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ABSTRACT We calculate the membrane-induced interaction between inclusions, in terms of the membrane stretching and
bending moduli and the spontaneous curvature. We find that the membrane-induced interaction between inclusions varies
nonmonotonically as a function of the inclusion spacing. The location of the energy minimum depends on the spontaneous
curvature and the membrane perturbation decay length, where the latter is set by the membrane moduli. The membrane
perturbation energy increases with the inclusion radius. The Ornstein-Zernike theory, with the Percus-Yevick closure, is used
to calculate the radial distribution function of inclusions. We find that when the spontaneous curvature is zero, the interaction
between inclusions due to the membrane deformation is qualitatively similar to the hard-core interaction. However, in the case

of finite spontaneous curvature, the effective interaction is dramatically modified.

INTRODUCTION

The properties of self-assembled bilayers dominate various
systems such as vesicles, lyotropic liquid crystals, and block
copolymer microstructures (Bloom et al., 1991; Abney and
Owicki, 1985; Nelson et al., 1989; Safran et al., 1990;
Sackmann, 1994; Fattal and Ben-Shaul, 1993). Perhaps the
most interesting and important manifestation of amphiphilic
bilayers is in the lipid membranes of biological systems.
Although any single biomembrane may contain over 100
different lipids (Gennis, 1989), its behavior can be charac-
terized by a small number of parameters that describe the
free energy of deformation (Safran, 1994). Membranes also
contain a variety of proteins that act as the active compo-
nents and provide a diversity of biofunctions (Gennis,
1989). Proteins can be either adsorbed on the membrane
surface or embedded in the bilayer. In the former case, the
proteins may distort the packing of amphiphiles in one of
the monolayers of the bilayer, whereas in the latter case the
protein usually perturbs the equilibrium thickness of both
monolayers (see Fig. 1, top).

In this paper we focus on the effect of embedded proteins
on membrane structure and on the ensuing membrane-
induced interaction between them. A number of biomem-
brane studies have investigated different aspects of this
problem. Lewis and Engelman (1983) used freeze-fracture
experiments to examine the effect of membrane thickness
on the ordering of embedded proteins. They found that
bacteriorhodopsin (protein) is dispersed in phosphatidylcho-
line bilayers, the thicknesses of which can be varied in the
range of 1.95 to 3.45 nm by changing the lipid chain length;
these thicknesses are from 1 nm thinner to 0.4 nm thicker
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than the protein hydrophobic surface. The proteins aggre-
gate at bilayer thicknesses of 1.55 and 3.75 nm where the
mismatch between membrane and protein thickness is sig-
nificant. Measurements of the radial distribution function of
bacteriorhodopsin (Lewis and Engelman, 1983) and rho-
dopsin (Chen and Hubbell, 1973) recombinants with diacyl
phosphatidylcholine (PC) were compared with those calcu-
lated from liquid theory, using either a hard-disk repulsion
or a hard-disk plus electrostatic repulsion interaction be-
tween particles (proteins) (Pearson et al., 1983). They indi-
cated that bacteriorhodopsin in di 12:0, di 14:0, and di 16:0
PC bilayers interact as a hard-disk potential. Bleached rho-
dopsin in di 12:0 PC and di 18:1 trans-PC and dark-adapted
rhodopsin in di 10:0 PC, besides the hard-disk repulsion,
have an extra repulsion interaction, which was modeled as
an electrostatic repulsion. The dark-adapted rhodopsin in di
18:1 trans-PC shows the evidence for an additional attrac-
tive interaction, which the authors propose is lipid mediated.
Similarly, Pearson et al. (1984) calculated the pair dis-
tribution function of inclusions embedded in membranes
using a thermodynamic model of the lipids, where the
lipid-mediated force is approximated by its mean value.
Comparing their results with the measurements done for
Acholeplasma laidlawii (James and Branton, 1973) showed
only slight differences between the predicted, theoretical,
and experimentally observed pair distribution functions.
The first theoretical studies addressing the (lipid-
mediated) interaction between inclusions were carried
out taking into account two modes of membrane distor-
tion: variations in thickness and in the surface area per
amphiphile. These contribute both a compression-expan-
sion and a surface tension term (Marcelja, 1976; Owicki
and McConnell, 1979) to the free energy. The membrane
thickness was found to decay exponentially from the
inclusion-imposed value to the equilibrium membrane
thickness, and the short-range membrane-induced inter-
action was predicted to be monotonically attractive.
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FIGURE 1 (Top) The protein distorts the membrane in two ways: ad-
sorption, where only one monolayer is perturbed, and absorption, where the
whole membrane is perturbed, i.e., the two monolayers are distorted.
(Bottom) Profile of the XY plane. Some of the parameters that characterize
the protein-bilayer system are shown: the radius of the inclusion, r,, the
equilibrium flat layer thickness, u.., and the thickness of the membrane as
a function of the distance from the center of the inclusion, u(r).

