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ABSTRACT A statistical thermodynamic approach is used to analyze the various contributions to the free energy change
associated with the insertion of proteins and protein fragments into lipid bilayers. The partition coefficient that determines the
equilibrium distribution of proteins between the membrane and the solution is expressed as the ratio between the partition
functions of the protein in the two phases. It is shown that when all of the relevant degrees of freedom (i.e., those that change
their character upon insertion into the membrane) can be treated classically, the partition coefficient is fully determined by the
ratio of the configurational integrals and thus does not involve any mass-dependent factors, a conclusion that is also valid for
related processes such as protein adsorption on a membrane surface or substrate binding to proteins. The partition
coefficient, and hence the transfer free energy, depend only on the potential energy of the protein in the membrane.
Expressing this potential as a sum of a "static" term, corresponding to the equilibrium (minimal free energy) configuration of
the protein in the membrane, and a "dynamical" term representing fluctuations around the equilibrium configuration, we show
that the static term contains the "solvation" and "lipid perturbation" contributions to the transfer free energy. The dynamical
term is responsible for the "immobilization" free energy, reflecting the loss of translational and rotational entropy of the protein
upon incorporation into the membrane. Based on a recent molecular theory of lipid-protein interactions, the lipid perturbation
and immobilization contributions are then expressed in terms of the elastic deformation free energy resulting from the
perturbation of the lipid environment by the foreign (protein) inclusion. The model is formulated for cylindrically shaped
proteins, and numerical estimates are given for the insertion of an a-helical peptide into a lipid bilayer. The immobilization free
energy is shown to be considerably smaller than in previous estimates of this quantity, and the origin of the difference is
discussed in detail.

INTRODUCTION

The free energy change associated with the transfer of a
protein or protein fragment from an aqueous solution into a
lipid membrane involves several contributions of different
origin. The standard transfer free energy, AGO, is often
written as a sum of a solvation free energy, AG'OlV, a lipid
perturbation free energy, AG'P, and a term, AG?mn, which
results from immobilization of the protein in the membrane
environment (Engelman and Steitz, 1981; Jahnig, 1983;
Jacobs and White, 1989; Ben-Tal et al., 1996). In this paper
we develop a consistent statistical thermodynamic descrip-
tion of the transfer process that provides a rigorous defini-
tion of these individual free energy contributions. Our treat-
ment allows as to arrive at a number of new results and
shows how each of the free energy terms is related to
specific contributions to the potential of mean force for the
transfer of the protein from solution into the membrane.
The magnitudes of the various contributions to AG' de-

pend, of course, on the detailed molecular structure of the
protein and the lipid membrane. Nevertheless, some general
insights into the mechanisms governing protein insertion
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into membranes can be gained by considering simple model
systems. One class of systems that has been studied in some
detail, both theoretically (Jiihnig, 1983; Engelman et al.,
1986; Milik and Skolnick, 1993; Ben-Tal et al., 1996) and
experimentally (Leto and Holloway, 1979; Vogel, 1981;
Moll and Thompson, 1994), is the incorporation of partially
hydrophobic a-helical peptides into lipid bilayers. The "sol-
vation" free energy, AG'O1V, corresponding to the free en-
ergy change upon transferring the peptide from water to an
oil-like medium, has been estimated by Jahnig (1983) and
more recently by Ben-Tal et al. (1996). Estimates of AGljp
and AG'mm have also been made (Jaihnig, 1983).

In this paper we present new models for AGlip and
AGOm. These two terms are found to be closely related;
both of them arise from elastic deformations of the lipid
bilayer. We estimate AGlip using a recent molecular-level
theory of lipid-protein interaction (Fattal and Ben-Shaul,
1993; Ben-Shaul, 1995). Using this model we then express
A\G?mm as the free energy cost associated with fluctuations
(oscillations) of the protein axis along, and with respect to,
the membrane normal. One of our central results is that the
translational immobilization free energy depends (logarith-
mically) on the ratio between 1) the amplitude of the hin-
dered protein motion normal to the membrane plane and 2)
the membrane hydrophobic thickness. We also show that
AGOm is independent (as it should be) of the relative
amounts of lipid and water in the system.

