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Bioelectrorheological Model of the Cell. 4. Analysis of the Extensil
Deformation of Cellular Membrane in Alternating Electric Field

Piotr Pawtowski and Magdalena Fikus
Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Rakowiecka 36, 02-532 Warsaw, Poland

ABSTRACT Analysis of the angular distribution of extensil mechanical stress, ¢®, generated in cytoplasmic membranes by
an external oscillating electric field, is presented. Theoretical considerations show that o° is directly proportional to the local
relative increase in membrane area and/or to the local relative decrease in its thickness. The magnitude of this stress depends
on the position of the analyzed point of the membrane in relation to field direction. The maximal value, o§, is reached at the
cell “poles.” The magnitude of o§ depends on electric and geometric parameters (in particular on field frequency) of the system
studied.

The foregoing analysis can be applied to quantitatively describe the destabilizing effects of the electric field on the cellular

membrane, leading to its poration, fusion, and destruction.

INTRODUCTION

An external electric field acting upon artificial lipid vesicles
or cells causes an alteration in membrane potential and gen-
erates different types of mechanical stress in the membrane
(1). Theoretical analysis suggests that, within a definite range
of conditions, the integrity of the membrane may be dis-
turbed. This is supported by experiments, in which destabi-
lization of the membrane manifests itself either by a transient
increase in its permeability (2, 3) or by its irreversible break-
down (4). Both processes have been extensively investigated
in connection with the widespread use of electroporation and
electrofusion in molecular and cellular biology (5). High in-
tensity rectangular pulses (6), exponentially decaying pulses
(7), and a superposed oscillating field with rectangular pulses
(8) have been applied in these experiments.

Though several theoretical treatments of the reversible
electrical breakdown of the membrane have been proposed,
this complex process is not yet well understood. Previously
published theoretical models have considered various mech-
anisms: (i) electromechanical compression of a continuous
elastic body, resulting in membrane defects (9-12); (ii) de-
stabilization and widening of defects of the membrane (13,
14); (iii) redistribution and reorientation of the molecular
constituents of the membrane (15, 16).

Recently, a local sonicative effect of an oscillating electric
field on charged membrane molecules has been assumed (but
not quantitatively discussed) to be a destabilizing factor (8,
17).

In this study theoretical analysis of the angular distribution
of extensil stress in the membrane, modeled as a thin spher-
ical shell subjected to alternating electric field, is proposed.
The extensil stress is defined as the difference between two
components of total stress corresponding to extension and
compression of the membrane at a given point (Fig. 1). The
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model considers Maxwell stress developing at the surfaces
of the shell, averaged over time. Complex notation enables
the description of the dissipation effects in the system (di-
electric losses, conducting media). The shell is regarded as
an elastic body. Pressure alterations in the internal medium,
resulting from cell deformation, are accounted for.
Rigorous considerations of the mechanical properties of
the membrane lead to respective constitutive equations
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FIGURE 1  Graphic presentation of extensil stress, 0%, acting on an
imaginary sector of the membrane. g;; is the components of stress tensor in
the spherical co-ordinates system (r, 9, ¢).
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which relate relative local alterations of both area and thick-
ness of the membrane to extensil stress. It is assumed that
under definite conditions the development of the extensil
stress in the cellular membrane may result in its reversible
or irreversible damage. Thus, it is suggested that the pro-
posed analysis may be useful for quantitatively describing
processes such as electroporation, electrofusion, and elec-
trodestruction.

An analysis of angular distribution of stress, based on the
equilibrium equation for a thin spherical shell, is performed.
The value of stress depends on electric field amplitude and
frequency, and on the electric and geometric parameters of
the system.

THEORETICAL ANALYSIS OF EXTENSIL STRESS

Electromechanical model

The electromechanical model considers local isothermal variations of the
area and thickness of a thin spherical shell separating two different media,
which is subjected to external homogeneous alternating electric field. The
increments of both stress and deformation are calculated in relation to the
initial state of the shell. The shell is described as a homogeneous elastic body
with a noncompressible volume; both its area and thickness are assumed to
be weakly compressible. The elastic properties of the shell are locally iso-
tropic in a plane tangential to the shell surface. Internal and external media
are regarded as homogeneous, isotropic, and not compressible; they are also
nonviscous liquids.

From the electric point of view all media are generally considered to be
homogeneous, isotropic liquids with some dielectric and conductive prop-
erties (relaxation is admissible). The mechanism of Maxwell-Wagner po-
larization is taken into consideration, and the resulting Maxwell stress is
calculated. A zero volumetric density of free charges is assumed. Additional
effects related to change in the dielectric permittivity (due to the deforma-
tion) as well as to the magnetic component of stress are neglected.

