 A.

In principle, this method may be applied to subsequent
roots, and similar approximations may be obtained for the
other time constants, writing mT instead of To and (2n + 1)1
for 1r in the above equations in this section (except the IT3
in the numerator of the slope term in Eq. 58, becomes
(2n + 1)27r3), for n = 0, 1, 2.... As n increases, the ap-
proximations become unsatisfactory at progressively lower
values of Rser (see Paper III, Example 1). As noted in Paper
I (Parameter Dependence section), the fastest waveform
components of the voltage response are independent of R,hunt
(i.e., Rser), once it is (appreciably) greater than zero.
We remark that this method can be extended to the

n-cylinder transcendental equation. In the limit Rser -* 0, the
first eigenvalue a0 -> (1r/2Lmax), where Lmn,> is the largest
electrotonic length of the n cylinders. The left-hand side of
Eq. 50 is now the sum of n terms (see Eq. 1.23). However,
at the first root, the term from the longest cylinder completely
dominates the others, so that the above results now apply,
with L in Eq. 57 replaced with Lma. In Eq. 58, use the cor-
responding I and d.

In the fully branched case, in principle this method will
still apply. However, an analytical expression for the first root
ao when Rser = 0 (perfect clamp) is difficult to obtain and
depends on the geometry involved. Approximately linear de-
pendence of the slowest time constants on Rser has been ob-
served empirically for complex models (e.g., the hippocam-
pal pyramidal cell introduced in Paper I). When the "real"
time constants Tn become closely spaced, however, they have
very little "room to maneuver" and change only slightly with
Rser. (As concluded above, the roots of the perfect voltage
clamp transcendental equation are the singularities of the
zero shunt voltage recording transcendental equation. Trn is
always constrained to lie between its zero shunt and perfect
clamp values, a range which is always less than the interval
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between neighboring time constants.) The effective time con-
stant versus Rser plots (e.g., Paper III, Fig. 10 D) actually
cross many individual T,, vs. Rser lines (not shown), most of
which are virtually horizontal apart from an initial slight
increase. The growth in Teff with Rser is therefore caused
both by increases in the slower Tn values and by shifts in
the relative weightings of the amplitudes toward slower
components.

Influence of electrical parameters on effect of Rser

Inspection of Eq. 58 shows that the time constants are pro-
portional to Cm, as already determined from the full solution
(see Paper I, Parameter Dependence section). In addition,
raising Rm or Ri will increase the intercept term (the time
constant with perfect clamp) in Eq. 58. Raising Rm or low-
ering Ri will also increase the slope, worsening the effects of
series resistance (see Refs. 12 or 13, for an example of the
latter effect). This result seems counterintuitive, since both
of these maneuvers would be expected naively to improve
voltage clamp by shortening electrotonic lengths. When Ri is
lowered, there will be a trade-off between a decreased in-
tercept and an increased slope.

Intuitively, the time constant with which the imperfect
clamp filters the recorded waveforms will be clampa
RserCeff where Ceff is the "effective capacitance" of the cell.
When Ri is decreased, there is less axial resistance "protect-
ing" distal parts of the dendritic membrane from the clamp
amplifier, and so Ceff and hence Tclamp increase and the wave-
forms are more strongly smoothed. Raising Rm will have a
similar effect, by improving charge transfer along the den-
dritic cables.

Influence of morphological parameters on effect of Rser

The argument at the end of the previous section suggests that,
for a given series resistance and input current, cells with a
big effective capacitance will generate waveforms that are
much more smoothed than those from cells with a small Ceff.
The corollary of this is that much higher series resistances are
compatible with recording fast events from "small" cells
(e.g., cerebellar granule cells (14)) than from "big" cells
(e.g., CA3 pyramids (12)). This is discussed further in Ref.
13 (Chapter 6).

Exactly what constitutes "big" or "small" depends on the
extent to which the membrane capacitance is distributed
down dendritic cables. More specifically, inspection of Eq.
58 reveals that, for a single cylinder + soma, increasing the
length 1 or decreasing the diameter d will increase the in-
tercept T"C. (Both maneuvers increase the electrotonic length
of the cell.) Increasing d will always increase the slope term
in Eq. 58. (Intuitively, more membrane capacitance becomes
accessible to Rser, both because of the increased area, and
because of the decreased axial resistance.)

The effects of an increase in l on the slope are more com-
plex. If l2Rmd < 16Rl2, then the slope decreases. (Intu-

cell dominates the clamp in the process of charge redistri-
bution; making it even longer further weakens the influence
of the clamp, and hence the effect of Rser.) If lT2Rmd >
16Ril2, then the slope increases. (Intuitively: L << -r2 so the
cell is very compact electrically and adding length means
adding effective capacitance.)

APPLICATIONS

All the waveforms illustrated below have been checked
against transients generated by equivalent compartmental
models (15) and agree extremely closely.