Experimentally, AG' is determined by measuring the
partition coefficient expressing the relative concentrations
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of protein in the membrane and the aqueous solution. In the
dilute solution limit (i.e., neglecting protein-protein interac-
tions) this quantity, K, can be expressed as a ratio between
the partition functions of the protein in the lipid and aqueous
phases. Similar expressions apply to related "partitioning"
phenomena such as ligand binding to substrates or protein
binding to the surface of bilayers. The partition functions
involve mass-dependent factors which, because of the
change in character of certain degrees of freedom upon
binding (e.g., translations become vibrations), appear to
predict mass-dependent binding constants (Janin and Cho-
thia, 1978; Dwyer and Bloomfield, 1981). One of our goals
in this paper is to show that when all relevant degrees of
freedom, i.e., those that change character in a binding (or
insertion) process, can be treated classically, all of the
mass-dependent factors cancel out identically. However,
our main goal is to provide a general and physically mean-
ingful analysis of the factors contributing to the free energy
of protein insertion into membranes. To test the model, we
consider one special case in some detail: the insertion of an
a-helical peptide into a lipid membrane. We compare our
numerical estimates with available experimental results and
previous theoretical calculations.

THE PARTITION COEFFICIENT

Consider a lipid bilayer of total area A and a hydrophobic
core of thickness dL. The membrane is embedded in an
aqueous solution of total volume V. Suppose that N protein
molecules are present in the system, and assume partition
between the membrane and the solution, so that NS of them
remain free in solution and Nm are incorporated into the
membrane. For concreteness let us assume that the protein
has a cylindrical shape, with dp and Rp denoting its length
and radius, respectively. The protein will be considered as
"incorporated" if its center of mass is (somewhere) within
the hydrophobic core of the membrane. As a specific ex-
ample, we consider the case dp = dL, namely, the protein
length matches exactly the hydrophobic thickness of the
unperturbed lipid bilayer. Furthermore, we assume that in
its minimum free energy (equilibrium) configuration in the
membrane, the protein axis is perpendicular to the mem-
brane plane, with its center of mass located at the midplane
between the two lipid leaflets (Fig. 1 a). Because we are
mainly concerned with the insertion free energy, let us
assume that the conformation of the protein in both phases
(water and membrane) is the same. It is straightforward to
extend the model to more general cases. For instance, if the
protein conformation in water is different from that in the
membrane, then the conformational free energy change can
be added as an extra contribution to /G'. In addition, the
model can easily be generalized to cases in which dp $ dL,
as well as to the case of protein adsorption onto the mem-
brane surface. It can also be generalized to treat the insertion
of proteins or peptides of noncylindrical shapes.
The equilibrium distribution of proteins between the

membrane and the solution is determined, as usual, by the

a b

FIGURE 1 Schematic illustration of a cylindrical protein in a lipid
bilayer. (a) Equilibrium configuration. (b) A nonequilibrium configuration;
the protein center of mass is displaced a distance z from the bilayer
midplane, and its long axis is oriented at angle 0 with respect to the
membrane normal.

equality of the protein chemical potentials in the two phases,
As = Ptm. In the limit of low protein concentration in
solution we can write the ideal solution expression,

= .LU + kT ln ps, (1)
where p; = N,/V is the three dimensional (3D) number
density of proteins in the aqueous phase, k is Boltzmann's
constant, and T is the absolute temperature. (We use ,u to
denote chemical potentials per molecule.) Similarly, when
the 2D concentration of peptides in the membrane is low,
we can write

-Lm = lm + kTln o-, = ,u° + kTlnpm, (2)
where 0-m = Nm/A is the 2D number density in the mem-
brane. In the second equality of Eq. 2 we define Pm = oUm/dL
= Nm/Vm as the "effective" 3D number density of peptides
in the membrane, with the corresponding standard chemical
potential given by gj = 14 + kT ln dL; Vm = AdL is the
total (hydrophobic) volume of the membrane. This change
of variables is introduced for convenience only, so that the
two standard chemical potentials, ,u4 and l4. are expressed
on the same (3D number density) scale.
When q, and qm are used to denote the partition functions

of a single protein in the solution and the membrane, re-
spectively, the standard chemical potentials can be ex-
pressed in the familiar forms (Hill, 1960)

AS = -kTln(q5/V (3)

14m = -kTln(qm/Vm). (4)
From Eqs. 1-4 it follows that the partition coefficient, K, of
the protein between the membrane and the solution is given
by

K Pm qm/Vm = xp[-AG0IRT], (5)

where AG0/Na = g1 - ji' denotes the standard free energy
of transfer of the protein from solution into the membrane
"on the number density scale," Na is Avogadro's number,
and R = Nak is the gas constant. The second equality in Eq.

131Ben-Shaul et al.