Elliot et al. (1983) investigated the lifetime of gramicidin
single channels embedded in monoacylglycerol bilayers.
Their measurements indicated that the increase in bilayer
thickness reduced the mean channel lifetime. They pro-
posed a theoretical model that related the mean channel
lifetime to both the thickness and the tension of the bilayer.
In their model the gramicidin channel is modeled as a
dimer; the distorted bilayer pulls the gramicidin in such a
way that it breaks the dimer (so the channel stops its
ion-conducting function). To fit the experimental data, the
model required that the bilayer pull the proteins a distance
of 1.8 nm apart. This distance is much larger than what
could be expected from the rupture of hydrogen bonds.

The shortcomings of the analysis by Elliot et al. (1983)
were remedied by Huang (1986), who used the free energy
expression for the distortion of a smectic liquid crystal to
describe the perturbed membrane and to calculate the prop-
erties of these embedded gramicidin channels. The energy,
in this model, consists of not only the compression term and
surface tension terms, but also of a splay, or bending term.
Proposing that the membrane pull on the gramicidin dimer
is much weaker (0.1 nm) yielded excellent agreement with
the results of Elliot et al. (1983). Thus, Huang’s calculation
indicated that the bending (splay) energy plays a significant
role in determining the membrane-induced interactions. It is
also interesting to note that Huang’s (1986) numerical re-
sults indicated that the membrane thickness, rather than
decaying exponentially from the gramicidin boundary to the
equilibrium value (Marcelja, 1976; Owicki and McConnell,
1979), is nonmonotonic. Helfrich and Jakobsson (1990)
extended Huang’s work to show that the surface tension
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makes a small contribution to the free energy when the
membrane is thin and not solvent-containing.

Using the smectic liquid crystal model, Goulian et al.
(1993) and Palmer et al. (1994) calculated the interactions
between rigid inclusions (as a generic model for proteins)
embedded in membranes. Keeping only the bending term
and neglecting both the compression and surface contribu-
tions, they predicted nonmonotonic interactions as a func-
tion of the distance between inclusions; at large separations
the interaction between similar inclusions was found to be a
weak attractive power law of the distance between inclu-
sions. In single bilayer systems, or in cases where the
separation between inclusions is much smaller than the
layer spacing so that the presence of the other membranes is
screened, the interaction was found to scale as the inverse of
the fourth power of the distance between inclusions.

Most models concentrated on the interactions between two
isolated inclusions. However, in biosystems the concentration
of proteins is, as a rule, high (Gennis, 1989), so that protein
interaction is a many-body problem. Dan et al. (1994) inves-
tigated the perturbation profile and the membrane-induced
interaction between inclusions ordered in a Wigner-Seitz cell
(the cell formed by the perpendicular bisectors of the vectors
between the inclusion and all its nearest neighbors). Balancing
the compression-expansion term with the bending contribu-
tion, it was found that the membrane thickness profile decays
nonmonotonically as a function of distance from the inclusion
boundary. Although the perturbation decay length agreed with
Huang’s (1986) predictions, the profiles obtained in the two
models differed, because of the use of different boundary
conditions. The membrane-induced interactions between inclu-
sions were found to be attractive when the membrane thickness
was constrained to match an inclusion-imposed value, as pre-
dicted by Marcelja (1976) and Owicki and McConnell (1979).
However, unlike the earlier studies, accounting for the bending
energy gave rise to an energy barrier in the energy versus
separation between inclusions. This barrier could promote a
metastable state characterized by a definite spacing between
inclusions. In systems where the membrane was constrained to
meet the inclusion at a finite contact angle, the short-range
membrane-induced interaction was found to be strongly repul-
sive. The equilibrium state was predicted, in this case, to be an
array of inclusions at a definite spacing (Dan et al., 1994).

