
Appendix 1

Goodness of Fit Measures

This appendix introduces three types of goodness of fit measures for clustering models, which evaluate
the goodness of the fitted model for individual series, for individual clusters, and for the entire clustering
model, respectively. By providing a global goodness of fit measure of the clustering model, these scores
can also be used as a “safety” measure against the fact that the algorithm does not explore exhaustively
the space of clustering models but it follows a heuristic search strategy.

The intuition behind the scores is that, by summarizing a batch of time series into groups, clustering
induces a loss of the information conveyed by the data. Such a loss of information has two main
components: one is caused by the autoregressive assumption, while the other component is caused by
the merging of time series into clusters. Both components can be accounted for by using log-scores,
which were originally introduced by ref. 1 for assessing the predictive capability of a probability
distribution, and are becoming increasingly popular as model assessment tools refs 2 and 3.

Suppose the modelMc returned by the algorithm consists ofc clusters,C1, . . . , Cc, eachCk
mergingmk series. Then, each series assigned to clusterCk is modeled as an autoregressive equa-
tion, with coefficientsβk estimated bŷβk = (XT

k Xk)−1XT
k yk, and varianceσ2

k estimated bŷσ2
k =

RSSk/(nk − q − γ). Therefore, for each seriesSh assigned to this clusterCk, the valueyh,i of
the series at theith time step, conditional on the pastp values, has a normal distribution with mean
ŷk,h,i = β̂k,0 +

∑
j β̂k,jyh,i−j and variancêσ2

k. The log-score for this value is minus the logarithm of
its density function and is proportional to

sk,h,i = log(2π) + log(σ̂2
k) + σ̂2

k(yk,h,i − ŷk,h,i)2.

By summing over thei, we obtain thecumulative series score

sk,h = nh − p log(2π) + nh − p log(σ̂2
k) +

1
σ̂2

k

∑
i

(yh,i − ŷk,h,i)2.

The cumulative score penalizes the goodness of fit of the autoregressive equation, with large scores
indicating poor performance and a large loss of data information. This quantity can therefore be used as
a comparative measure, across different cluster sets. We can also define a monitoring measure, to detect
series that are possibly misallocated by the algorithm. The monitoring measure is built by summing the
standardized scores. It is easy to show that the expected value ofsk,h,i, where the expectation is taken
with respect to the distribution ofyh,i, is

E(sk,h,i) = log(2π) + log(σ̂2
k),

and the variance isV (sk,h,i) = 1/2, so that

zk,h,i =
√

2(sk,h,i − E(sk,h,i)) =
√

2
σ̂2

k

(yh,i − ŷk,h,i)2 − 1)

is the standardized log-score of the seriesSh at timei. By definition,zk,h,i has zero expectation and
unit variance. By summing the standardized scores over thenh−p free values of the series, we compute
theseries monitor

zk,h =
√

2
σ̂2

k

(∑
i

(yh,i − ŷk,h,i)2 − (nh − p)

)
,

which measures the ability of the autoregressive model in clusterCk to reproduce the observed series
Sh. For largenh − p, we can use the results in ref. 4 to show that the series monitor has approximately



a normal distribution, with zero expectation and variance(nh−p). For a fixed significance levela, one
can then use values ofzk,h within the limits±

√
nh − pza/2, whereza/2 is the(1− a/2) percentile of

the standard normal distribution, as indication of goodness of fit of the clusterCk autoregressive model
for the seriesSh. On the other hand, values ofzk,h outside these limits signal the series on which either
the autoregressive assumption or the cluster assignment fail to provide a good fitting. In this case, a
visual inspection of the signaled series can suggest reasons for the lack of fit.

By summing the series score over themk series assigned to clusterCk, we obtain

sk =
∑
h

sk,h =
1
σ̂2

k

∑
i,k

(yh,i − ŷk,h,i)2 + nk log(2π) + nk log(σ̂2
k),

wherenk is the length of the vectoryk in clusterCk and is therefore
∑

h(nh − p). Since
∑

i,k(yh,i −
ŷk,h,i)2 = (nk − q − γ)σ̂2

k), the above score simplifies to thecluster score

sk = nk(1 + log(2π) + log(σ̂2
k))− q − γ,

from which, by summing over thec clusters, we compute themodel score

sm =
∑
k

sk = −c(q + γ) + (1 + log(2π))
∑
k

nk +
∑

nk log(σ̂2
k).