Volume 71 July 1996

5 defines the dependence of the partition coefficient on the
number density (or, equivalently, on the molar concentra-
tion) scale. Both q,; and qn are dimensionless. Because q,/V
is independent of V and q./A is independent of A (see
below), the partition coefficient is only a function of T.
We have emphasized the obvious but important fact that

K and hence AG' refer to molar concentration scales, be-
cause quite often the partition coefficient is calculated on
the mole fraction scale. Specifically, if the protein partition-
ing between membrane and solvent is expressed in terms of
the mole fractions, Xm/Xs --Kx, then the corresponding
standard free energy change is AGO = -RT ln Kx = AGO -
RT ln(vL/vw), where vL and vw are the molar volumes of
lipid and water, respectively.

PARTITION FUNCTIONS

Our assumption that the protein has the same conformation
in both the solution and the membrane implies that it can be
treated as a rigid body. (More specifically, we assume that
the protein is cylindrical.) It is therefore characterized by six
degrees of freedom. In the bulk solution three of these
degrees of freedom correspond to the translational motion
of the protein center of mass; the other three describe the
external ("overall") rotations of the rigid body. These de-
grees of freedom can be safely treated classically. Let x, y,
z - - denote the center of mass coordinates and px, py,, p,
p the conjugate translational momenta. The rotations can be
specified in terms of three Euler angles, 0, -r, 4 = fl and the
three conjugate momenta pe' pq, p =-PQ (Mayer and
Mayer, 1946). We shall use 0 to denote the angle between
the protein (i.e., the cylinder) long axis and the z axis of a
cartesian system of coordinates attached to the protein cen-
ter of mass (0 ' 0 ' iT). The other two angles (0 ' 4 ' 27T
and 0 ' .' 2iw) specify the angle between the projection
of the protein axis and the xy plane and the angle of rotation
around the long axis. As we shall see below, only the polar
angle 0 enters our expressions for K and AGO.
When the protein is incorporated into the membrane, that is,

when its center of mass is within the hydrophobic core, some
of the degrees of freedom change their character. To specify
the position and orientation of the protein in the membrane, we
introduce a cartesian system of coordinates, x, y, z, the origin of
which is located at (an arbitrary point on) the bilayer midplane,
with the z axis perpendicular to this (xy) plane (Fig. 1). Because
the membrane is isotropic in the xy plane, the protein center of
mass can freely translate within the entire membrane area A. In
other words, two translational degrees of freedom are essen-
tially unrestricted. On the other hand, the motion along the z
direction is obviously greatly restricted, as it leads either to
protrusion of the protein into the aqueous region (left side of
Fig. 2 a) or to a deformation of the lipid bilayer (left side of
Fig. 2 b), both involving considerable free energy penalties
(see below). Jahnig (1983) has treated this motion as a ID
translation restricted to a small range 8z along the z axis. Below
we shall model this motion as a vibrational mode (of amplitude
-8z, depending on the lipid-protein interaction free energy).

Ct
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FIGURE 2 Possible models for calculating the energetic cost involved
with nonequilibrium protein configurations in the membrane. (a) The
membrane is assumed to be unaffected by changes in the protein config-
uration. Left: The protein protrudes beyond the membrane, exposing part
of its hydrophobic surface to contact with water. Right: The protein tilts,
and thus its two polar ends enter the hydrophobic core of the lipid
membrane. (b) The elastic lipid chains distort in such a way as to avoid
creating a hydrophobic mismatch (as in a). The free energy cost involved
in these elastic deformations is lower than in model a.

Disregarding this difference, it is important to note that be-
cause Sz is smaller than the membrane hydrophobic thickness,
dL, the protein center of mass is restricted to a volume A&z
im which is smaller than the total membrane volume AdL =
Vm. This implies a considerable entropy loss, on the order of k
in(Vm/Vm) = k ln(6z/d), as compared to free motion within the
entire membrane volume. This entropy loss is the origin of the
"immobilization" free energy mentioned in the introduction.
The rotational motions of the protein in the membrane are

also severely hindered and thus also contribute to AGi'.
These effects are accounted for by the different potential en-
ergies W(ir,rf) and WmCr,fl) that denote the potential energies
of the protein in the solution and the membrane, respectively.
The Hamiltonians of the protein in the solution and the mem-
brane are, respectively, H. = KE + WS and Hm = KE + Wi,
with KE denoting the kinetic energy term, which is the same in
both phases. The use of the Euler angles and the conjugate
momenta to describe the motion of the protein implies that KE
depends not only onpi andj but also on fl (more precisely on
0 and 71) (Mayer and Mayer, 1946).
The classical partition function of the protein, treated as

a rigid cylinder characterized by six degrees of freedom, is
given by

= Jr*.*.* Jr dPdfd;`df1 exp{-(3[KE(f, 'a, Q)
(6)