All of these models neglect the spontaneous curvature of the
membrane (Helfrich, 1973), which describes the tendency and
magnitude of an amphiphile monolayer to curve at the water/
oil interface. The role of spontaneous curvature was usually
ignored because the symmetry between the two monolayers
composing the bilayer excludes curvature (Safran, 1994; Hel-
frich, 1973; Israelachvili, 1992), so that the equilibrium bilayer
adopts a locally flat configuration. Dan et al. (1993) calculated
the perturbation profile and the membrane-induced interaction
between embedded inclusions, taking into account not only the
compression-expansion, and the bending energies, but also
the effect of the spontaneous curvature of each monolayer of
the bilayer. Using a one-dimensional model (namely, where
the inclusion thickness was assumed to be much larger than the
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membrane correlation length), they found that the inclusions
decouple the two monolayers composing the bilayer. As a
result, the sign and magnitude of the amphiphile’s spontaneous
curvature dominate both the membrane perturbation profile
and the membrane-induced interaction between inclusions.
The membrane profile was shown to always oscillate as a
function of distance from the inclusion boundary, with a peri-
odicity that depends on the sign and magnitude of the sponta-
neous curvature. The type of interactions (whether attractive or
repulsive), their range, and their magnitude varied with the
spontaneous curvature and the inclusion-imposed boundary
condition. Recently, Kralchevsky et al. (1995) used a “sand-
wich model” to calculate the perturbation profile, the interac-
tion energy, and the lateral capillary force between two isolated
inclusions. The phenomenological parameters used in their
“sandwich model” were shown to relate to the Helfrich param-
eters (1973), specifically, the bending energy and spontaneous
curvature. Assuming high surface tension of the flat bilayer
(whereas Dan et al., 1993, take it to be zero), they found an
exponentially decaying perturbation profile, and nonmono-
tonic lateral capillary force and interaction between the two
inclusions.

In this paper we use a similar (Dan et al., 1993, 1994)
approach to calculate the membrane perturbation profile and
the membrane-induced interaction between an array of in-
clusions embedded in a two-dimensional membrane. This
interaction is then used to predict the radial distribution
function of inclusions in the membrane using a calculation
based on liquid state theory.

We find that the thickness profile of the membrane os-
cillates around the inclusion, decaying to the flat membrane
thickness at a large distance from the inclusion boundary.
The membrane-induced interaction between inclusions de-
cays nonmonotonically with the distance between them.
Depending on the parameters that characterize the system
(spontaneous curvature, stiffness, radius of the inclusion,
etc.), the membrane can promote either aggregation or a
finite spacing between inclusions. Likewise, our results
suggest that there are metastable states where a finite spac-
ing between inclusions is preferred. The energy penalty for
inserting an inclusion in the membrane may be either neg-
ative or positive, depending on the system parameters. In
the former case the membrane will prefer to absorb the
inclusion, in the latter to reject it. As expected, our results
show that increasing the radius of the inclusion increases the
perturbation of the membrane. When the inclusion radius is
greater than the membrane decay length, the inclusion can
be taken to be a “one-dimensional” infinite wall (Dan et al.,
1993).

The radial distribution function (RDF) gives a measure of
the probability that two inclusions will be at a given spac-
ing. Because the RDF can be obtained experimentally, it
provides a way to verify the accuracy of a predicted poten-
tial (Pearson et al., 1983, 1984). In this paper we calculate
the RDF of inclusions in membranes. We find that, for the
parameters chosen, the interaction between inclusions is
short-ranged and dominated by the spontaneous curvature
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of each monolayer of the bilayer. When the spontaneous
curvature is zero, the RDF due to the membrane-induced
interaction is nearly identical to that of a hard disk (because,
in effect, this is a two-dimensional system) liquid. When the
spontaneous curvature is nonzero, the RDF shows that a
finite inclusion spacing is preferred. This spacing is similar
to the distance at which the membrane-induced interaction
energy between inclusions is minimal. Finally, we see that
the decay of the oscillations of all the RDF shown in this
work (hard-disk potential model, zero and finite spontane-
ous curvature) is approximately at the same distance, which
implies that the membrane-induced interaction between in-
clusions is short-range for the parameters chosen in our
analysis. These were chosen to roughly correspond to the
experimental values of the monoacylglycerol-squalene and
lecithin bilayers (Huang, 1986), so that the dimensionless
values of the ratio between the compressibility and the
bending moduli is 10 and the spontaneous curvature is 0.4.