Example 1: CAl pyramid cartoon: in,, Tn, and
En, values

The cartoon representation of the CA1 pyramidal neurone
introduced in Paper I, Fig. 4, with the same electrical pa-
rameters (Cm = 0.7 ,uFcm-2, Rm = 100,000 Qcm2, Rj = 200
flcm, gshunt = 15 nS), is used here for demonstration pur-
poses. (See Paper III for additional results using this cell.)
The first ten an, Tn, and En values (the latter x 10- 12) are

listed in Table 2. For comparison, the an and Tn values from
the voltage recording case are also included (some of these
numbers also appear in Paper I, Table 3).

(i) It can be seen that the perfect voltage clamp eigenvalues
and time constants alternate with the voltage-recording ones,
the latter model generating the slowest time constant To.
Without the shunt, T would be even slower, being equal to
Tm (70 ms). The shunt of course makes no difference to the
perfect voltage clamp solution.

TABLE 2 CAl pyramid cartoon: Eigenvalues and T, and E
values

a, A, Tn Tn Ent En,t
n (V.R.)§ (V.C.) (V.R.) (V.C.) st* (basal) (apical)

ms ms mV mV
0 1.36 24.66
0 2.28 11.28 5 0.000 0.110
1 2.57 9.21
1 2.82 7.80 5 0.000 0.107
2 3.18 6.30
2 3.75 4.65 5 0.000 0.124
3 3.83 4.47
3 4.32 3.56 5 0.000 0.095
4 4.33 3.55
4 4.36 3.49 1 1.438 0.000
5 4.72 3.00
5 4.73 3.00 5 0.000 0.033
6 5.07 2.62
6 5.08 2.61 5 0.000 0.039
7 6.19 1.78
7 6.21 1.77 5 0.000 0.027
8 6.39 1.67
8 6.49 1.62 5 0.000 0.233
9 6.90 1.44
9 6.97 1.41 5 0.000 0.212
* Stem of source tree of a,.
x10-12.

§ V.R., voltage recording (with a shunt); V.C., voltage clamp (perfect). Note:
the basal stem is segment 1, the apical stem is segment 5.itively: L > ur/2 so the electrotonic length is so large that the
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(ii) The basal tree (stem = segment 1) contributes only one
voltage clamp component out of the first ten, with a time
constant of 3.49 ms and an En X 10- 12 of 1.438 mV in the
basal tree (and, of course, zero in the apical tree). All the other
components listed originate from the apical tree, and have
zero amplitude in the basal tree. The greater number of apical
components reflects the greater relative electrotonic length
and complexity of the apical tree, compared with the un-
branched and relatively compact basal tree.

Example 2: Two cylinder + soma model

The simplified representation of a layer III cortical pyramidal
neurone from Paper I is used again here to illustrate some
other important features of the voltage clamp solutions. The
parameters are as in Table I.4, with the exception of gshunt,
which is zero unless otherwise specified. (See Paper III for
further applications of the solutions using a single cylinder
+ soma model based on the "basal" half of this model.)

Case /: Synaptic inputs, clamp to zero
Decoupling of dendritic trees. Decoupling of different

dendritic trees at the clamp point is discussed previously (3).
As described above, each component of the voltage clamp
solution only exists in the source dendritic tree for its par-
ticular eigenvalue, when both input and recording site are in
the same tree (or at the soma). Elsewhere in the cell it is zero.
When "synaptic" clamp currents are recorded with the soma
clamped to zero, the soma and the noninput trees are irrel-
evant to the final waveform. In Fig. 1, 1 pC point charges are
injected into the two dendritic sites used in the previous pa-
per. If the soma and noninput tree are detached from the
model, and the simulation is repeated, exactly the same
waveforms are obtained with perfect clamp. With imperfect
clamp, however, this is not the case, and the waveforms from
the "detached" models become progressively less like those
from the intact model as the series resistance increases (not
shown).

Filtering effects of dendritic cables. It can be seen in
Fig. 1 that, with perfect clamp, the clamp current resulting
from an "apical" input (B) 1000 ,um (0.707 space constants)
away from the soma is much smoother and slower than that
from a basal input (A) only 500 ,gm (0.224 space constants)
from the soma. In addition, the peak current of the apical
input is approximately a factor of ten smaller than that of the
basal input. These cable filtering effects are explored further
in Paper III.