+ W(r*,Q)]},
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with h denoting Planck's constant and ,B = l/kT. Because
the protein, both in the bulk solution and in the membrane,
is surrounded by solvent molecules (water and lipids, re-
spectively), the potential energy W is in fact a potential of
mean force, which implicitly includes the averaging over
the solvent degrees of freedom. Equation 6 applies to
both media. In the solution W = Ws defines q = qs, and
in the membrane W = Wm defines q = qm. The integra-
tion over the translational momenta in Eq. 6 is immedi-
ate, yielding the familiar result (2rmnkT )3/2 (see, for
example, Hill, 1960), with m denoting the protein mass.
The integration over the rotational momenta yields the
factor (2wrkT)312(ABC)1/2 sin 0, with A, B, and C denoting
the three principal moments of inertia (Mayer and Mayer,
1946). We can thus write

q = . j. drdQ sin 0 exp[-,BW(r, fl)], (7)

with the factor F, hereafter referred to as "the momenta inte-
gral," defined by F = (2-rTkT)3(m3ABC)112/h6. The momenta
integral (or partition function) contains all of the mass-depen-
dent factors in q. It should be stressed that the same factor, F,
appears in both qs and qm and hence cancels out when we
calculate the partition coefficient K. Consequently, neither K
nor AG' should contain any mass-dependent factors. The re-
maining integral in Eq. 7 is the configurational partition func-
tion of the protein. Because the aqueous solution is isotropic, it
is clear that Ws is a constant that is independent of the center of
mass position r or orientation fl of the protein. We shall set Ws

0, thus measuring the potential of mean force in the mem-
brane, W = Win, relative to its value in the solution.
The configurational integral corresponding to qs yields

qs= 8V r, (8)
with the factors V and 8 Tr2 arising from the integrations over
the coordinates and angles, respectively.

Consider now the partition function of the protein in
the membrane, qm. Because the membrane is isotropic in
the xy plane, Wmr,rfl) is independent of x and y. Hence the x,
y integrations in Eq. 7 yield the membrane area A. Further-
more, because according to our model Wn depends only on the
0 angle, the integrations over the angles 4 and -r yield the
factor 4i2. Thus, noting that Wnirfl) = Wn(z,0), we obtain

qm = 47TvAF

J'+dJ2 'Tr

dz sin 0 dO exp[-I3Wm(z, 0)]
-dL/2 JO

- 8lr2FVmqmg

where 47m is a reduced partition function (47n =- when Wn,
- 0) defined by

1 (+dLU2 fr
qm = 2d J dz sin 0dOexp[-43Wm(z, 0)]. (10)

-dLJ2 0

Using our expressions for qs and qm, we can now rewrite
Eq. 5 in the form

-RTln K = AG' -RTlnqm. (1 1)

Our next step is to propose a model for Wn(z,O) that is
later used to derive an explicit expression for qm, leading
to explicit expressions for the various contributions to
AGO. Before doing so, however, we find it instructive to
consider two limiting, albeit hypothetical, cases of inter-
est. Suppose first that Wmn 0, in which case the poten-
tial of mean force experienced by the protein in the
membrane is not different from that in the solution. In
other words, the membrane and the solution are simply
two different regions of space. Then, the z integral in Eq.
10 yields the factor dL, and the 0 integration yields a
factor 2, implying qm = 1 and hence K = 1 or AGO = 0.
Thus, the concentrations of the protein in the membrane
and solution are the same. Of course, the numbers of
protein molecules in the two phases will not be the same
but, rather, partition according to the relative volumes of
the two phases, that is, Nm/Ns = Vm/V = AdL/V.
As a second limiting case let us suppose that once the

protein is inserted into the membrane the motion of its
center of mass normal to the membrane midplane is con-
fined to a small range, 8z << dL. Furthermore, its long axis
rotations are confined to two small solid angle regions
defined by 80 << 7r, one around 0 = 0 and the other around
0 = wn. Ignoring any other contribution to Wn, this implies
that Wm. 0 wherever z ' Sz and 0 . 80 [or 7r . 0 .
(rr -80)], whereas for all other values of z and 0 we have
WM= . This "step function" potential is equivalent to the
model employed by Jiihnig (1983) to calculate the "immo-
bilization" term in AGO. Using this model in Eqs. 10-11 we
obtain

AGO m/RTIn(z) + 21n(n2) (12)

In the last equality we have approximated the result for the
0 integral [1 - cos(80)] by (80)2/2, (where 0 is measured in
radians). The first term on the right-hand side of Eq. 12 is
due to the loss of translational entropy, whereas the second
term results from the loss of rotational entropy of the protein
in the membrane, as compared to the solution. In the next
section we present a molecular model in which Sz and 80
represent the amplitudes of normal oscillations of the pro-
tein center of mass relative to the bilayer midplane, and of
the protein axis relative to the membrane normal,
respectively.