Analysis of stress and deformation, both averaged over time (period of
electric field), is performed for points situated in the middle of the shell, at
its initial thickness. The system of spherical co-ordinates (r, 3, ) is used.
The surface including the initial position of the analyzed points is described
for r = R, where R is the mean shell radius in the initial state of shell. ¥
denotes the angle in relation to the external field direction. The following
analysis does not depend on the { co-ordinate due to rotatory symmetry. An
approximation of the infinitesimal deformations is used.

The constitutive equations relating the mechanical stress tensor in the
shell, oy;, to the deformation tensor, €Y, in directions of the local reference
system corresponding to versors of the spherical co-ordinates 7, &, and ¢
may be presented in matrix form:

€ A B B [
€s |=| B C D 2%} 1)
[ B D C Opp

where A, B, C, and D, are components of the tensor of the compressibility
coefficients. They are constant when the local reference system rotates
around the 7 axis.

Local relative alterations of shell thickness, Ad/d, of shell area, AS/S, and
of shell volume, AV/V, are expressed as components of the €; tensor as
follows.
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In addition, AV/V is zero for each stress, o, developed in a volumet-
rically not compressible shell. This condition, together with Egs. 1 and 4),
leads to following relationships for A, B, C, and D coefficients as follows.

A+2B=0 (5)
B+C+D=0 (6)
Using Egs. 1, 5, and 6, Ad/d and AS/S may be expressed as

Ad_ As

i~ s @
g—L € 8
S—Kbeg ()]

where Ky, biaxial extensional elasticity, is defined as Ky, = 1/A, and the
mechanical extensil stress, 0%, is defined as follows.

0° = Ya(ogy + Tpp) — O )

As shown below (Appendix 1), in an oscillating uniform external electric
field the angular distribution of o° assumes the form:

o° = Vh0§(3 cos’d — 1) (10)

where o{ is the maximal value of the extensil stress, depending on both
strength and frequency of the electric field and on the electric and geometric
parameters of the system.

Stress, 0, attains extreme values, amounting to g and -0.5 o, at the
poles (¥ = 0°, 180°) and at the equator (3 = 90°) of the shell, respectively.
The change in the sign of o° reflects variations of the character of stress,
as a function of the position of the analyzed point, in relation to the field
direction (compression versus extension). Stress, o, is bound to the radial
increments of the mechanical normal stress (Ao,;)"*" and to the mechanical
tangential stress, o,3:

L1tk
R

(Ao,)"™ + o7y ] an

where K is the geometric parameter of the shell equaling the ratio of the
internal to external radius (see Appendix 2, Eq. AS53).

Stresses (Aa,,)"™, o5 are generated by Maxwell stress at the surface of
the shell. Consequently, they depend on the amplitude of the electric field
in square, field frequency, and on electric and geometric parameters of the
system.

Connotation “var,” implies that these components describe the variations
of stress with changes in angular co-ordinate 9. As a consequence of the
assumed noncompressibility of the internal medium, the constant element
of stress, “con,” has no share in Eq. 11.

According to Eqgs. 7, 8, and 10, extensil deformations Ad/d and AS/S are
related to o and to the & position:

AS  Ad

€ 2
00( cos ) (1 )

The values corresponding to variations of Ad/d and AS/S may be essential
when the integrity of the shell is considered. Accordingly, when electropo-
ration and electrodestruction of cells are discussed on the basis of the shell
model, it is necessary to find o, together with its dependence on field
frequency and on other experimentally controlled physical parameters.

As an example of application of the foregoing theoretical analysis (Ap-
pendixes 1 and 2), the numerical values of o§ as a function of field frequency
were calculated for Neurospora crassa cells at different conductivities of the
external medium and constant field strength (Fig. 2).

Stress, o, assumes positive values within the whole range of the in-
vestigated field frequencies. In accordance with Eq. 12, maximal extensil
stress, oG, represents thickness compression and area extension of the mem-
brane at a cell poles. At low field frequencies o assumes a 1high constant
value. Under these conditions the membrane behaves as a dielectric placed
between the capacitor conducting plates. The membrane is compressed by
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FIGURE 2 Calculations of maximal extensil stress, o, developed in the
membrane of a N. crassa cell at its “pole,” as a function of field frequency,
f, for various conductivities of the external medium, Re[k]. Field strength
Ey = 25 kV/m; other parameters are as in Appendix 2 of Ref. 22.

the charges accumulated at the surfaces of the plates. Thus, the magnitude
of stress depends on the membrane dielectric properties (real part of di-
electric permittivity), membrane thickness, and cell radius.