Filtering effects of series resistance. Also shown in
Fig. 1 are the effects of various series resistances upon the
apical and the basal synaptic clamp currents recorded under
imperfect voltage clamp. It can be seen that series resistances
above 10 Mfl lead to significant attenuation and smooth-
ing of the recorded synaptic currents in this model. The
effects of the series resistance and the dendritic cables com-
pound one another (see also Ref. 12, Ref. 13, Chapter 6, and

2-Cylinder+Soma Model
Voltage Clamp of Synaptic Inputs

A: Basal 'Synaptic' Currents
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FIGURE 1 Case I: "synaptic" clamp currents under voltage clamp from
the double cylinder + soma model (based on the layer III visual cortical
pyramid in Paper I). Table 1.4 lists the model parameters, except gshunt =

0 here. The command potential is zero and 1 pC point charges are injected
into the same input sites used in Paper I. Basal (A) and apical (B) synaptic
currents are recorded from the soma via various series resistances Rser
(indicated). Different current axis scales are used in the two panels. We note
that removing the noninput cylinder and the soma makes no difference to
the waveforms under perfect clamp (solid lines), although this is not true

when Rser> 0 (not shown). The apical current is more smoothed and at-

tenuated than the basal, and the attenuation and smoothing become worse

as Rse, is increased. The filtering effects of the dendritic cables and series
resistance therefore compound one another.

Paper III).
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As discussed above (in the Parameter Dependence of
Imperfect Clamp Impulse Response section), the value of
Rser that begins to cause "unacceptable" distortions of the
clamp current depends very much on the morphological and
electrical parameters of the cell being recorded from. It is
obvious from Fig. 1 that the synaptic location is also im-
portant. Also crucial are the kinetics of the synaptic input:
currents slower than the impulses used here will be less prone
to smoothing by cables and series resistance. These consid-
erations are explored in more detail in Paper III.

Effects of somatic shunt. In Fig. 2, the effects of adding
a somatic shunt are illustrated for the two input locations, for
a series resistance of 10 MQl. Increasing the shunt has the
effect of increasing the total conductance to zero, improving
the speed of the responses at late times (the slower compo-
nents are more affected than the faster ones). The responses
are also smaller, since not all of the current flowing to zero
is flowing via the series conductance into the hypothetical
amplifier. The early parts of the responses are hardly affected
by increasing gshunt' and the peak currents are only slightly
reduced. The peak apical clamp current occurs later than that
of the basal input, and suffers a greater fractional reduction.
For example, with no shunt, the peak apical current was
0.023 nA, and the peak basal current was 0.137 nA. The
apparent time constants Teff obtained by "peeling" (regres-
sion interval, 10-15 ms) were 26.73 and 6.44 ms, respec-
tively, compared with 15.66 and 3.75 ms for the perfect
clamp case. When a 50-nS shunt was introduced, the peak
currents were decreased to 75% (apical) and 84% (basal) of
their no-shunt values. The Teff values were reduced to 21.95
and 5.57 ms, respectively.
When measuring apparent decay time constants of syn-

aptic currents, sharp electrode recording may be superior to
whole-cell recording, for a given Rser: peak currents will be
slightly attenuated, but the time constants will be closer to
those under perfect clamp.

Case 11: Voltage command step
Summation of clamp currents to different trees. In Fig.

3 the clamp current is shown when the cell is given a 1 mV
command step. The cell is then broken up into its components
(which are connected in parallel in the intact model): the
basal tree (b), the apical tree (a), and the soma (s). The
currents required to impose the same voltage step at the prox-
imal end of each part are plotted. In the case of perfect clamp
(Fig. 3 A), the sum of these three currents (a+b+s) is iden-
tical to the current waveform for the intact cell (solid line).

Effects of series resistance. The summing relationship
between currents into different parts of the cell breaks down
as soon as there is a series resistance: the whole-cell current
falls progressively below (a+b+s) as Rser is increased. Fig.
3 B shows the waveforms when Rser = 10 MfQ. This non-
summing interaction between the different parts of the cell
under imperfect clamp implies that, in general, it is not pos-
sible to compensate the effects of the soma capacitance by
simple subtractive techniques (cf. Ref. 16). Of course, there
may be circumstances (e.g. very low Rser, big soma and thin

2-Cylinder+Soma+Shunt Model
Voltage Clamp of Synaptic Inputs
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FIGURE 2 Case I: the effects of somatic shunts on synaptic clamp cur-
rents. The same model as in Fig. 1, with Rser = 10 MfQ and various additional
somatic shunts (indicated). The shunts mainly affect later parts of the re-
sponses, although the peaks are decreased too.

dendrites) where the interaction is approximately a summing
one (Ref. 9; see Paper III, Example 1 for further discussion).

Note also that the currents in Fig. 3 B are slowed and have
smaller early components than those recorded under perfect
clamp. This phenomenon is explored further in Paper III
(Example 1). The initial currents of the intact and the part
models are given by Vtep/Rser = 1 mV/10 MQ7 = 0.1 nA.