By writing σ̂2
k = RSSk/(nk − q − γ), the scoresm becomes

sm = −c(q + γ) + (1 + log(2π))
∑
k

nk −
∑

nk log(nk − q − γ) +
∑

nk log(RSSk)

and measures the loss of data information of the clustering model. When the prior is uniform, as it
happens in our case, the scoresm becomes

s = cq +
∑
k

nk[log(nk − q)− log(RSSk)]− (1 + log(2π))
∑
k

nk.
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Appendix 2

Experimental Evaluation

This appendix presents the results of a controlled experiment to evaluate the accuracy of the algorithm
when it is applied to a batch of time series generated by differentAR(p) models. The results show an
overall accuracy that appears to suffer only when the time series in the batch are very short and have
very similar dynamics.

Methods

To assess the accuracy of the algorithm, we carried out four experiments and varied two factors in each
of them. In the first experiment, we generated 30 time series from threeAR(3) models with different
autoregressive coefficients and different variances. In the second experiment, the generating models
were threeAR(3) models with different autoregressive coefficients but similar variances. To further
increase the similarity of the generated series, in the third experiment the generating models were three
AR(3) models with autoregressive coefficients constrained to give the same process mean. Finally,
to test the robustness of the algorithm to the common autoregressive order assumption, in the fourth
experiment we generated the time series fromAR(1), AR(2), andAR(3) models. Table2 gives the
parameter specification of theAR(p) models used in each experiment.

The factors we varied were the length of each time series, 25, 50, and 100 time steps, and the
number of time series generated by eachAR(p) model, either 10 series from each generating model or
5, 10, and 15. These two factors yield 6 conditions for each experiment, for a total of 24 batches of
time series. In the last experiment, in which series were unevenly generated by models with 3 different
autoregressive orders, we generated 15 series from theAR(1) model, 10 from theAR(2) model, and 5
from theAR(3) model.

We then run the clustering algorithm on each batch of time series using five different autoregressive
orders,p = 1, . . . , 5, and used the model score defined in Appendix 1 to identify the clustering model
with minimum score in each set of five. To assess the effect of the prior hyper-parameters, we repeated
the procedure with three different priors onβ, τ : γ = 1, 2, 3; and three values of the global cluster
precision: α = 1, 2, 3. We evaluate the algorithm performance using the number of clusters found
and an average cluster impurity rate, defined as follows. In each experimental condition, the series are
generated by three different models, so that a perfect clustering would partition the 30 series in each
experimental condition into three groupsG1, G2, andG3, each group consisting of series generated by
the same model. Therefore, for each clusterCk found by the algorithm we count the number of series
belonging to each of the three groups, saymk1, mk2, andmk3, identify the maximummkj and label
the cluster as groupj. Theimpurity rateof clusterCk is defined as the number1−mkj/

∑
i mki, and

varies between 0 and 2/3. The value 0 is taken when the cluster consists only of series generated by
the same group. The maximum is taken whenmk1 = mk2 = mk3, so that the cluster mixes series
belonging to the three groups in equal proportion, and it is impossible to label the cluster. In the special
case in which two of the three groups are equally represented in the cluster, we choose one of the two
at random. Theaverage cluster impurity rateis then a weighted average of the cluster impurity rates
and is

r =
∑

k mk(1−mkj/
∑

i mki)∑
k mk

,

wheremk is the number of series in clusterCk. Since
∑

i mki = mk, the quantityr is simply the ratio
between the total number of series assigned to the wrong group, and the total number of series in the
batch.



Table 2: Parameter specification of theAR(p) models used in the four experiments.