The region of a constant stress value is limited to the low-frequency
range. It expands with an increase in the external medium conductivity. With
a further increase in frequency, the curves illustrating the values of the
maximal extensil stress, o, decline sigmoidally, owing to relaxation of
Maxwell-Wagner polarization. For a given set of physical parameters, at
high field frequencies (f > 10° Hz), the curves representing o as a function
of field frequency proceed asymptotically toward relatively low values. For
these frequencies, Maxwell-Wagner polarization becomes negligible when
compared to the polarization of ideal dielectrics.

DISCUSSION

This paper is a successive contribution to the cycle of pub-
lications (1, 18-20) aimed at a full, general theoretical and
experimental analysis of mechanical stress generated in cell
and cellular membrane by an alternating electric field within
the range of field frequencies f = 102-107 Hz. This work is
limited to the frequency range where the previously analyzed
shearing forces (20) decrease and extensil forces increase (1).
The presented analysis may provide better insight into the
basic mechanisms, control, and regulation of the effects such
as electroporation, electrofusion, and electrodestruction.
These phenomena have so far been discussed mostly in terms
of electric models.
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The present analysis shows that mechanical stress in cel-
lular membranes is generated by an alternating electric field
as aresult of the action of Maxwell stress on membrane areas
facing internal and external media. It is suggested that ex-
tensil stress may substantially contribute to generation of the
above mentioned effects.

Mechanical stress was theoretically evaluated by includ-
ing into calculations the dielectric permittivity and electric
conductivity of the external and internal medium and the
membrane, nonzero magnitude of field frequency, variations
of cytoplasmic pressure (bound to cell deformation), and cur-
vature of cell surface. These factors have not been taken into
account when electroporation was previously explained in
terms of an electromechanical model (10).

The calculated values of extensil stress in the membrane
represent increments of this stress, relative to the initial state
of the cell being in equilibrium with the medium, in the
absence of external electric field. It remains unclear how this
initial state, which may differ for various cells, influences
their reaction to the external field and to the stress created by
this field.

The analysis presented in this work permitted determina-
tion of the extensil stress in the shell considered in the “Elec-
tromechanical model.” If Ky, is known from independent
studies, it could be used in the determination of the extensil
deformation.

This analysis could be applied in predictions of the effects
of variations in electric and geometric parameters on stress
values (i.e., Fig. 2). However, predictions concerning how
this stress would modify the system, if a given stress is suf-
ficient for cell disruption, and how K. depends on other
parameters are not allowed.

The above analysis was applied to the more complex case
of a cell surrounded by a cellular membrane. Then, the me-
chanical parameter, K. became an effective one, its value
resulted from different contributions of all considered media,
their heterogeneity included (22).

APPENDIX 1: EXTENSIL MECHANICAL STRESS,
o®, IN THE SHELL, AVERAGED OVER THE
ELECTRIC FIELD PERIOD

Stress distribution averaged over the field period, within a thin spherical
shell, was analyzed to determine the temporal mean of extensil stress, o*.

‘When the mass acceleration effects are neglected, Newton’s Second Law
can be formulated in tensor form for the forces acting on a shell subjected
to an alternating electric field:

w

a
—T;+f{'=0 (i=1,23) (AD)
) Iaxj

J

where Tj; is the temporal mean of the symmetric tensor of mechanical stress
in the shell, f i" is the temporal mean of the volumetric density of electric
forces, x; is the Cartesian co-ordinate of the deformed shell.
Assumptions about the electric properties of the system (see Text) allow
for neglecting volumetric density of the electric forces ( f i" =0). Then, under
approximation for infinitesimal deformations, and for points situated in
the middle of the shell thickness (r = R), Eq. A1, formulated using spheri-
cal co-ordinates r, 9, and ¢, for the force balance in the direction of
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versor 7, assumes the following form.

i} 19 1
P T, + R399 T,s+ 3 [2T; — (Typ + T,,) + T,pctg(H)] =0 (A2)
When the system is in its natural orientation the description of the system
does not depend on the angular co-ordinate ¢ (see text).
Extensil stress T can be formulated as follows.

TS = Vo(Toy + Tpp) — Ty (A3)

It was assumed that in the initial state (nat), in the absence of external
electric field, stress is distributed with spherical symmetry. In this case,
equation A2. is of the following form.