THEORY

Consider a non-solvent-containing membrane that contains
embedded inclusions that are arranged on an hexagonal
lattice, so that each inclusion can be taken to be surrounded
by its Wigner-Seitz cell. We simplify this by assuming
radial symmetry. The inclusions can be either thicker or
thinner than the equilibrium (unperturbed, flat) membrane
thickness. A strong coupling, arising from the need to match
the hydrophobic part of the membrane and the hydrophobic
part of the inclusion to avoid contact with water, distorts the
membrane thickness at the inclusion boundary. Assuming
that the membrane is composed of one type of amphiphile,
the system is symmetrical around the bilayer midline, and
the inclusion-imposed deformation is identical for the two
monolayers composing the bilayer. Then we need only
consider the perturbation profile of a single monolayer (see
Fig. 1, bottom). Taking the membrane to be parallel to the
X-Y plane, and defining u(r) as the thickness of the mem-
brane, where r is the coordinate from the center of the
inclusion (see Fig. 1, bottom), the free energy, per amphi-
phile, of a monolayer can be written as (Helfrich, 1973; Dan
et al., 1993, 1994)

fW2) = f(2) + kG)Vu + K(Z)(VA)?, ¢))

where 2 = 3(r) is the local surface area per amphiphile.
The local monolayer thickness, u(r), is related to 3 by an

equation of state. In this calculation, we use an incompress-

ibility condition. Accounting for the effects of curvature,

du\21"2
vzuE[l + (‘d—r) ] s 2

where v is the volume per amphiphile. The free energy of a
flat monolayer is given by fo(u, 3) = y2 + G(u), where y
is the surface tension between the aqueous media and the
hydrophobic amphiphile tails, and G(u) the contribution to
the energy of the compression-expansion term of the am-
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phiphiles. K(2.) and «(2.)/K(2.) are the bending stiffness and
spontaneous curvature per molecule, respectively. The local
monolayer curvature is given by V?u. We neglect the sur-
face tension contribution to the energy, according to the
results of Helfrich and Jakobsson (1990). All energies are
given in units of kg7, where kg is the Boltzmann constant
and T is the temperature.

An unperturbed, and thus, locally flat, membrane is char-
acterized by a thickness u,, and area per amphiphile 3,
which are determined by the minimization of the fy(u, 2).
Assuming that the perturbation of the membrane is small,
the perturbation energy (per amphiphile) due to local cur-
vature is given, to second order in curvature and surface
area, by

8=fC)—fo=E —Z)f5/2 + «kVu
3)
+ k'S — 2.)Vu + K(Vu)?,

where £ = 9%f/02? and k' = 9k/d3, evaluated at 3, = 3,
(throughout the paper we use the convention that the prime
denotes 3/93, evaluated at 3...), K = K(Z..), and k = k(3..).
Higher order terms were neglected in Eq. 3, because we
assume that the local curvature is small. We define a di-
mensionless perturbation parameter, A(r), as the change in
u(r) relative to the unperturbed thickness of the membrane,
Ueo,

A(r) = (u(r) — u)/tte (4a)
3 —3.=—vAlu., (4b)

where Eq. 4b was obtained by use of the incompressibility
condition (Eq. 2) and the assumption of small perturbation
(so that |A(n)| << 1).

The overall change in the membrane free energy, per
inclusion, is equal to

ro+L Kui
F= dr2mr —= [BAZ + 8§ V2A + AAVPA + (V2A)],  (5)

n

where B = B/2KuZ, B = 32f}§ (stretching modulus), A = (k
— 2K')/Ku,, and & = k/2Ku,,. The integration was done
on a circular region of radius r = r, + L, where r, is the
radius of the inclusion, 2L is the distance between two
adjacent inclusion boundaries, and we have used Egs. 4a
and 4b. Once the perturbation profile A(r) is known, we can
calculate the membrane-induced interaction between inclu-
sions and compare the energetic contribution of the different
terms (compression-expansion, bending stiffness, and spon-
taneous curvature).