Fig. 4 A shows the actual somatic voltage in response to
the command step, for different series resistances. As Rser
increases, the response takes longer to reach steady-state, and

I
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FIGURE 3 Case II: clamp currents required to impose a 1-mV voltage
command step on the two-cylinder + soma model. (A) Perfect clamp: cell
components uncoupled at clamp point. Dotted line, current into isolated
soma (s); dashed line, current into isolated apical cylinder (a); dot-dashed
line, current into isolated basal cylinder (b). The linear sum of the clamp
currents into the three components (a+b+s) is the same as the clamp current
for the whole cell (solid line). (B) Imperfect clamp (Rser = 10 Mfl). The
summing relationship breaks down as the cell components become elec-
trically coupled. At times less than about 10 ms, the current into the whole
cell (solid line) falls below the sum of the currents into the isolated com-

ponents via the same Rs,r (long dashed line, a+b+s).

the steady-state voltage falls increasingly below the com-

mand level. The response appears clearly inadequate with
Rser = O Mfl, taking 33 ms to approach to within 1% of the
steady state of 0.92 mV.

60 80

FIGURE 4 Case II: somatic voltage responses to a 1-mV step command.
(A) Effects of various series resistances (indicated). Notice how slow and
attenuated the actual response is for Rser 2 10 Mfl, compared with the desired
step (solid line). (B) Effects of various additional somatic shunts (indicated),
for Rser = 10 Mfl model. Notice how the responses "square off' but reach
a lower steady-state as the shunt is increased.

Effects of somatic shunt. Fig. 4 B shows the somatic
voltage of the Rser = 10 Mfl model as additional somatic
shunts of various sizes are included. Extra shunts have the
effect of speeding the approach to steady-state, but reducing
the steady-state level still further, improving the clamp in one
respect but worsening it in another. For example, with gshunt
= 50 nS, the time to reach 99% of steady-state is decreased
to 25.9 ms, but the steady-state is reduced to only 0.63 mV.
Of course, if there were some way of approximately esti-
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mating the shunt, then the decrease in the steady-state level
could be compensated for, using a biggercommand step. This
suggests that, for a given series resistance, it might be pos-
sible to achieve nearer to the desired somatic responses with
sharp electrode recording than with tight-seal whole-cell
recording.

Dendritic voltage responses to a somatic step command
are illustrated in Paper III for the CA 1 pyramidal cell model.

DISCUSSION

The solution

General features

Following Rall (2), Bluman and Tuckwell (4), Evans et al.
(5), and Paper I (1), separation of variables solutions have
been derived for the voltage transients and clamp currents in
a branching passive neurone cable model with the soma volt-
age clamped. The responses can be expressed as an infinite
series of exponentially decaying terms. The time constants
T,, are obtained from the roots a,n of the recursive transcen-
dental equation (Eq. 6) together with Eq. 1.24. Because the
different dendrites are uncoupled at the clamp point (e.g.,
Ref. 3), each a,n and therefore each T,, originates from only
one tree, and is constant throughout that tree. The amplitude
terms are nonzero only in this source tree, and only if both
the input and the recording site are also in the source tree or
at the clamp point. (In some cases, where there is some sym-
metry in the morphology which would cause singularity
clashes in the voltage recording solution, two or more roots
from different trees may occur at the same value of a. They
should be given separate indices, and then treated the same
way as the other a,n values.) There are two basic cases, with
the same time constants, from which the responses to arbi-
trary combinations of input currents and voltage commands
can be built up, using the linearity of the system.

Case 1: Unit point charge injected into a dendrite, soma
clamped to zero

If the input site is a distance Ze along excitation segment e,
the voltage response at Xr in recording segment r is

Vr(Xr, Ze , t) = E En (e)|en (ZelAe )'m(XrlAr)e- tlT (59)
n=O

and the clamp current is

lclamp(Ze/Ae , t) = - a 90,,g (e)fEl (e)len (Zele )
n=O

X [sin anL/(e)]e , (60)

where Aj is the space constant of segmentj, En,e is given in

Eq. 14 and is independent of position within the source tree
of a,n, and the two qi functions are position-dependent spatial
eigenfunctions, given in Eq. 10, one for the input site and one
for the recording site. Note the symmetry between the two
qi functions in Eq. 59: exchanging input and recording sites
will have no effect on the waveform, just as in the case of
the simple voltage recording solution (Eq. 1.56). Y(e) is the
stem segment of the tree containing the input (excitation)
segment. E,,, ( ) is analogous to En in the voltage recording
solution, but is simpler, depending only on terms from the
source tree of a,n. The voltage is zero in noninput trees. De-
taching noninput trees makes no difference to the clamp cur-
rent at the soma or the voltage in the input tree. The qi func-
tions are also similar to those in the previous paper: the only
difference being in the continuity factors: under voltage
clamp Ks, = 1 for all the stem segments st. Following the
convention in the Paper I, the indexing of the a,n terms starts
from n = 0.