9 2 .
— | = A4
o T, (nat) R (nat) = 0 (A4)

Subtracting equations A2 and A4 gives:

%an + %aiﬂo"’ - % [o‘° - %0',9 ctg(ﬂ)] =0 (AS)
where o = T - T(nat) expresses the variations of the stress values in relation
to the initial state, and as such it is to be analyzed in the following calcu-
lations. For the sake of brevity, o is referred to as stress.

Extensil stress, 0°, can be calculated by solving the Eq. AS when the
constituent o5 and radial gradient (8/9, )0, are known.

In the case of a thin spherical shell, the unknown constituent and the
gradient can be substituted, respectively, by:

o,im + aext
G5 = r02 rd (A6)
F) o_ex( — o,im
w T d (A7

where the upper indices denote points on the internal (int) and external (ext)
surfaces of the shell, respectively, at a fixed angular co-ordinate 9.

By definition, the stresses on shell surface represent the respective con-
stituents of the area density of forces, ™, £, acting on the internal and
external shell surfaces, respectively.

oM =F. g (A8)
o =F % (A9)
gt = —Fint.z (A10)
o =~f"-¢é (All)

In the presence of an electric field, the conditions required for attainment
of force equilibrium on boundary surfaces ca be expressed as follows.

Fint = (ﬁm - n,,, +};5) -8, (A12)

Fe=ql, - I, - pd) -8, (A13)
where I1,, is the Maxwell electric stress tensor, p is constant pressure (21),
8 s the unit tensor, i, s, and e are the upper indices denoting internal medium,
shell and external medium, respectively (all values represent variations av-
eraged over time, in relation to the initial state).

Maxwell stress is proportional to squared field strength. It was assumed
that the resulting electric field consists of both constant field occurring in
the initial state and the external oscillating electric field Re[E exp(iywt)].
In this case Maxwell stress increments averaged over time represent con-
tributions from the external field only.

In complex notation, where the induction of the electric field D is
Re[eE exp(iywt)], the constituents of the Maxwell stress tensor (averaged
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over the field period) can be expressed as:

1 i .
M)y = ZRe[e]I:E;"Ej + EE*~ (2 E@;{)S,,] Gj=1,2,3)
k=1
(Al4)
where * denotes complex conjugation.
When the distribution of the additional electric field in a shell and in the

surrounding medium is known (see Appendix 2), Eqs. A8-A14 lead to the
following relationships:

int ext
g+ 0

5 = 2075 sin(®) cos(9) (A15)
o — o™ = (Ac,)™ + 2 (Ao,)"™ cos}(D) (A16)
where
o'% = — Vi(a, + a,)E} (A17)
(A0,)" = [Ag,(p)]*" + [Aa(eD]*" (A18)
[Ao, @] =p—-p (A19)
[Ac,(e)]*" = (B, — B,)E} (A20)
(Ag,)"™ = Vala, — oy + v, — v,)E} (A21)
and where
a, = ViRe[e]Im| % — ViRe[e](Im 1 + Re[m n*] — 21n1?) (A22)
B, = ViRe[e]im — n|? — ViRe[e]im |2 (A23)
y, = —%Re[e]In |2 (A24)
a, = YiRe[e](1 + Re[n] — 21n12)
— ViRe[e](Im % + Re[mn*]K® — 21n12KS) (A25)
B, = ViRe[e]im — nK*I12 — ViRe[e]I1 — n |2 (A26)
v, = YRe[€]In 12 — %Re[e]in 1 2K® (A27)

where E, is the real amplitude of the external electric field, K is the geometric
parameter of a shell, | | is the complex modulus. Complex numbers n and
m with upper indices are coefficients of field distribution, which depend on
its frequency, on electric parameters of the system and on K. For details see
Appendix 2.