Minimization of Eq. 5 with respect to variations in the
perturbation profile A(r) yields the Euler-Lagrange equa-
tion:

VA + AV2A + BA = 0. 6)

The general solution of this Euler-Lagrange equation is
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given by

A(r) = Ado(ayr) + AYo(ayr) + Azdy(ayr) + A4Y0(a2r)(,7)

where Jy(x) and Y,(x) are the zeroth-order Bessel func-
tions of first and second kinds, respectively, a; = (A +
(A2 — 4B)"12)"? and @, = (A — (A% — 4B)"?12)'2. We
can see from the functional form of Eq. 7 that a; and «,
set the length scale at which the perturbation profile
decays, namely, the decay length of the membrane. The
value of these parameters depends on the physical prop-
erties of the membrane as given by A and B. The con-
stants A; are determined by the boundary conditions.
These include the thickness-matching condition, A(r,) =
Ay, where A defines the size of the hydrophobic inclu-
sion region. The second boundary condition is given by
symmetry, dA(r)/dr = 0 at the midpoint between inclu-
sions, r = r, + L. The two remaining boundary conditions
are given by the minimization requirements of Eq. 5,

VsA | r=ro+L = Oa (8)
where V3 = d/dr(1/r - d/dr(r - d/dr)), and
VA |,o,, = —8 = M2. 9)

We can obtain a simple expression for the inclusion-
imposed energy by integrating by parts the second and
the last terms (twice) in the right-hand side of Eq. 5,
using the Euler-Lagrange equation (Eq. 6) and the re-
spective boundary conditions. Thus, we find that the
energy in the thickness-matching boundary condition
system is

Fr=st = ((M - 5)(%) + AO(V3A)) (10)
T 2mr K 2 dr :

I=ro

Once we have computed the free energy of the system
(Eq. 10) we can calculate the RDF of inclusions in the
membrane. To do this, we need to know the interaction
between inclusions. The free energy, Eq. 10, gives us the
penalty energy of the incorporation of one inclusion plus the
cost of adding another inclusion once we have one inclusion
in the membrane; because our model is not considering
three (or more) body interactions, we can subtract the pen-
alty energy due to the incorporation of a single inclusion
from the energy in Eq. 10, and in doing this we will get the
net membrane-induced interaction between inclusions,
which we will denote as

V(r) = Fr = Fr, (1)

where Fr,, is the free energy when L/u, — o, thereby
denoting the membrane-induced “absorption” energy of a
single inclusion.

We use the Ornstein-Zernike integral equation to calcu-
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late the RDF, given by

gN=1+cn+p f c(r)(glr — r') — Dd¥r', (12)

where g(r) is the radial distribution function, ¢(r) is the
direct correlation function, and p is the density of inclusions
in the membrane. To solve this equation we need another
relationship between c(r) and g(r). We use the Percus-
Yevick closure, which is a good approximation for short-
range interactions (Hansen and McDonald, 1986),

c(r) = g(r)(1 — e“'=sT), (13)

where w(r) is the interaction potential between inclusions;
in this paper we will use a hard-disk potential plus the
potential in Eq. 11. We will follow the method given by
Lado (1968) to solve Egs. 12 and 13, thereby finding the
distribution of inclusions.

RESULTS

Membrane properties are defined by the parameters 8, A,
and B. The first characterizes the amphiphile spontaneous
curvature, and thus, the frustration of the monolayer inher-
ent in the equilibrium, flat bilayer configuration. The second
accounts for the variation of the spontaneous curvature with
respect to the change in the surface amphiphile density. The
last parameter quantifies the ratio between the stretching
and bending moduli of the monolayer. When 3 is small, the
energy required for a bending deformation is much higher
than the penalty incurred by compression/expansion of the
monolayer, and vice versa. 8, A, and B thus determine the
characteristics of the inclusion-induced thickness perturba-
tion profile, the ensuing membrane-induced interaction be-
tween inclusions, and the radial distribution function of
inclusions in the membrane.

For simplicity, we use the same set of membrane param-
eters throughout the paper. The value of B is 10, and A, =
0.05. When noninteracting inclusions are discussed, the
distance between inclusions is taken to be L/u, = 10; such
a distance is sufficient to exclude interactions between
neighboring inclusions, i.e., overlap of the perturbed re-
gions. To establish the role of spontaneous curvature, we
examine three different cases: 8§ = 0.4, 0, and —0.4, which
correspond to A = 0.1, 0, and —0.1, respectively. The decay
length is defined by the real part of «; (which is equal to the
real part of a,) and is approximately equal to 1.3u..