THE TRANSFER FREE ENERGY

In its equilibrium configuration in the membrane, the pro-
tein axis is parallel to the z axis (i.e., 0 = 0), and its center
of mass is at the bilayer midplane (i.e., z = 0) (see Fig. 1).
Assuming that the fluctuations around the equilibrium po-
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sition are small, we expand Wm(z,O) to second order in z and
0 or, more conveniently, in z and sin 0, so that

Here

qimm = qimm,transqimm,rot

Wm(Z, 0) = Wm(O, 0) + Az2 +co sin20, (13)

with A and w representing the second derivatives of Wm
with respect to z and sin 0, respectively. Note that, by
symmetry, the expansion does not include a "mixed"
term (proportional to z sin 0). This follows from the fact
that, for any given 0, Wm(z,0) = Wm(-z,0). Note also that
in writing Eq. 13, we regard Wm(z,O) as a continuous
function of z and 0. This assumption is not valid for the
"protrusion model" described in Fig. 2 a, according to
which Wm varies linearly with the exposed hydrophobic
surface area and hence with z, or more precisely with lZl.
In the next section we argue that the elastic deformation
model of Fig. 2 b accounts more appropriately for the
protein fluctuations around its equilibrium position in the
membrane. For this model, Wm is a continuous function
of z and 0 and Eq. 13 is valid.
The constant (or "static") term in Eq. 13 is the free energy

change associated with the transfer of the protein from the
solution into its equilibrium position in the membrane. The
other two terms account for the free energy cost associated
with fluctuations around the equilibrium state. These are the
terms that will give rise to the immobilization free energy
AGOm, as will be shown below.
The static term, Wm(O,O), is a sum of several contribu-

tions. For the sake of comparison with previous analyses,
we express this term as a sum of two contributions,

Wm(O, 0) = wso0v + Wlip. (14)

In the first term, Wsolv, we include the difference in the
electrostatic energy of the peptide between the aqueous
phase and the lipid environment. It also includes the
difference in the van der Waals and the hydrophobic free
energies upon the transfer from water into the lipid
environment. In other words, Wsolv is the transfer free
energy of the protein from water into a bulk liquid
alkane, which consists of hydrocarbon chains of the kind
composing the lipid hydrophobic tails. The second term
accounts for the free energy cost associated with the
reduced conformational freedom of the lipid chains
around the incorporated protein. In many respects it is
analogous to the hydrophobic free energy, because its
origin is the indirect free energy cost involved in the
reorganization of solvent molecules (in this case the
lipids) around a solute.

Using Eqs. 10, 11, and 13 we can now write

AGO = AGGsolv + AGjjP + AG?m, (15)

where AGSO v = NaWsolv, AGOj = NaWlip, and

AGimm =-RT ln qimm-

J+du2
=dLIdz exp[- ((3A/2)z2]

-dL/2

X2 dO sin 0 exp[-(13w/2)sin20] (17)

(2lTk
0

= 5ZA /80
2

( dL V XJ

The first equality in the last equation, according to which
qimm is a product of vibrational (restricted translational) and
librational (restricted rotational) partition functions, follows
from the fact that the potential energy Wm(z,0) is separable
into z- and 0- dependent terms. The third equality in Eq. 17
is obtained using the assumption that the amplitudes of the
vibrational and librational motions are small. More explic-
itly, the first factor is obtained when we replace the inte-
gration limits on z from ±dL/2 to ±oo. This is justified when
I3Ad2 ,» 1. Similarly, if we assume 3w>> 1, then the main
contributions to the 0 integral arise from 0 0 and 0 7r.

(The 0 integral is twice the integral from 0 = 0 > 7r/2.
Because the major contribution to the integral arises from
small 0, it can be evaluated by replacing sin 0 by 0.) Noting
that the probabilities of z and 0 fluctuations are governed by
the Boltzmann factors exp(-f3Az2/2) and exp(-f3w sin2 0),
one easily finds that the amplitudes of these fluctuations are
AZ V(<Z2) = VkT/A and AO <(sin2 0) = \2(kT/w).
This confirms that the assumptions BkdL2>> 1 (implying
(Az/dL)2 << 1) and w3 >> 1 (implying AO << 1) are indeed
equivalent to assuming small z and 0 fluctuations. In the
next section we present a molecular model confirming that
these assumptions are reasonable.
The last equality in Eq. 17 is obtained when we define

= (2-rrkT/A)"k = 7TAZ (18)

80 = (2kT/w)"12 = (A0)1/2, (19)

thus providing a correspondence between the "square well"
result of Eq. 12 and Eqs. 16 and 17.