Case 11: Unit voltage impulse command at the soma, no
dendritic inputs

The voltage response is

Vr(Xr, t)

I angoc. (r)En, (rI,,rn(XrlAr)[sin a,nL/(r)] -le tT.
n=O

(61)

and the clamp current is

icamp(t) - (g.,,a )2[sin anLst,] 2En,, e-T, (62)
n=O

where st is the stem segment of the source tree of a,, The
clamp currents into the individual trees and the soma sum
linearly to give the total clamp current.

Other similarities with voltage recording solution

As is the case in Paper I, these solutions not only allow
generation of waveforms, but also give the underlying com-
ponent amplitudes and time constants. Most of the points in
the discussion in the previous paper also hold for the voltage
clamp case, e.g., the existence of closely spaced time con-
stants when the geometry is complex, the insights afforded
by explicit knowledge of the A,, and T, values, the repre-
sentation of taper, lumped terms for smooth input functions,
singularity clashes and the comparisons with compartmental
models. It is worth adding that, because of the steeper at-
tenuation of voltage transients under the clamp condition
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than under simple voltage recording, finer compartmental-
ization is required to achieve a given agreement between
compartmental model output and the analytical solutions.
The increase in speed from using the analytical solution is
therefore even greater with voltage clamp than with simple
voltage recording.

Reciprocity relations

The voltage responses in Case I show the same symmetry
between stimulation and recording sites as the voltage re-
cording solution in Paper I. In addition, comparison of Eqs.
60 and 61 reveals that, for any dendritic location, the voltage
response to a somatic voltage impulse is an upside-down
version of the somatic clamp current following a charge im-
pulse into the same dendritic site. A similar result for den-
dritic trees reducible to single equivalent cylinders is pre-
sented in Ref. 3. Because the system is linear, these
reciprocity relations generalize to arbitrary input waveforms.
Both symmetries could be exploited by compartmental mod-
ellers to reduce the number of simulations required to explore
the effects of different input sites, and by experimenters as
a further linearity test (in addition to checking for linear scal-
ing of responses with inputs).

These reciprocity relations (see Discussions in Refs. 3 and
17) are a general feature of the impulse response (Green's
function) of any linear system where the differential operator
is self-adjoint (e.g., Ref. 18, Theorem 11, p. 816). They hold
for any linear electrical network (e.g., Refs. 19 and 20), such
as a compartmental model, and for any continuous passive
cable tree (e.g., Ref. 21, p. 232).

Parameter dependence

The analytical solution clarifies the parameter dependencies
of the responses of a cell under voltage clamp. All the time
constants are proportional to Cm. In addition, the faster time
constants are proportional to Ri and are independent of Rm.
The slower time constants increase with both Ri and Rm. All
impulse response amplitude terms are inversely proportional
to Cm and are independent of Rm. The amplitudes of the
voltage response to a synaptic impulse (Case I) are inde-
pendent of Ri. The amplitudes of the corresponding clamp
current, and of the voltage response to a voltage command
impulse (Case II), are proportional to l/RiCm. The clamp
current amplitudes for the voltage command are proportional
to I/RiCm.
The only parts of the responses affected by Rm are the

slower time constants: changes in Rm affect only the final
decay of transients, hardly altering the peak. When fitting
models to experimental clamp currents resulting from volt-
age step commands, the fast amplitudes of the target wave-
form constrain R, and the fast time constants constrain Cm;
the optimal Rm is then determined by the slower components.
Fits which assume perfect voltage clamp should probably
only be undertaken with double electrode recordings (from
the same point). Given the likelihood of nontrivial series

resistances with single electrode recordings, fitting clamp
cufrent transients while assuming perfect clamp may lead to
misleading results.Uncertainty over the value of Rser may
worsen any fit nonuniqueness due to noisy data (e.g., Refs.
13 and 22 and Paper I).

Nonsomatic clamp point

Moving the clamp point would require new transcendental
equations which would generate different time constants and
amplitudes. It is easy to "re-organize" the representation of
the cell as described above so that the given analytical so-
lutions can be applied. Note that the solutions in this paper
do not apply to the two-electrode voltage clamp where the
voltage recording electrode is in a different part of the cell
in relation to the current injection electrode.

Imperfect voltage clamp

No-shunt voltage recording and perfect voltage clamp are
two extremes along a spectrum. The voltage recording a,,
values are the roots of the recursive transcendental function
(Eq. 1.22), whereas the voltage clamp a, values are the sin-
gularities. As argued above, for the transient parts of the
solution, a series conductance between the clamp amplifier
and the cell is equivalent to an extra shunt from the cell to
earth. For the voltage transients following synaptic inputs,
voltage recording with a shunt and imperfect voltage clamp
to zero are therefore formally equivalent. The voltage solu-
tion for perfect voltage clamp to zero is in fact the limit of
the voltage recording solution, as gshunt -m oc. With imperfect
clamp, the clamp current is the negative of the somatic volt-
age, scaled by the series conductance.
The imperfect clamp solutions have the same reciprocity

relations as those for perfect clamp. Parameter dependencies
are similar to those for the voltage recording and perfect
clamp solutions; in particular the early parts of transients are
insensitive to Rm and gshunt. As the series resistance increases,
the coupling between the soma and the different dendritic
trees becomes stronger and the clamp current into the whole
cell deviates increasingly from the sum of the clamp currents
into its isolated parts (see Example 2).