In Fig. 2 we plot the thickness profile surrounding a
single inclusion, as a function of distance from the inclusion
boundary. The inclusion radius is equal to u.. We see that
the thickness perturbation profile strongly depends on the
spontaneous curvature value of the monolayer. When 8 is
small, the profile resembles an exponentially decaying func-
tion; oscillations are discernible only by a shallow minimum
in the thickness at a reduced distance of about 2u.. The
value of A(r) decreases, at that point, below zero, i.e., the
thickness of the membrane in this region is smaller than that
of the equilibrium, flat membrane. This is in agreement with
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FIGURE 2 Perturbation profiles as a function of the distance from the
inclusion boundary for different values of the spontaneous curvature of the
monolayer, 8. The distance between inclusions is L/u,. = 10, the thickness-
matching boundary condition is A, = 0.05, the dimensionless radius of the
inclusion is r,/u.. = 1, the ratio between the monolayer bending and the
stretching moduli is 8 = 10, and A = 0, —0.1, 0.1 when 8 = 0, —0.4, 0.4
respectively.

previous calculations (Huang, 1986; Dan et al., 1994) where
the spontaneous curvature of the monolayer was neglected.
When the value of 8 is large, the oscillations in the thickness
profile are more pronounced. The sign of & defines the
tendency of the monolayer to curve to, or from, the water/oil
interface; as a result, systems with positive d “overshoot” so
as to simulate a positive curvature, whereas systems with a
negative value of 8 “undershoot.” These results are in qual-
itative agreement with the calculations by Dan et al. (1993),
where the inclusions were taken to be large (i.e., ry —> ®).

The energetic difference between the membrane-per-
turbed and the equilibrium, flat membrane, F'r, is plotted in
Fig. 3 as a function of the separation between inclusions,
Llu,., for the three systems depicted in Fig. 2. We see that
when the spontaneous curvature is zero, the energetic min-
imum is obtained at L/u,, = 0. This indicates that, in such a
system, the membrane-induced interactions drive the inclu-
sions to aggregate. However, a barrier to aggregation exists
in the form of an energy maximum at L/u,, =~ 1. This barrier
could promote a metastable state characterized by the sec-
ondary minimum, so that the inclusions will order with a
finite separation between them. This is in agreement with
the calculations of Dan et al. (1994) for inclusions embed-
ded in membranes of zero spontaneous curvature of each
monolayer of the bilayer. When the spontaneous curvature
is nonzero, aggregation of inclusions is unfavorable. Rather,
the system’s energy is minimal when the inclusions adopt a
specific spacing. Note that when 8 = 0.4 an energy barrier
might, as in the zero spontaneous curvature case, promote a
meta-stable state characterized by the secondary minimum.
This is a feature of the two-dimensional system that was not
found in the one-dimensional case.
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FIGURE 3 The dimensionless free energy as a function of the distance
between inclusions. The parameters are the same as in Fig. 2.

The value of Fr in the limit of L/u,, — o defines the
energy gained, or lost, due to incorporation of a single
inclusion in the membrane. When & = 0 or 6 = 0.4, the
membrane will tend to reject the inclusion.

When 8 = —0.4 the membrane energy is reduced by the
inclusion, in agreement with the predictions of Dan et al.
(1993). Figs. 2 and 3 show the effect of the spontaneous
curvature in determining the profile and the membrane-
induced energy between inclusions. Decomposition of the
membrane energy shows more clearly, however, the weight
of each contribution: the compression/expansion term, the
spontaneous curvature term, and the bending stiffness term.
In Fig. 4 the three contributions are shown (using Eq. 5) as
a function of the distance between inclusions. The values of
A and & are 0.1 and 0.4, respectively. We see that the
predominant energetic contribution is that due to the spon-
taneous curvature of the monolayer, 8. The relative impor-
tance of the bending and the compression/expansion terms
are set by the value of 8 « B/K; in this case we chose a high
ratio whereby the bending stiffness is smaller and less
important than the compression/expansion contribution. A
similar conclusion is reached for a system when the spon-
taneous curvature is —0.4.

The inclusion size influences the membrane perturba-
tion profile and energy. In general, we expect that larger
inclusions perturb a larger area of the membrane and thus
have a stronger effect than smaller inclusions. In the limit
where the inclusion radius is larger than the membrane
perturbation decay length, the system will resemble the
one-dimensional (“infinite wall-like”) inclusions dis-
cussed by Dan et al. (1993). The effect of inclusion radius
on the monolayer thickness profile is shown in Fig. 5 for
a system with positive spontaneous curvature (the same
analysis is valid for systems with zero and negative
spontaneous curvature). We see that the inclusion radius
does not significantly affect the perturbation profile.
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FIGURE 4 Decomposition of the different energy contributions.
Compression-expansion (CE), spontaneous curvature (SC), and bending
stiffness (BS). Each term is in units of 27rr K/v. The radius of the
inclusion is r /u,, = 1, the distance between inclusions is L/u,, = 10,
and the thickness-matching boundary condition is A, = 0.05. The
spontaneous curvature of the monolayer is § = 0.4, the ratio between
the monolayer bending and the stretching moduli is 8 = 10, and A =
0.1.