PROTEIN-MEMBRANE INTERACTION

In this section we consider in more detail the separate
contributions to AG', with particular emphasis on the lipid
perturbation and immobilization terms. Numerical estimates
will be given for the insertion of an a-helical (20-mer
polyalanine) peptide into a dimyristoyl phosphatidylcholine
(DMPC) bilayer. The peptide length and the hydrophobic
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thickness of the membrane are very similar, dp = dL 30
A. The radius of the helix cross section is Rp 5 A.
The solvation free energy can be expressed as a sum of

electrostatic and "nonpolar" contributions, AGsO V = AGO
+ AGO The first term represents the different electrostatic
free energies of the protein in water and in the membrane.
The nonpolar term accounts for the different van der Waals
energies in the two environments, as well as for the water
structure effects known as the hydrophobic interaction. The
lipid environment is regarded here as a bulk liquid alkane.
The numerical values of the two terms in the solvation free
energy depend, of course, on the detailed molecular struc-
ture of the protein and the membrane.

Recently both terms were calculated for the insertion of a
25-mer polyalanine a-helix into a lipid membrane (Ben-Tal
et al., 1996). AGO1 was calculated, using a continuum sol-
vent model, to be -25 kcallmol. AG'° was calculated, by
multiplying the water-accessible surface area of the helix by
a surface tension coefficient derived from experimental free
energies of transfer of alkanes from water to liquid alkanes,
to be -36 kcallmol. Thus AGSO1V -11 kcal/mol. This
negative contribution to AGO is the driving force for the
peptide insertion into the membrane, inasmuch as the other
two terms, AGOj and AGO m, are both positive.
The hydrophobic tails of the lipid molecules comprising

the membrane are, on the average, stretched out along the
membrane normal. The extent of chain stretching is often
measured in terms of the "orientational order parameter," S,
of the lipid tail. In the solid (or "gel") phase of the mem-
brane, the lipid chains are fully stretched along the mem-
brane normal, nearly all of them in their "all-trans" confor-
mation. The order parameter in this state is nearly a
maximum, S 0.8 (Jahnig, 1983). In the fluid (or "liquid
crystalline") phase of the membrane, which is of greater
biological interest and on which we focus here, the order
parameter is considerably smaller, typically S 0.2 (Jahnig,
1983). The lower order parameter indicates that the lipid
chains, although partially stretched, possess considerable
conformational freedom, and hence, their entropy is higher
than in the solid phase. The insertion of a rigid inclusion,
such as a hydrophobic protein into a fluid membrane, stiff-
ens the lipid chains in its immediate vicinity, thus lowering
the conformational entropy of the system. This lipid-protein
interaction, the origin of which is the lower elasticity (chain
conformational freedom) of the membrane, provides a pos-
itive contribution AGO > 0 to the free energy of transfer. In
general, although not always (Fattal and Ben-Shaul, 1993),
AGOp is a minimum when the length of the protein matches
exactly the hydrophobic thickness of the membrane, i.e.,
when dL = dp (Fig. 1 a). Positive (dp > dL) or negative (dp
< dL) hydrophobic mismatch results in an additional free
energy penalty, associated with excess stretching or com-
pression of the lipid molecules around the protein, to
achieve perfect hydrophobic matching (see Fig. 3). This
perfect matching ensures that no hydrophobic region of the
protein protrudes beyond the membrane hydrophobic core,
a process generally involving a higher free energy penalty.

S l~~~~p> dL dp L

FIGURE 3 A schematic illustration of the lipid-protein interaction
model used to estimate the energy of the elastic deformations described in
Fig. 2 b. In the case of positive hydrophobic mismatch (left) the lipid chains
stretch out to avoid exposure of the protein hydrophobic region to water.
When the mismatch is negative (right), the chains are compressed, thus
avoiding direct contact between the lipid tails and water.

We shall employ these notions below to formulate a simple
model for calculating AGimm.