Model Experiment 1 Experiment 2
parameters β0 β1 β2 β3 σ2 β0 β1 β2 β3 σ2

AR(3)1 1.13 -0.05 0.52 -0.21 0.26 1.13 -0.05 0.52 -0.21 0.27
AR(3)2 0.33 0.36 0.10 0.16 0.07 0.33 0.36 0.10 0.16 0.27
AR(3)3 0.62 0.34 0.27 0.06 0.34 0.62 0.34 0.27 0.06 0.27

Model Experiment 3 Experiment 4
parameters β0 β1 β2 β3 σ2 β0 β1 β2 β3 σ2

AR(3)1 1.13 -0.05 0.52 -0.21 0.26 1.13 -0.05 - - 0.27
AR(3)2 0.57 0.36 0.10 0.16 0.07 0.33 0.36 0.10 - 0.07
AR(3)3 0.50 0.34 0.27 0.06 0.34 0.62 0.34 0.27 0.06 0.34

Results

The algorithm reproduces essentially the same results for all different choices ofα andγ. Summaries
of the experimental results are in Tables3 and4, for α = 1 andγ = 2. Table3 reports the number of
clusters found by the algorithm for each of the five autoregressive orders, in each of the 24 experiments.
Table4 reports the average cluster impurity rate for each clustering model found with one of the five
autoregressive models, in each of the 24 experimental conditions. In both tables, figures in bold face in
each column denote the number of clusters and the average impurity rate of the model selected by the
model score in each experimental condition.

Experiment 1. In the first experiment, in which 30 series were generated from threeAR(3) models,
the accuracy of the algorithm to both identify the correct number of clusters and assign the series
correctly to each cluster is very good. When the autoregressive order is larger than 1 and the series
are at least 50 steps long, the algorithm partitions the series into three clusters for all autoregressive
orders, in both the balanced and unbalanced case. In all cases, the impurity rate is zero, so that each
of the three clusters merges series generated from the same model. In the balanced case, when the
autoregressive order is 1 and the series are 50 steps long, the algorithm returns five clusters with zero
impurity rate: the 10 seriesS1 − S10 generated by theAR(3)1 model are partitioned in two clusters
C1 = {S1 − S6, S9 − S10} and C2 = {S7 − S8}; similarly, the 10 seriesS11 − S20 generated
by the AR(3)2 model are partitioned in two clustersC3 = {S11 − S13, S15 − S17, S19 − S20} and
C4 = {S14 − S18}; the last cluster merges all seriesS21 − S30 generated by theAR(3)3 model. When
the series are 100 steps long and an orderp = 1 is used, the algorithm finds four clusters in the
balanced case and five clusters in the unbalanced case, again with zero impurity rate. Thus, although
the algorithm fails to return the correct partition, it does not mix series generated by different models.

Only when the series are short, the algorithm is unable to partition the series correctly and, in the
balanced case, two groups of series are merged in the same cluster when the autoregressive order is
p = 4 or 5 so that the impurity rate in 1/3. In the unbalanced case, the impurity rate is larger, as the
number of series assigned to the wrong cluster increases. For example, when the autoregressive order
is p = 3, and 5 series of length 25 are generated from theAR(3)1 model, 10 from theAR(3)2 model,
and 15 from theAR(3)3 model, the algorithm finds two clusters: one merging the 5 series generated



Table 3: Number of clusters found by the algorithm in the 24 experiments. The top half of the table
reports the results for the balanced case, and the bottom half reports the results for the unbalanced case.
Each row reports the number of clusters found by the algorithm for the autoregressive order specified
in the first column. Figures in bold face are the cluster models selected by the model scores from the
clustering models found with the five different autoregressive orders.