Only the magnitude of the first thickness “overshoot”
decreases slightly with inclusion radius. One might there-
fore expect that the membrane energy (as a function of
the spacing between inclusions) will also be unaffected.
Indeed, as can be seen in Fig. 6, the location of the energy
minimum, which defines the energetically optimal spac-

14 T T T T T T T T T

1.2 |

0.8 -

>
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FIGURE 5 Perturbation profile as a function of the distance from
the inclusion boundary for a one-dimensional system (<), the two-
dimensional system with the radius of the inclusion r/u, = 1 (+), and
radius of r/u,, = 3 ((J). The parameters are the same as in Fig. 4. For
the one-dimensional system / = r/u,,, and for the two-dimensional case
1= (r— ry)lu,.
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ing, is unaffected by the inclusion radius. So, to a large
extent, is the depth of the energy minimum. However, the
membrane perturbation energy at large inclusion spac-
ings varies significantly with the inclusion radius.

As mentioned earlier, the value of F (or E) in the limit of
L — = defines the effective membrane-induced inclusion
absorption energy. Therefore, whereas small inclusions will
be rejected by the membrane at small concentrations, large
inclusions will be readily absorbed.

It is of interest to estimate the magnitude of the membrane-
induced interaction energy. The energy is given (Eq. 10) in
units of 27Kr /v, which, for gramicidin channel (Huang,
1986), is 6.2 X 10~ '* erg. For comparison, at T = 300K,
kgT = 4.1 X 10~ '* erg. Therefore, when the inclusion-induced
perturbation is large, namely, A, is large, the membrane-
induced interaction between inclusions will be on the same
order of magnitude as kgT.

The radial distribution function, g(r), gives a measure of
the probability that two inclusions will be at a distance r
from each other (Hansen and McDonald, 1986). The mean
spacing is, therefore, approximately given by the location of
the first peak. In Fig. 7 we compare the RDF of inclusions
embedded in membranes of several spontaneous curvatures
to that of a hard-disk liquid. We see that, for the parameters
chosen in this paper, the RDF of inclusions in a membrane
with zero spontaneous curvature is practically identical to
that of a two-dimensional fluid with hard-disk interaction.
As could be expected from the energy profile, the average
spacing between inclusions is unity, corresponding to an
aggregated state. However, in membranes of finite sponta-
neous curvature of the monolayer, this is not the case. The
maximum occurs at a definite value, which corresponds,
approximately, to the location of the energy minimum (as
shown in Fig. 3. Note that in our notation r = r, + L). We
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FIGURE 6 Comparison of the free energy between systems in the one-
and the two-dimensional models. The parameters and ! are as in Fig. 5. E
= vF/K for the one-dimensional system, where F is the energy per unit
inclusion width, and E = vF/2wr K for the two-dimensional system.
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see that, at spacings larger than rfu,, =~ 3, g(r) decays to
unity. This indicates that the membrane-induced interaction
is very short-range. However, this is due to our choice of
parameters, namely, the correlation length is approximately
equal to the membrane thickness u,,. In systems with larger
correlation lengths the interaction range will be longer.

CONCLUSIONS

In this paper the properties of membranes containing em-
bedded inclusions are calculated as a function of membrane
parameters and inclusion size. The two-dimensional model
used allows investigation of the membrane perturbation
profile, the membrane-induced interaction between inclu-
sions, and their radial distribution function. The shape of the
membrane deformation profile, as a function of distance
from the inclusion boundary, strongly depends on the spon-
taneous curvature of the monolayers. The elastic properties
of the membrane, namely, compressibility and bending en-
ergy, set the perturbation decay length. This decay length
defines both the distance from the inclusion at which the
equilibrium thickness is reached (if the inclusions are
widely spaced), and the radius of the inclusion above which
a simplified one-dimensional model applies.