In his estimate of AGOlp, Jahnig assumed that the orien-
tational order of the lipids surrounding the incorporated
protein is characterized by an order parameter S, the value
of which is intermediate between those corresponding to the
fluid and solid states of the lipid membrane. Then, based on
a Landau-type theory, which relates the change in the order
parameter to the entropy change in the fluid-solid transition,
he derived the numerical estimate AGO 2 kcallmol for
the incorporation of an a-helix (with dp = dL) into a lipid
bilayer. A more direct estimate of AGOi can be obtained
based on a recent molecular-level model of lipid-protein
interaction (Fattal and Ben-Shaul, 1993). In this approach
one calculates in detail the change in the chain conforma-
tional and headgroup interaction free energies as a function
of dp and dL. Explicit numerical results were only reported
for a cylindrical protein of cross-sectional radius RP -> oo,
that is, RP >> RL, where RL is the average distance between
lipid headgroups. (In other words, the protein presents a flat
rigid wall to the lipid chains in its vicinity.) In principle, the
same kind of calculation can be carried out for any RP value.
The numerical results obtained for the large (RP >> RL)
protein case suggest that, to a good approximation, the
lipid-protein interaction free energy can be expressed in the
form

AGO =AGO + -NK(dp-li ip,O 2 a d L2 (20)

The first term here represents the lipid perturbation free
energy for the case of zero hydrophobic mismatch. The
second term accounts for the additional free energy cost in
cases of finite mismatch.
The concept of the hydrophobic mismatch plays an

important role in various models of lipid-protein interac-
tions in membranes. A representation similar to Eq. 20
was first suggested by Mouritsen and Bloom (1984) in
their "mattress model" of lipid-protein interaction. How-
ever, their calculation of the restoring force K is based on
a different model than the one adopted in the present
paper. The numerical values corresponding to the lipid
perturbation energy in the case of a flat protein wall (Rp
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>> RL) and a lipid bilayer in which the average cross-
sectional area per chain (at the hydrocarbon-water inter-
face) is -34 A2 (implying RL 3.3 A) are AG - L x
0.22 kcal/molA and NaK L X 0.09 kcal/molA , where
L is the length of the protein (cross-sectional) circumfer-
ence. For a smaller, curved inclusion such as an a-helix
with a radius of RP 5 A, the perturbation free energy
should be considerably smaller. If, as a crude curvature
correction, we multiply the above value of AGip,0 by the
factor (1 - RL/Rp), we obtain for the helix insertion
process AG0P,o = 2iirRp(l - RL/RP) X 0.22 2.3 kcal/
mol. This value is very close to the numerical estimate
obtained by Jahnig (1983) based on thermodynamic data
(-2 kcal/mol). Using a similar curvature correction, we
obtain NaK 0.07 kcalImolA2.

Consider now our expression (Eq. 16) for the immobili-
zation free energy. The elastic constants A and Co, appearing
in Eq. 17, measure the free energy penalties corresponding
to fluctuations of the protein around its equilibrium posi-
tion. One can imagine two limiting models of these fluctu-
ations. In one case, the lipid membrane remains unchanged,
whereas the protein protrudes into the aqueous solution or
fully enters the lipid membrane (Fig. 2 a). The free energy
cost of such fluctuations can be estimated from the surface
free energy associated with the hydrophobic protein area
exposed to water, or the excess energy involved in intro-
ducing the generally polar protein termini into the hydro-
phobic core. Alternatively, as the protein moves up or down
relative to the membrane midplane (z fluctuations) or tilts
away (at some angle 0) from the bilayer normal, the lipid
chains deform in such a way as to avoid the exposure of
hydrophobic protein regions to water and to avoid penetra-
tion of the charged or polar protein ends into the membrane,
as illustrated in Fig. 2 b. From our estimates of AG'O V and
AGOip it follows that the later scenario involves a lower free
energy cost.
As the protein moves "up" (z > 0) or "down" (z < 0)

with respect to the membrane midplane (Fig. 2 b), the
two hydrocarbon-water interfaces of the bilayer deform
in a fashion similar to that of the interfacial deformation
corresponding to positive or negative lipid-protein hydro-
phobic mismatch (Fig. 3). More explicitly, one interface
deforms as if dp > dL (Fig. 3, left), and the other as if dp
< dL (Fig. 3, right). These deformations involve chain
tilting (with respect to the membrane normal), splaying,
as well as monolayer bending and stretching. The elastic
energy cost associated with a fluctuation such as that in
Fig. 2 b (left) is probably smaller than that corresponding
to the "hydrophobic mismatch" model described in Fig.
3. Nevertheless, this model can be used to derive an
estimate, or more precisely an upper bound, for the
energetic cost of protein fluctuations. Thus, assuming
that the upper monolayer in Fig. 2 b (left) deforms as in
the case dp > dL, and the lower as in the case dp < dL,
we find that A = K. Based on similar (approximate)

17 leads to the result

/ kT \3/2
qimm = \1rKdLJ (21)

We conclude this section with a numerical estimate of the
immobilization free energy of the a-helical peptide in a

lipid bilayer. Using dL = 30 A and NaK = 0.07 kcal/molIA2,
as estimated above from the lipid-protein interaction calcu-
lation, we obtain AG' -RT ln qimm 3.7 kcal/mol.