Interestingly, the slower time constants of a cell appear
to show an approximately linear dependence on series
resistance, for small series resistances. The effects ofchanges
to the electrical or morphological parameters of a model on
the intercept and slope of this relationship are discussed
above. Intuitively, raising Rm or Cm, lowering Ri, or increas-
ing diameters all worsen the effects of series resistance by
bringing it into "effective electrical contact" with more
membrane capacitance. Thus the effects of a given series
resistance will be extremely model-dependent: the distor-
tions caused to the responses will be worse for cells with a
large "effective capacitance." This issue is explored further
in Paper III.
When the series resistance is high (above about 50 Mfl),

the series conductance (less than about 20 nS) will enter the
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range of shunt conductances often experienced with sharp
electrode recording (e.g., Ref. 13). Clamp current waveforms
recorded with high series resistances will therefore bear more
resemblance to inverted PSPs recorded with sharp electrodes
than to the actual synaptic currents, particularly if there has
already been some filtering by dendritic cables.

Whole-cell recording versus sharp electrode
recording

Whole-cell recording is commonly assumed to be "superior"
to sharp electrode recording. In order to temper this com-
placency, it is interesting to compare voltage clamp with a
whole-cell pipette and with a sharp electrode of the same
series resistance. The total conductance to zero is higher for
the sharp electrode, and therefore voltage clamping is "bet-
ter" than with whole-cell recording in one respect: the time
constants are nearer to those generated with perfect clamp,
and therefore the time courses of the clamp currents and
actual soma voltage are less distorted (see Example 2). Of
course, not all the axial current at the soma flows into the
amplifier: a proportion is lost via the shunt. Naturally there
are many other considerations when deciding which tech-
nique is most suitable for a given purpose.

Overview

The analytical solutions presented in Paper I and in this paper
complement existing methods for generating transients in
passive neurone models with arbitrary geometry. They also
offer fresh insights, such as the symmetry between stimu-
lation and recording sites in many situations, the underlying
similarities between imperfect voltage clamp and voltage re-
cording, and the parameter dependencies of the responses.
Combined cable and series resistance effects will be con-
sidered in more detail in Paper III.
The techniques used, i.e., the construction of a recursive

transcendental function to generate eigenvalues, and then the
use of complex analysis to derive amplitude terms, are suf-
ficiently powerful to be taken further: in future papers anal-
ogous solutions for models with nonuniform electrical pa-
rameters and extra dendritic shunts will be presented.

SUMMARY AND CONCLUSIONS
1) The simple voltage recording solutions in the previous

paper are extended to give the responses of an arbitrarily
branching passive neurone model under perfect somatic volt-
age clamp, both to current inputs and to voltage commands.
As before, the solutions are obtained by separation of vari-
ables and are infinite series of exponentially decaying com-
ponents.

2) The voltage clamp boundary condition effectively un-
couples and isolates the dendritic trees originating from the
clamp point. Each tree has its own transcendental function,
the roots of which are eigenvalues in the exponential series.

and spatial eigenfunctions, which, excepting coincidences,
do not exist in the other trees. For a fixed clamp point, the
time constants of a dendritic tree are independent of the stim-
ulating and recording positions within that tree.

3) The roots of the voltage clamp transcendental equations
of all the dendritic trees taken together are also the singu-
larities of the voltage recording transcendental equation. The
cell as a whole can therefore generate one voltage clamp time
constant between every pair of voltage recording time con-

stants.
4) Two fundamental kinds of input are considered: a unit

point charge into a dendritic segment with the soma clamped
to zero, and a unit somatic voltage impulse in the absence of
any dendritic inputs. The amplitude terms can be obtained by
complex residues or from the limit of the voltage recording
solution as the shunt becomes infinite. Each depends only on
the tree from which its particular eigenvalue originated.

5) The total clamp current required to impose a voltage
command on a cell is the linear sum of the clamp currents
required for the isolated individual dendritic trees and soma

(but this relationship breaks down as soon as there is any

significant series resistance).
6) The parameter dependencies of the solutions are similar

to those of the voltage recording solution. In particular, the
early parts of transients are relatively insensitive to changes
in Rm and gshunt,

7) The responses to a number of common current or volt-
age input functions are obtained analytically by convolution.
Lumped amplitude terms are derived for the responses to
inputs such as "alpha" function or exponentially decaying
currents or voltage commands.

8) To obtain responses from a model with a nonsomatic
clamp point, the real soma can be represented as a short
cylindrical segment, and an extra soma of zero area can be
introduced at the clamp point.