Experiment 1 Experiment 2 Experiment 3 Experiment 4
Balanced 25 50 100 25 50 100 25 50 100 25 50 100

AR(1) 3 5 4 4 5 5 4 4 3 3 3 3
AR(2) 3 3 3 2 3 3 3 3 3 3 3 3
AR(3) 3 3 3 2 3 3 3 3 3 3 3 3
AR(4) 2 3 3 2 3 3 3 3 3 3 3 3
AR(5) 2 3 3 1 3 3 3 3 3 3 3 3

Unbalanced 25 50 100 25 50 100 25 50 100 25 50 100
AR(1) 3 3 5 3 4 5 3 4 4 3 3 3
AR(2) 2 3 3 3 3 3 3 3 3 3 3 3
AR(3) 2 3 3 2 3 3 4 4 3 3 3 3
AR(4) 2 3 3 2 3 3 3 4 3 3 3 3
AR(5) 2 3 3 2 3 3 4 5 3 3 3 3

from theAR(3)1 model with the 15 series generated from theAR(3)3 model and one series generated
from theAR(3)2 model; the second cluster merges the remaining 9 series generated from theAR(3)2
model. As the length of the series increases, the correct partition is identified.

On average, the algorithm exhibits a robustness with respect to misspecification of the autoregres-
sive order. Furthermore, when the model score is used to compare the different clustering models found
for different autoregressive order and to select one, the correct partition is always identified in the bal-
anced case. In the unbalanced case, the model score selects the clustering model found withp = 5,
when the series are short, and the clustering model found withp = 4 when the series are 50 steps long.
When the series are 100 steps long, the model score identifies the correct partition. Interestingly, the
clustering model identified by the model score when the series are 25 steps long has score -2.52, while
the score of the clustering model whenp = 2 is -2.45, it is -2.49 forp = 3 and -2.48 forp = 4. Thus,
although both clustering models found forp = 2 andp = 5 merge the series generated by theAR(3)1
and theAR(3)3 models in one cluster, the adoption of an autoregressive orderp = 5 is less lossy. The
scores of the clustering models found withp = 3, 4 are larger than those of the model found with
p = 2, 5, and reflect the larger impurity rates.

Experiment 2. In the second experiment, in which the series were generated from autoregressive
models with different coefficients but same variance, the task of the algorithm should be more difficult.
The algorithm partitions correctly the series when they are sufficiently long, and the model score signals
the correct partition in either the balanced or unbalanced case. When the series are only 50 steps long,
the performance of the algorithm is similar to that in the first experiment: in either the balanced or
unbalanced case, the number of clusters is 3 when the autoregressive order is at least 2. The impurity
rate is now slightly larger than in the first experiment, with 1 or 2 series allocated to the wrong cluster in



Table 4: Average impurity rate in the 24 experiments. Figures in bold face are the average impurity
rates of the clusters selected by the model score from the clustering models found with the five different
autoregressive orders.

Experiment 1 Experiment 2 Experiment 3 Experiment 4
Balanced 25 50 100 25 50 100 25 50 100 25 50 100

AR(1) 0.03 0.00 0.00 0.17 0.07 0.03 0.17 0.10 0.00 0.00 0.00 0.00
AR(2) 0.03 0.00 0.00 0.43 0.00 0.03 0.20 0.10 0.00 0.00 0.00 0.00
AR(3) 0.03 0.00 0.00 0.37 0.03 0.000.13 0.03 0.00 0.00 0.00 0.00
AR(4) 0.33 0.00 0.00 0.37 0.00 0.000.10 0.03 0.00 0.00 0.00 0.00
AR(5) 0.33 0.00 0.00 0.67 0.07 0.00 0.17 0.07 0.00 0.00 0.03 0.00

Unbalanced 25 50 100 25 50 100 25 50 100 25 50 100
AR(1) 0.07 0.03 0.00 0.10 0.10 0.00 0.07 0.07 0.00 0.00 0.00 0.00
AR(2) 0.17 0.03 0.00 0.07 0.10 0.00 0.17 0.07 0.000.00 0.00 0.00
AR(3) 0.20 0.00 0.00 0.37 0.10 0.00 0.17 0.07 0.00 0.00 0.00 0.00
AR(4) 0.23 0.00 0.00 0.53 0.03 0.00 0.20 0.07 0.00 0.03 0.00 0.00
AR(5) 0.17 0.00 0.00 0.40 0.17 0.000.20 0.03 0.00 0.03 0.00 0.00

the balanced case, and up to 5 series allocated to the wrong cluster in the unbalanced case. The model
score identifies the correct order in the balanced case, and chooses the orderp = 4 in the unbalanced
case, which corresponds to the clustering model with the smallest impurity rate.