Because our estimate for K is an upper bound, our estimate
for the immobilization energy is an upper bound as well.
The separate contributions representing the loss of transla-
tional and rotational entropies can be estimated by using
Eq. 17 or, equivalently, by using Eq. 12 with 6z = \/2v
Az = (27rkT/K) 1/2 7.3 A (Az = 2.9 A) and =

(V2A0)1/2 = (2kT/KdL2)b2 7.90 (A0 0.8°). This

yields AGO m = AG?imm,trans + AGm rot 0.9 + 28
3.7 kcal/mol.
Combining our estimates for the separate contributions to

the transfer free energy, we obtain AGO = AGsOl1V + AG0°iP
+ AG?°m -Il + 2.3 + 3.7 =-5 kcal/mol (Ben-Tal et
al., 1996). Transforming to the standard free energy on the
mole fraction scale (see Introduction), we obtain AGO =

AGO - RT ln(vL/vw) -7 kcal/mol, where we have used
VL = 1000 A3, Vw = 30 A3. This value is close (perhaps
fortuitously) to the value measured by Moll and Thompson
(1994), AGO = -5.5 kcal/mol, for the binding of (Ala)20-
G-BPTI to large unilamellar vesicles of both DMPC and 1:1
DMPC:DPPC.

DISCUSSION

Our goal in this paper was to determine the origin of the
various contributions to the free energy of inserting a pro-

tein into a lipid membrane. Starting with the basic statistical
thermodynamic expressions governing protein partitioning
between the two environments, we have shown that all of
the contributions can be related to the terms appearing in the
potential of mean force of the protein in the membrane. Our
interpretation of the "solvation" and "lipid-perturbation"
contributions to the transfer free energy is not conceptually
different from those given in previous studies of the protein
insertion problem. On the other hand, there are two issues
that we have treated quite differently from previous theo-
retical studies and which are of general significance. First,
we have shown that the partition coefflcient and conse-

quently the transfer free energy of the protein depend only
on the configurational integrals appearing in the protein
partition functions. When all degrees of freedom of the
protein, regardless of their nature (e.g., translations versus

vibrations, or rotations versus liberations) are treated clas-
sically, all of the mass-dependent factors (which enter
through the momenta integrals) cancel out identically. Sim-
ilar conclusions apply to related problems, such as protein
and peptide adsorption on the membrane surface, and to

considerations, it can be shown that cow KdL. Using Eq.
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ligand binding to substrate (Finkelstein and Janin, 1989),
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provided, of course, that all of those degrees of freedom that
change their character in the transition from the free to the
bound state can still be treated classically.
The second point concerns the "immobilization" free

energy. In the previous section, using Eq. 16 and our esti-
mates of the vibrational amplitude $z = 7.3 A (Az = 2.9 A)
and rotational amplitude $0 = 7.9° (AO = 0.8°), we found,
for the helix insertion process, that AG'Jm 3.7 kcal/mol,
of which -0.9 kcal/mol is due to the loss of translational
entropy and the rest to lost rotational freedom. Jiihnig
(1983), using $z = 1 A and 80 = 10, obtained AG'in =
AGOi trans + AG°mmrot = 8 + 2 X 4 = 16 kcallmol. The
large difference between the two estimates is due in part to
the different values used for $z and $0 [had we used $z =
1 A and $0 = 10 in Eq. 16 (with dL = 30 A), the result
would have been AGOmm = AG mm,trans + AGim,rot = 2.0
+ 2 X 5.3 = 12.6 kcal/mol] and in part to an inconsistent
definition of the standard states of the helix in the aqueous
phase and in the lipid bilayer, as discussed by Ben-Tal et al.
(1996).

Finally, we note that the theoretical model presented here,
which was applied only for the case of a single a-helix, is
valid for all membrane proteins and, in addition, can be
readily extended to proteins that are adsorbed on the surface
of the membrane. A host of biological processes, for exam-
ple, viral infection and signal transduction, involve interac-
tions between proteins and lipids and between proteins or
protein fragments in lipid bilayers (Shai, 1995). The theo-
retical development presented in this work provides a basis
for a detailed study of the molecular events that underlie
these processes.
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