9) Expressions are derived for responses under imperfect
voltage clamp. Clamping to zero is equivalent to voltage
recording with an extra somatic shunt equal to the series
conductance. The clamp current is an upside-down replica of
the somatic voltage. The dendritic voltage response to a so-

matic voltage command is the negative of the somatic clamp
current in response to a current input of the same waveform
into the same dendritic site.

10) The slower time constants show an approximately lin-
ear dependence on series resistance for small series resis-
tances. The larger the effective capacitance of a cell, the
worse the effects of a given series resistance. Depending on

the size, morphology, and electrical parameters of the cell,
series resistances in the range used experimentally may cause

serious attenuation and smoothing both of synaptic clamp
currents and the voltage actually imposed on the soma.

11) As with the voltage recording solution, the analytic
solutions for voltage clamp transients complement existing
simulation methods, and offer additional insights into the
composition and parameter dependencies of response wave-

Each tree therefore generates its own set of time constants
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APPENDICES

Appendix 1: Derivation of amplitude terms using
complex residues

We follow closely Appendix 1 of the previous paper, with
differences peculiar to the voltage clamp case highlighted.

when r = st, with

k(p) = go,s,(R5,sinh qLst) 1 = g4jcoth qLst + Ast]. (68)

By evaluating the residues at the simple poles p = - I/T,
as in Eq. 1.83, we have K

Case 1: Clamp to zero with synaptic input: Vcom = 0, and
unit dendritic point charge

We let Gr(X, Ze, t) be the voltage response at Xr to a unit
charge impulse at Ze in segment e, and as before, denote its
Laplace transform by Gr (Eq. 1.57). The Laplace transform
of the system of equations describing the model is the same
as Eqs. I.58-I.63 in Paper I, except that the somatic (clamp
point) boundary condition (Eq. I.61) is replaced with

Gs (Ze, P) G=st (0 Ze, P) = 0 (63)

We again have the definitions of lip, and Kj (see Eqs. 1.64 and
1.66) in the previous paper), and use the same representation
scheme for G1 (see Eqs. 1.67-1.72). See Paper I, Fig. 9 for
zoning of the dendritic trees.

Note that in noninput trees

Gj = 0, (64)

since the clamp boundary condition Eq. 63 forces As = 0.
Also, for the soma-input segment "mainline" chain's stem
segment st,

Ast = As = 0. (65)
We follow Appendix 1 of the previous paper, Eqs. 1.73-1.77,
for the determination of the AC, and Bc terms. Equations 64
and I.68-1.72, I.74, I.76, I.77, and 65 can be used to evaluate
Gr(Xr, Ze, p) over the entire dendritic tree.

Using the relationships (Eq. I.88) in the previous paper,
and the transcendental equation (Eq. 6), it can be seen that
Kst also has simple poles at q = ian, where st is the stem
segment of the dendritic tree producing a,. As in the voltage
I ecording derivation, using the relationships (Eqs. 1.73-1.77),
it may be shown that Gr given in each of the expressions
(Eqs. 1.68-1.72), has poles at q = ian. We note that near the
poles the BRS term (Eq. 1.77) comes to dominate Gr in all zones
of the dendritic tree where Gr is nonzero. As can be seen
from Eq. 1.76, all other (3c terms contain an uncancelled
(cosh qLs, + s,u2sinh qLs,) factor, which tends to zero near the
poles. We define

= [cosh q(L-Ze) + sinh q(Le - Ze)]S5tq

Avq- h(p)
ner k'(p) (69)

Differentiating Eq. 68 with respect to p gives

kt(p) = TgM {Lst(1 - coth2qLst) + K d,s, (70)

The recursive expansion (Eq. 1.86) can be used on the term
in angle brackets (E), and the substitutions (Eq. I.88), and
the transcendental equation (Eq. 6) can be used with these
expressions for h(p), and k'(p) to give Anq in Eq. 16.

Case 11: Unit voltage impulse command: Vcom = a(t), no
dendritic inputs

Now let Gr(X,, t) be the response to a somatic voltage im-
pulse. The Laplace transform of the clamp point boundary
condition (Eq. 1) is now

(71)

Gj is now given by Eq. 1.67 over the entire dendritic tree. (All
the Bl terms are zero.) It therefore follows that

(72)As = 1.

If k(p) is as in Eq. 68, then

[cosh q(Lr - Zr)

h(P) g=,r + Arsinh q(Lr - Zr] )
- St~ sinhqLst. 73

This can be used together with Eqs. 70 and 1.88 to derive
A' in Eq. 22.