When the series are 25 steps long, the algorithm is unable to reconstruct the correct partition of
time series in the balanced case, and merges the series into four clusters whenp = 1, and two or one
clusters whenp > 1. The impurity rate ranges between 0.67, when all series are merged into one
cluster, and 0.17, when the series are merged into four clusters and five series are assigned to the wrong
cluster. In the unbalanced case, the number of clusters found by the algorithm is two or three. The
model score identifies the correct autoregressive order in the balanced case, and the orderp = 2 in
the unbalanced case: this is the clustering model with the smallest impurity rate. Again, the algorithm
exhibits an accuracy that increases with the length of the series and a robustness to misspecification
of the autoregressive order. When coupled with the model score to select the clustering model with
the best fit, the whole procedure does a reasonably good job in partitioning the time series and the
overall accuracy increases with the length of the series. For example, the clustering model selected
by the model score in the balanced case when the series are 25 steps long consists of two clusters:
C1,25 = {S1−S10, S12, S21−S23, S25−S30} andC2,25 = {S11, S13−S20, S24}. Thus,C1,25 merges
all series generated by theAR(3)1 with one generated by theAR(3)2 and 9 generate by theAR(3)3.
When the series are 50 time steps long, the clustering model selected by the model score consists of
three clustersC1,50 = {S1−S9}, C2,50 = {S11−S20}, andC3,50 = {S10, S21−S30}. Thus, the cluster
C1,25 loses the seriesS12, now assigned toC2,50, and is split in two,C1,50 andC3,50. Particularly,C3,50
absorbs the seriesS24, previously assigned toC2,25. When the series are 100 steps long, the algorithm
partitions the series in the correct way, and the model score identifies the correct autoregressive order.

Experiment 3. In the third experiment, the generating models have autoregressive coefficients con-
strained to reproduce the same process means. In the balanced case, the algorithm identifies always



3 clusters, for all autoregressive orders greater than 1. The impurity rate decreases with the length of
the series: when the series are 25 steps long, at most 6 series are assigned to the wrong cluster, with
an impurity rate of 0.20; when the series are 50 steps long, at most 3 series are assigned to the wrong
cluster, and the impurity rate is 0.1. The partition is perfect when the series are 100 steps long. The
model score signalsp = 4 as best autoregressive order in all three sets of series of different length and
this is the unique case in which the score fails to identify the correct partition even when the series are
long. In the unbalanced case, the algorithm creates the correct partition when the series are 100 steps
long and the model score signals the correct autoregressive order, but it fails to reproduce the correct
partition when the series are 25 or 50 steps long. The impurity rate decreases with the length of the
series, and the model score identifies the correct autoregressive order with series of length 50, while it
favors larger orders with short series.

Experiment 4. In the last experiment, the series were generated from three models with different
autoregressive order. In the balanced case, the algorithm partitions the series correctly, for every au-
toregressive order used, except for one case in which one series is assigned to the wrong cluster. In-
terestingly, the model score selects, in all cases, the clustering model fitted with orderp = 3. In the
unbalanced case, the number of cluster created by the algorithm is always three, for all five autore-
gressive orders, and in two cases one series is assigned to the wrong cluster. Now the model score
signals the clustering models found with order 2 as those giving the best fit. In all three experimental
conditions, we generated 15 series from theAR(1), 10 from theAR(2), and 5 from theAR(3), so that
the model scores identify an average order. Facts emerging from this small experimental evaluation are
a monotonic discriminatory abilityof the algorithm; that is, an accuracy increasing with the length of
the series, a robustness of the algorithm to misspecification of the autoregressive order, and the abil-
ity of the method to handle time series generated by models with different autoregressive orders. The
model score seems to be very effective to signal the best partition returned by the algorithm for different
autoregressive orders, particularly when the series are reasonably long.