In Egs. A15 and A16, the constant part (con) and the part varying
with angular coordinate 9 (var) (for 9 = 45°) were separated from the
mean stress and from the radial increment. Additionally, in Eqs. A18—
A20 the elements related to mechanical pressure (p) and to the electric
field (el) were separated in part con of radial increment. Taking into ac-
count the relative volume variations AV/V of the internal medium we can
write:

-

[Ao,(p)]" = —Ii(v (A28)

14

i
where K, is the volumetric compressibility modulus of the internal medium.
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Use is made of Egs. (A5, A6, A7, A15, A16, A18, and A28) to obtain:

e _ 1_ 1+K AV con
0_{4<1—K)[ K,,( )+[A - (eD]" + = Ao- ]
V
+|:é(it1;)AU:,“’+a :|(3c05219—1)} (A29)

In the description of the electromechanical model, it was shown that
stress 0 is associated with the relative local variations of shell surface AS/S.
As a result of volumetric noncompressibility of the internal medium (AV/V
= 0) and of the shell (AV/V = 0), the global surface of the shell remains
unchanged. For the medium surrounded by a shell of the radius, R, surface,
Sr, and volume, Vg, we obtain:

auk
—_— dVR =0 (A30)
r=R
F) 3
fff ‘u—k‘dVR f 2 wemy dSg
k=1
r<R r=R
! R AS ds, A3l
=3 5 r (A31)
r=R

where uy is the displacement vector.

Use was made of Gauss’ theorem and of the fact that the local relative
variations of shell surface are approximately proportional to the displace-
ment vector. Precisely, the us component does not contribute to the surface
integral.

__2_

S (A32)

Using Eq. 8 (see Electromechanical Model section) and Eqs. A30 and
A3l one gets:

™

f o°sin¥ dd = 0.

0

(A33)

Application of the A33 condition in Eq. A29 results in the following
relationships:

i A 2
K,AY = (A0, (@] + £ a0 (A34)
1%
a° = Y205 (3cos?® — 1) (A35)
where
11+K
2[61 Ao’ + o ] (A36)

Stress o is the maximal extensil stress on cell poles (% = 0°, 180°).

APPENDIX 2: ELECTRIC FIELD DISTRIBUTION

In the description of alternating electric field in lossy Inedia, by
applying complex notation the induction of the electric field, D, assumes
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the form:

D = Re[eE exp(i, 01)] (A37)
where E is the complex electric field amplitude, € is the complex dielec-
tric permittivity of the medium, (w/27) is the field frequency, ¢ is time,
iy is an imaginary unit, and Re[-] is the real component of the complex
number.

In the electric model it is assumed that all media are homogeneous,
isotropic, and neural. According to Maxwell’s laws, for complex values we
can write:

div(ek) = (A38)

div(k + i,w €)E] = 0 (A39)

where k is the complex conductivity of the medium

d —_
1V = 2 ax

Equation A39 shows the boundary conditions at the boundary between
medium a and medium b:

(A40)
E [V/m] E [V/m]
1.2E+08 [ S 1.2E+05

e
1.0E+08 +1.0E+05
8.0E+07 8.0E+04
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FIGURE 3 Theoretical relationship between the distribution of field
amplitude (E - E*)'/2 in cytoplasm, inside the cellular membrane and at the
external cell surface, (O = 0°, 180°), and the external field frequency, f. Field
strength Eq = 25kV/m. Electric and geometric parameters for N. crassa cells
taken from Appendix 2 of Ref. 22.
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where

f=c- iu<5> (Ad1)
®
where 7 is the vector normal to the boundary surface.

If the assumption is made that the external electric field Eois homoge-
neous either far from the cell or that no cell is present, and there is zero phase
displacement, the complex field amplitude Eq is of the form:

Ey = Egé; (A42)
where EO is the real amplitude of the external electric field, & is the versor
of the field direction.

In the system of spherical co-ordinates, r, 9, ¢, (cf. text under Electro-
mechanical Model section), solving of the equation A38 with consideration
of the boundary conditions A40 and of the condition at infinity A42 affords
the description of the distribution of the complex electric field amplitude in
a shell and in the surrounding media in vectorial form:

« o 1 a
E = (m - %)Eoéf + 3ll3cos(19)Eoér
r r

(A43)
where the upper index a denotes the respective medium.
Factors of field distribution, m, N, are of the following forms:
(i) Internal medium (r < R - d/2):
n = ° (A44)
"7 by + 3)(by + 3) + 2b b K
N=0 (A45)
(ii) Shell (R -d/2 <r <R + d/2):
m = Vb, + 3)m (A46)
s s d 3
N = n(R - 5) (A47)
n = Vibm (A48)
(iii) External medium (r > R + d/2):
e
m=1 (A49)
e e d 3
N=n R+§~ (A50)
e 3 i
n = Y% [(bi + 3)b, + b (2 b, + 3)K’1m (AS1)
where
= ﬁi ( A52)

and the geometric parameter of the shell, X, is the ratio of the internal to
external radius:

(_R-an
T R+d2

(A53)

The final results of the above analysis are depicted in Fig. 3.

Biophysical Journal

Volume 65 July 1993

REFERENCES

1.