Appendix 2. Amplitude terms for imperfect clamp
unit impulse voltage command

Let Gr(Xr, t) again be defined to be the response to a somatic
voltage impulse. The Laplace transform of Eq. 38 with
Vcom(t) = 6(t) is

gser = g 5[l +s *mp]

x [cosh q(L, - Zr) + /1r sinh q(Lr - Xr)]

when r * st and

Re[cosh q(L - Ze )

h(p) = + yie sinh q(L, - Ze)]sinh qXs, (67)
kspq sinh qL(t

dGs5(Xst)

stEstems dXst
(74)

Xl =0

With no input charges into the dendrites, Gj is given by Eq.
1.67. Substituting this into (74) and applyingp = (q2 1)/Tm,
gives

(66)
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As = gser {g [l + - 1)]

+ q E gRstis[sinh qLs, + ,ustcosh qL5,]}. (75)
stCstems

Let k(p) be defined as in Eq. 1.82 and

h(p) = gserq Kr

X [cosh q(L - Xr) ± gusinh q(Lr-Xr)]. (76)

Then, following Eq. 1.83, the amplitude terms in Eq. 41 can
be derived from

A v = h(p)lk'(p), at q = ia0, (77)

using k'(p) in Eq. 1.87, and with g* and E* in En (Eq. 1.34).

Appendix 3. Responses to sinusoidally varying
inputs

Solutions

As discussed in Refs. 3 and 23 (Chapter 13), the cable equa-
tion for the A.C. steady state is the same as the Laplace
transformed cable Eq. I.58b, but with the Laplace transform
variable p replaced by iw, where w = 27rf is the angular
frequency. The A.C. steady-state (or frequency domain) re-
sponses can then be obtained directly from the unit responses
Gj in the Laplace domain.

For an A.C. current Iinjected at Ze, the boundary condition
is the same as Eq. 1.63 with the right-hand side multiplied
by I (compare with Eq. B 1 in Ref. 3): therefore the volt-
age response is GjI, with 9j as defined in Appendix 1 of
Paper I.

For an A.C. voltage command VCOM, with perfect clamp,
the boundary condition is the same as Eq. 71 with the right
hand side multiplied by lVcom, so the voltage response is given
by Eq. 1.67 with A, = 1VcrOm. Likewise, in the case of imperfect
clamp, the somatic boundary condition is given by Eq. 74
with the left-hand side multiplied by Vcom, and so the voltage
response is given by Eqs. 1.67 and 75 with AS multiplied by
Vcorn

A.C. clamp currents can be obtained using the Laplace
transform of Eq. 18:

1clarnp = -ga j./(8X(e) /8 (e)) xw (e)O° (78)

where J/(e) is the stem segment of the input site.

Implementations

In general, an A.C. response is a complex number Mei¢, with
a modulus (amplitude) M and a phase angle (D. Rall and
Segev (3) explain in their Appendix A how to calculate these
quantities explicitly, for a single equivalent cylinder. Because
a passive dendritic tree is a linear system, as a sine wave is
propagated down the cables, the amplitude becomes atten-
uated and the phase becomes delayed, but no change in fre-
quency occurs. Using their Eqs. Al-AS, recursive versions

of their Eqs. A6-A1O can be derived for arbitrary geometries,
to deal with the K and ,I terms in the expressions for Gj.
However, the algebra is ugly, and it is probably simpler to do
the calculations directly using complex arithmetic. There are
several studies including derivations or descriptions of sim-
ilar Laplace or Frequency domain solutions and algorithms
(e.g., see Refs. 21, 24-32).

Frequency-dependent attenuation

Define Aij(c) = Vii(@)/Vyij() to be the voltage attenuation
at angular frequency X between points i andj on the dendritic
tree, where Vij is the voltage at j in response to an input at
i and Vii is the voltage at i. Interestingly, ifj lies on a direct
path between i and k, then

Aik= AijAjk, (79)

(21, 33). This is easily shown from the continuity of the
Laplace transform solution: for clarity omit the somatic shunt
and represent the soma as a short cylinder, and split any
recording segment at the recording site (it is simple to extend
the proof to cases with shunts and nonuniform electrical pa-
rameters). Treat the injection site as a "virtual" soma of neg-
ligible size. Then, from Eq. 1.67,

A
lj

= 1/Kj = 1 (cosh qLc + ,icsinh qLc), (80)
c EchainiQ

where chainij is the set of segments in a direct line from i to
j, inclusive. Likewise,

Aik = l/Kk = I (cosh qLc + ,lcsinh qLc). (81)
crEchainik

Move the stimulation site to j, and change the representation
of the cell so that the virtual soma is now at j. With the new
representation, Ajk is given by

Aik = l/Kk = II (cosh qLc + lcsinh qLc). (82)
c Echainjk

Equation 79 follows immediately from Eqs. 80-82.
The same relationship holds for steady-state attenuations,

and for each amplitude term in the time domain, as can be
seen from inspection of Eqs. 1.33 and 16, for example. How-
ever, in general Eq. 79 does not hold for peak voltages, be-
cause most transient signals are composed of a number of
different frequency components which suffer differential at-
tenuation.
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