The perturbation profile was used to calculate the mem-
brane energy. We find that the energy gain, or loss, due to
absorption of an inclusion in the membrane, is set by the
spontaneous curvature of each monolayer of the bilayer. For
the parameters chosen, in systems of zero and positive
spontaneous curvature of the monolayer, the membrane
energy increases because of inclusion absorption, thereby
inhibiting absorption. On the other hand, the energy of a
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FIGURE 7 Radial distribution functions as a function of the distance
between centers of the inclusions, for a reduced density p* = 4pr2 = 0.08.
The membrane and inclusion parameters are as in Fig. 2. A comparison is
made between a hard-disk potential liquid model (solid line) and mem-
branes with different values for the spontaneous curvature of each mono-
layer of the bilayer, § = 0 (0), 8§ = —0.4 ((J), and & = 0.4 (+).
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membrane with negative spontaneous curvature of the
monolayer is reduced by inclusions, thus promoting inclu-
sion absorption. These effects on the membrane energy are
due to the fact that the inclusion distorts the membrane in
such a way that the distortion either can or cannot fit the
spontaneous curvature of each monolayer of the bilayer.

The membrane-induced interactions between inclu-
sions are nonmonotonic; the presence of energy barriers
could lead to metastable states characterized by an inclu-
sion spacing other than that of the equilibrium minimum
free energy. For membranes where each monolayer has
zero spontaneous curvature, the energy is minimal when
the inclusions are aggregated. In systems of finite spon-
taneous curvature the preferred state is that of inclusions
distributed at a specific spacing. This spacing allows the
membrane to deform in such a manner consistent with
both, the inclusion deformation and the intrinsic sponta-
neous curvature of each monolayer.

These effects on the perturbation profile and on the
membrane-induced interaction between inclusions are due
to the fact that the inclusion distorts the membrane in such
a way that the distortion either can or cannot fit the spon-
taneous curvature of each monolayer of the bilayer. For
example, for the parameters chosen in this paper, the inclu-
sion forces the membrane to deform in such a manner that
a negative spontaneous curvature of the monolayer would
be favorable (see Fig. 3).

An interesting effect is observed when the spontaneous
curvature of the monolayer is positive. For short distances
between inclusions the energy is decreased, indicating that
absorption is favorable for this configuration. This is due to the
coupling between the distortion of the inclusions on the mem-
brane and the spontaneous curvature as indicated above. In this
case for short distances the monolayer “overshoots” so as to
simulate a positive curvature (see Fig. 2), and therefore, the
energy is decreased. Examining the various energetic contri-
butions, we find that the membrane deformation energy is
dominated by the spontaneous curvature of the monolayers.
This conclusion is, however, parameter dependent. In mem-
branes where the bending stiffness or compressibility is very
high, the spontaneous curvature will play a less important role.
The spontaneous curvature also determines how the inclusion
size affects the system energy. The membrane energy can
either increase or decrease with inclusion radius, depending on
the various system parameters. However, the results of a sim-
plified one-dimensional model (Dan et al., 1993) are recovered
when the inclusion radius is larger than the membrane decay
length.

The membrane-induced interaction between inclusions
was used to compute the RDF. The mean distance between
inclusions, as defined by the first peak in the RDF, is similar
to that given by the location of the membrane energy
minimum. The RDF of inclusions in membranes of zero
spontaneous curvature is similar to that of a hard-disk
liquid. The membrane-induced interactions are found to be
short-range for the parameters we investigate. Longer range
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interactions are possible in cases where the membrane de-
cay length is larger (e.g., for smaller bending modulus K).

Unfortunately, we cannot yet examine the validity of our
predictions by comparison with experimental data. We do
not know of experiments where the spacing of inclusions, as
well as all the necessary parameters (compressibility, spon-
taneous curvature, bending modulus) have been measured.
Moreover, in many experimental systems the electrostatic
interactions between inclusions (proteins) need to be in-
cluded. However, this model represents another step in the
effort to understand and characterize the interactions be-
tween embedded inclusions. Refining the model so that it
will be more applicable includes adding the direct inclusion-
inclusion interactions (van der Waals and electrostatic)
(Dan and Safran, manuscript in preparation). Furthermore,
the Ornstein-Zernike theory we use to calculate the RDF
applies to flat surfaces, although membranes are known to
undulate and curve. Therefore, it is of interest to extend the
model to calculate the distribution function for curved and
fluctuating membranes (Aranda-Espinoza and Pincus,
manuscript in preparation).
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