10.

11.

18.

19.

20.

21.

22.

Pawtowski, P., and M. Fikus. 1991. Shear deformation of the spherical
shell acted on by an external alternating electric field: possible appli-
cations to cell deformation experiments. Z. Naturforsch. 46¢:487-494.

. Neuman, E., and K. Rosenheck, 1972. Permeability induced by electric

impulses in vesicular membranes. J. Membrane Biol. 10:279-290.

. Neuman, E., M. Schaefer-Ridder, Y. Wang, and P. M. Hofschneider.

1982. Gene transfer into mouse lyoma cells by electroporation in high
electric field. EMBO J. 1:841-845.

. Sale, A. J. H., and W. A. Hamilton. 1968. Effects of high electric fields

on microorganisms. III. Lysis of erythrocytes and protoplasts. Biochim.
Biophys. Acta. 63:37-43.

. Zimmermann, U. 1988. Electrofusion and electrotransfection of cells.

In Molecular Mechanisms of Membrane Fusion. S. Ohki, D. Doyle, T.
D. Flanagan, S. W. Mui and E. Mayhew, editors. Plenum Publishing
Corp., New York and London. 209-222.

. Kinosita K., and T. Y. Tsong. 1977. Formation and resealing of pores

of controlled sizes in human erythrocyte membrane. Nature (Lond.).
268:438-441.

. Sowers, A. E. 1984. Characterization of electric field induced fusion in

erythrocyte ghost membranes. J. Cell Biol. 99:1989-1996.

. Chang, D. C. 1989. Cell poration, and cell fusion using an oscillating

electric field. Biophys. J. 56:641-652.

. Crowley J. M. 1973. Electrical breakdown of bimolecular lipid mem-

branes as an electromechanical instability. Biophys. J. 13:711-724.

Zimmermann, U., F. Beckers, and M. G. L. Coster. 1977. The effects
of pressure on the electrical breakdown in the membranes of Valonia
utricularis. Biochim. Biophys. Acta. 464:399—416.

Zimmermann, U., G. Pilwat, A. Pequeux, and R. Gilles. 1990. Elec-
tromechanical properties of human erythrocyte membranes: the pres-
sure dependence of potassium permeability. J. Membr. Biol. 54:103—
113.

. Needham, D., and Hochmuth, R. M. 1989. Electro-mechanical perme-

abilization of lipid vesicles. Role of membrane tension and compress-
ibility. Biophys. J. 55:1001-1009.

. Pastushenko V. F.,, and A. G. Petvar. 1984. Electromechanical mech-

anism of pore formation in bilayer lipid membranes. In 7* School on
Biophysics of Membrane Transport. School Proceedings. Poland

. Wintelhalter, M., and W. Helfrich. 1987. Effect of voltage on pores in

membranes. Physic. Rev. A. 36, 12:5874-5876.

. Sugar, I. P,, and E. Neumann. 1984. Stochastic model for electric-field

induced membrane pores. Electroporation. Biophys. Chem. 19:211-
225S.

. Schwister, K., and B. Deutike. 1985. Formation and properties of aque-

ous leaks induced in human erythrocytes by electric breakdown. Bio-
chim. Biophys. Acta. 816:332-348.

. Chang, D. C. 1989. Cell poration and cell fusion using and oscillating

electric field. In Electroporation and Electrofusion in Cell Biology. E.
Neumann, editor. Plenum Publishing Corp., New York. 215-227.

Pawtowski, P., and M. Fikus. 1989. Bioelectrorheological model of the
cell. Analysis of stresses and deformations. J. Theor. Biol. 137:321-337.

Fikus, M., and P. Pawtowski. 1989. Bioelectrorheological model of the
cell. 2. Analysis of creep and its experimental verification. J. Theor.
Biol. 137:365-373.

Poznarniski, J., P. Pawlowski, and M. Fikus. 1992. Bioelectrorheological
model of the cell. 3. Viscoelastic shear deformation of the membrane.
Biophys. J. 61:612-620.

Sauer, A. F. 1983. Forces on suspended particles in the electromagnetic
field. In Coherent Excitations in Biological Systems. H. Fréhlich and
F. Kremer, editors. Springer-Verlag, Berlin, Heidelberg. 134—144.

Pawtowski, P, I. Szutowicz, P. Marszalek, and M. Fikus. 1993. Bio-
electrorheological model of the cell. 5. Electrodestruction of the cellular
membrane in an alternating electric field. Biophys. J. 65:554-562.



