Supporting information for Yao et al. (April 16, 2002) Proc. Natl. Acad. Sci. USA, 10.1073/pnas.082562199.

	No. r	ecombi	nants [*]		
Year	Clsh	clrd	Total	Population Size	$\mathrm{c}\mathrm{M}^\dagger$
1992 [‡]	28	47	75	67,000	0.11 <u>+</u> 0.01
1993	46	54	100	182,000	0.055 <u>+</u> 0.005
Total [§]	74	101	175	249,000	0.070 ± 0.005

Table 2. Rate of recombination within the *a1-sh2* interval

Clsh: colored shrunken kernels; clrd: colorless round kernels.

^{*}Based on corrected numbers from Table 1.

[†]Genetic distances were calculated as follows: cM = (no. of recombinants /population size) X 100.

^{*}These data have been extended from those of Civardi *et al* (1). [§]A homogeneity χ^2 test indicated that there was a significant difference in the rates of recombination between these two years. However, because no differences were found between the distributions of the recombination breakpoints, data were combined across years to calculate recombination rates and genetic distances.

Reference:

1. Civardi, L., Xia, Y. J., Edwards, K. J., Schnable, P. S. & Nikolau, B. J. (1994) Proc. Natl. Acad. Sci. USA 91, 8268-8272.